1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 /* Instruction-Accurate PDIR (PDIR++) */
37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 {}
45 };
46
47 /* NOTE:
48 * - Each perf counter is defined as "struct kvm_pmc";
49 * - There are two types of perf counters: general purpose (gp) and fixed.
50 * gp counters are stored in gp_counters[] and fixed counters are stored
51 * in fixed_counters[] respectively. Both of them are part of "struct
52 * kvm_pmu";
53 * - pmu.c understands the difference between gp counters and fixed counters.
54 * However AMD doesn't support fixed-counters;
55 * - There are three types of index to access perf counters (PMC):
56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57 * has MSR_K7_PERFCTRn and, for families 15H and later,
58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59 * aliased to MSR_K7_PERFCTRn.
60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63 * that it also supports fixed counters. idx can be used to as index to
64 * gp and fixed counters.
65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
67 * all perf counters (both gp and fixed). The mapping relationship
68 * between pmc and perf counters is as the following:
69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73 */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func) \
78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
79 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
pmc_is_enabled(struct kvm_pmc * pmc)96 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
97 {
98 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
99 }
100
kvm_pmi_trigger_fn(struct irq_work * irq_work)101 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
102 {
103 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
104 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
105
106 kvm_pmu_deliver_pmi(vcpu);
107 }
108
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)109 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
110 {
111 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
112 bool skip_pmi = false;
113
114 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
115 if (!in_pmi) {
116 /*
117 * TODO: KVM is currently _choosing_ to not generate records
118 * for emulated instructions, avoiding BUFFER_OVF PMI when
119 * there are no records. Strictly speaking, it should be done
120 * as well in the right context to improve sampling accuracy.
121 */
122 skip_pmi = true;
123 } else {
124 /* Indicate PEBS overflow PMI to guest. */
125 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
126 (unsigned long *)&pmu->global_status);
127 }
128 } else {
129 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
130 }
131
132 if (!pmc->intr || skip_pmi)
133 return;
134
135 /*
136 * Inject PMI. If vcpu was in a guest mode during NMI PMI
137 * can be ejected on a guest mode re-entry. Otherwise we can't
138 * be sure that vcpu wasn't executing hlt instruction at the
139 * time of vmexit and is not going to re-enter guest mode until
140 * woken up. So we should wake it, but this is impossible from
141 * NMI context. Do it from irq work instead.
142 */
143 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
144 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
145 else
146 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
147 }
148
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)149 static void kvm_perf_overflow(struct perf_event *perf_event,
150 struct perf_sample_data *data,
151 struct pt_regs *regs)
152 {
153 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
154
155 /*
156 * Ignore overflow events for counters that are scheduled to be
157 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
158 * handling of a related guest WRMSR.
159 */
160 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
161 return;
162
163 __kvm_perf_overflow(pmc, true);
164
165 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
166 }
167
pmc_get_pebs_precise_level(struct kvm_pmc * pmc)168 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
169 {
170 /*
171 * For some model specific pebs counters with special capabilities
172 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
173 * level to the maximum value (currently 3, backwards compatible)
174 * so that the perf subsystem would assign specific hardware counter
175 * with that capability for vPMC.
176 */
177 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
178 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
179 return 3;
180
181 /*
182 * The non-zero precision level of guest event makes the ordinary
183 * guest event becomes a guest PEBS event and triggers the host
184 * PEBS PMI handler to determine whether the PEBS overflow PMI
185 * comes from the host counters or the guest.
186 */
187 return 1;
188 }
189
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)190 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
191 bool exclude_user, bool exclude_kernel,
192 bool intr)
193 {
194 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
195 struct perf_event *event;
196 struct perf_event_attr attr = {
197 .type = type,
198 .size = sizeof(attr),
199 .pinned = true,
200 .exclude_idle = true,
201 .exclude_host = 1,
202 .exclude_user = exclude_user,
203 .exclude_kernel = exclude_kernel,
204 .config = config,
205 };
206 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
207
208 attr.sample_period = get_sample_period(pmc, pmc->counter);
209
210 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
211 guest_cpuid_is_intel(pmc->vcpu)) {
212 /*
213 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
214 * period. Just clear the sample period so at least
215 * allocating the counter doesn't fail.
216 */
217 attr.sample_period = 0;
218 }
219 if (pebs) {
220 /*
221 * For most PEBS hardware events, the difference in the software
222 * precision levels of guest and host PEBS events will not affect
223 * the accuracy of the PEBS profiling result, because the "event IP"
224 * in the PEBS record is calibrated on the guest side.
225 */
226 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
227 }
228
229 event = perf_event_create_kernel_counter(&attr, -1, current,
230 kvm_perf_overflow, pmc);
231 if (IS_ERR(event)) {
232 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
233 PTR_ERR(event), pmc->idx);
234 return PTR_ERR(event);
235 }
236
237 pmc->perf_event = event;
238 pmc_to_pmu(pmc)->event_count++;
239 pmc->is_paused = false;
240 pmc->intr = intr || pebs;
241 return 0;
242 }
243
pmc_pause_counter(struct kvm_pmc * pmc)244 static void pmc_pause_counter(struct kvm_pmc *pmc)
245 {
246 u64 counter = pmc->counter;
247
248 if (!pmc->perf_event || pmc->is_paused)
249 return;
250
251 /* update counter, reset event value to avoid redundant accumulation */
252 counter += perf_event_pause(pmc->perf_event, true);
253 pmc->counter = counter & pmc_bitmask(pmc);
254 pmc->is_paused = true;
255 }
256
pmc_resume_counter(struct kvm_pmc * pmc)257 static bool pmc_resume_counter(struct kvm_pmc *pmc)
258 {
259 if (!pmc->perf_event)
260 return false;
261
262 /* recalibrate sample period and check if it's accepted by perf core */
263 if (is_sampling_event(pmc->perf_event) &&
264 perf_event_period(pmc->perf_event,
265 get_sample_period(pmc, pmc->counter)))
266 return false;
267
268 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
269 (!!pmc->perf_event->attr.precise_ip))
270 return false;
271
272 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
273 perf_event_enable(pmc->perf_event);
274 pmc->is_paused = false;
275
276 return true;
277 }
278
filter_cmp(const void * pa,const void * pb,u64 mask)279 static int filter_cmp(const void *pa, const void *pb, u64 mask)
280 {
281 u64 a = *(u64 *)pa & mask;
282 u64 b = *(u64 *)pb & mask;
283
284 return (a > b) - (a < b);
285 }
286
287
filter_sort_cmp(const void * pa,const void * pb)288 static int filter_sort_cmp(const void *pa, const void *pb)
289 {
290 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
291 KVM_PMU_MASKED_ENTRY_EXCLUDE));
292 }
293
294 /*
295 * For the event filter, searching is done on the 'includes' list and
296 * 'excludes' list separately rather than on the 'events' list (which
297 * has both). As a result the exclude bit can be ignored.
298 */
filter_event_cmp(const void * pa,const void * pb)299 static int filter_event_cmp(const void *pa, const void *pb)
300 {
301 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
302 }
303
find_filter_index(u64 * events,u64 nevents,u64 key)304 static int find_filter_index(u64 *events, u64 nevents, u64 key)
305 {
306 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
307 filter_event_cmp);
308
309 if (!fe)
310 return -1;
311
312 return fe - events;
313 }
314
is_filter_entry_match(u64 filter_event,u64 umask)315 static bool is_filter_entry_match(u64 filter_event, u64 umask)
316 {
317 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
318 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
319
320 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
321 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
322 ARCH_PERFMON_EVENTSEL_UMASK);
323
324 return (umask & mask) == match;
325 }
326
filter_contains_match(u64 * events,u64 nevents,u64 eventsel)327 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
328 {
329 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
330 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
331 int i, index;
332
333 index = find_filter_index(events, nevents, event_select);
334 if (index < 0)
335 return false;
336
337 /*
338 * Entries are sorted by the event select. Walk the list in both
339 * directions to process all entries with the targeted event select.
340 */
341 for (i = index; i < nevents; i++) {
342 if (filter_event_cmp(&events[i], &event_select))
343 break;
344
345 if (is_filter_entry_match(events[i], umask))
346 return true;
347 }
348
349 for (i = index - 1; i >= 0; i--) {
350 if (filter_event_cmp(&events[i], &event_select))
351 break;
352
353 if (is_filter_entry_match(events[i], umask))
354 return true;
355 }
356
357 return false;
358 }
359
is_gp_event_allowed(struct kvm_x86_pmu_event_filter * f,u64 eventsel)360 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
361 u64 eventsel)
362 {
363 if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
364 !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
365 return f->action == KVM_PMU_EVENT_ALLOW;
366
367 return f->action == KVM_PMU_EVENT_DENY;
368 }
369
is_fixed_event_allowed(struct kvm_x86_pmu_event_filter * filter,int idx)370 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
371 int idx)
372 {
373 int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
374
375 if (filter->action == KVM_PMU_EVENT_DENY &&
376 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
377 return false;
378 if (filter->action == KVM_PMU_EVENT_ALLOW &&
379 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
380 return false;
381
382 return true;
383 }
384
check_pmu_event_filter(struct kvm_pmc * pmc)385 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
386 {
387 struct kvm_x86_pmu_event_filter *filter;
388 struct kvm *kvm = pmc->vcpu->kvm;
389
390 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
391 return false;
392
393 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
394 if (!filter)
395 return true;
396
397 if (pmc_is_gp(pmc))
398 return is_gp_event_allowed(filter, pmc->eventsel);
399
400 return is_fixed_event_allowed(filter, pmc->idx);
401 }
402
reprogram_counter(struct kvm_pmc * pmc)403 static void reprogram_counter(struct kvm_pmc *pmc)
404 {
405 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
406 u64 eventsel = pmc->eventsel;
407 u64 new_config = eventsel;
408 u8 fixed_ctr_ctrl;
409
410 pmc_pause_counter(pmc);
411
412 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
413 goto reprogram_complete;
414
415 if (!check_pmu_event_filter(pmc))
416 goto reprogram_complete;
417
418 if (pmc->counter < pmc->prev_counter)
419 __kvm_perf_overflow(pmc, false);
420
421 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
422 printk_once("kvm pmu: pin control bit is ignored\n");
423
424 if (pmc_is_fixed(pmc)) {
425 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
426 pmc->idx - INTEL_PMC_IDX_FIXED);
427 if (fixed_ctr_ctrl & 0x1)
428 eventsel |= ARCH_PERFMON_EVENTSEL_OS;
429 if (fixed_ctr_ctrl & 0x2)
430 eventsel |= ARCH_PERFMON_EVENTSEL_USR;
431 if (fixed_ctr_ctrl & 0x8)
432 eventsel |= ARCH_PERFMON_EVENTSEL_INT;
433 new_config = (u64)fixed_ctr_ctrl;
434 }
435
436 if (pmc->current_config == new_config && pmc_resume_counter(pmc))
437 goto reprogram_complete;
438
439 pmc_release_perf_event(pmc);
440
441 pmc->current_config = new_config;
442
443 /*
444 * If reprogramming fails, e.g. due to contention, leave the counter's
445 * regprogram bit set, i.e. opportunistically try again on the next PMU
446 * refresh. Don't make a new request as doing so can stall the guest
447 * if reprogramming repeatedly fails.
448 */
449 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
450 (eventsel & pmu->raw_event_mask),
451 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
452 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
453 eventsel & ARCH_PERFMON_EVENTSEL_INT))
454 return;
455
456 reprogram_complete:
457 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
458 pmc->prev_counter = 0;
459 }
460
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)461 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
462 {
463 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
464 int bit;
465
466 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
467 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
468
469 if (unlikely(!pmc)) {
470 clear_bit(bit, pmu->reprogram_pmi);
471 continue;
472 }
473
474 reprogram_counter(pmc);
475 }
476
477 /*
478 * Unused perf_events are only released if the corresponding MSRs
479 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
480 * triggers KVM_REQ_PMU if cleanup is needed.
481 */
482 if (unlikely(pmu->need_cleanup))
483 kvm_pmu_cleanup(vcpu);
484 }
485
486 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)487 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
488 {
489 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
490 }
491
is_vmware_backdoor_pmc(u32 pmc_idx)492 bool is_vmware_backdoor_pmc(u32 pmc_idx)
493 {
494 switch (pmc_idx) {
495 case VMWARE_BACKDOOR_PMC_HOST_TSC:
496 case VMWARE_BACKDOOR_PMC_REAL_TIME:
497 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
498 return true;
499 }
500 return false;
501 }
502
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)503 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
504 {
505 u64 ctr_val;
506
507 switch (idx) {
508 case VMWARE_BACKDOOR_PMC_HOST_TSC:
509 ctr_val = rdtsc();
510 break;
511 case VMWARE_BACKDOOR_PMC_REAL_TIME:
512 ctr_val = ktime_get_boottime_ns();
513 break;
514 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
515 ctr_val = ktime_get_boottime_ns() +
516 vcpu->kvm->arch.kvmclock_offset;
517 break;
518 default:
519 return 1;
520 }
521
522 *data = ctr_val;
523 return 0;
524 }
525
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)526 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
527 {
528 bool fast_mode = idx & (1u << 31);
529 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
530 struct kvm_pmc *pmc;
531 u64 mask = fast_mode ? ~0u : ~0ull;
532
533 if (!pmu->version)
534 return 1;
535
536 if (is_vmware_backdoor_pmc(idx))
537 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
538
539 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
540 if (!pmc)
541 return 1;
542
543 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
544 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
545 (kvm_read_cr0(vcpu) & X86_CR0_PE))
546 return 1;
547
548 *data = pmc_read_counter(pmc) & mask;
549 return 0;
550 }
551
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)552 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
553 {
554 if (lapic_in_kernel(vcpu)) {
555 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
556 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
557 }
558 }
559
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)560 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
561 {
562 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
563 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
564 }
565
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)566 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
567 {
568 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
569 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
570
571 if (pmc)
572 __set_bit(pmc->idx, pmu->pmc_in_use);
573 }
574
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)575 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
576 {
577 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
578 }
579
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)580 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
581 {
582 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
583 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
584 }
585
586 /* refresh PMU settings. This function generally is called when underlying
587 * settings are changed (such as changes of PMU CPUID by guest VMs), which
588 * should rarely happen.
589 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)590 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
591 {
592 static_call(kvm_x86_pmu_refresh)(vcpu);
593 }
594
kvm_pmu_reset(struct kvm_vcpu * vcpu)595 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
596 {
597 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
598
599 irq_work_sync(&pmu->irq_work);
600 static_call(kvm_x86_pmu_reset)(vcpu);
601 }
602
kvm_pmu_init(struct kvm_vcpu * vcpu)603 void kvm_pmu_init(struct kvm_vcpu *vcpu)
604 {
605 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
606
607 memset(pmu, 0, sizeof(*pmu));
608 static_call(kvm_x86_pmu_init)(vcpu);
609 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
610 pmu->event_count = 0;
611 pmu->need_cleanup = false;
612 kvm_pmu_refresh(vcpu);
613 }
614
615 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)616 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
617 {
618 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619 struct kvm_pmc *pmc = NULL;
620 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
621 int i;
622
623 pmu->need_cleanup = false;
624
625 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
626 pmu->pmc_in_use, X86_PMC_IDX_MAX);
627
628 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
629 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
630
631 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
632 pmc_stop_counter(pmc);
633 }
634
635 static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
636
637 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
638 }
639
kvm_pmu_destroy(struct kvm_vcpu * vcpu)640 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
641 {
642 kvm_pmu_reset(vcpu);
643 }
644
kvm_pmu_incr_counter(struct kvm_pmc * pmc)645 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
646 {
647 pmc->prev_counter = pmc->counter;
648 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
649 kvm_pmu_request_counter_reprogam(pmc);
650 }
651
eventsel_match_perf_hw_id(struct kvm_pmc * pmc,unsigned int perf_hw_id)652 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
653 unsigned int perf_hw_id)
654 {
655 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
656 AMD64_RAW_EVENT_MASK_NB);
657 }
658
cpl_is_matched(struct kvm_pmc * pmc)659 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
660 {
661 bool select_os, select_user;
662 u64 config;
663
664 if (pmc_is_gp(pmc)) {
665 config = pmc->eventsel;
666 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
667 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
668 } else {
669 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
670 pmc->idx - INTEL_PMC_IDX_FIXED);
671 select_os = config & 0x1;
672 select_user = config & 0x2;
673 }
674
675 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
676 }
677
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,u64 perf_hw_id)678 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
679 {
680 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
681 struct kvm_pmc *pmc;
682 int i;
683
684 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
685 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
686
687 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
688 continue;
689
690 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
691 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
692 kvm_pmu_incr_counter(pmc);
693 }
694 }
695 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
696
is_masked_filter_valid(const struct kvm_x86_pmu_event_filter * filter)697 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
698 {
699 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
700 KVM_PMU_MASKED_ENTRY_UMASK_MASK |
701 KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
702 KVM_PMU_MASKED_ENTRY_EXCLUDE;
703 int i;
704
705 for (i = 0; i < filter->nevents; i++) {
706 if (filter->events[i] & ~mask)
707 return false;
708 }
709
710 return true;
711 }
712
convert_to_masked_filter(struct kvm_x86_pmu_event_filter * filter)713 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
714 {
715 int i, j;
716
717 for (i = 0, j = 0; i < filter->nevents; i++) {
718 /*
719 * Skip events that are impossible to match against a guest
720 * event. When filtering, only the event select + unit mask
721 * of the guest event is used. To maintain backwards
722 * compatibility, impossible filters can't be rejected :-(
723 */
724 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
725 ARCH_PERFMON_EVENTSEL_UMASK))
726 continue;
727 /*
728 * Convert userspace events to a common in-kernel event so
729 * only one code path is needed to support both events. For
730 * the in-kernel events use masked events because they are
731 * flexible enough to handle both cases. To convert to masked
732 * events all that's needed is to add an "all ones" umask_mask,
733 * (unmasked filter events don't support EXCLUDE).
734 */
735 filter->events[j++] = filter->events[i] |
736 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
737 }
738
739 filter->nevents = j;
740 }
741
prepare_filter_lists(struct kvm_x86_pmu_event_filter * filter)742 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
743 {
744 int i;
745
746 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
747 convert_to_masked_filter(filter);
748 else if (!is_masked_filter_valid(filter))
749 return -EINVAL;
750
751 /*
752 * Sort entries by event select and includes vs. excludes so that all
753 * entries for a given event select can be processed efficiently during
754 * filtering. The EXCLUDE flag uses a more significant bit than the
755 * event select, and so the sorted list is also effectively split into
756 * includes and excludes sub-lists.
757 */
758 sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
759 filter_sort_cmp, NULL);
760
761 i = filter->nevents;
762 /* Find the first EXCLUDE event (only supported for masked events). */
763 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
764 for (i = 0; i < filter->nevents; i++) {
765 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
766 break;
767 }
768 }
769
770 filter->nr_includes = i;
771 filter->nr_excludes = filter->nevents - filter->nr_includes;
772 filter->includes = filter->events;
773 filter->excludes = filter->events + filter->nr_includes;
774
775 return 0;
776 }
777
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)778 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
779 {
780 struct kvm_pmu_event_filter __user *user_filter = argp;
781 struct kvm_x86_pmu_event_filter *filter;
782 struct kvm_pmu_event_filter tmp;
783 struct kvm_vcpu *vcpu;
784 unsigned long i;
785 size_t size;
786 int r;
787
788 if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
789 return -EFAULT;
790
791 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
792 tmp.action != KVM_PMU_EVENT_DENY)
793 return -EINVAL;
794
795 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
796 return -EINVAL;
797
798 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
799 return -E2BIG;
800
801 size = struct_size(filter, events, tmp.nevents);
802 filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
803 if (!filter)
804 return -ENOMEM;
805
806 filter->action = tmp.action;
807 filter->nevents = tmp.nevents;
808 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
809 filter->flags = tmp.flags;
810
811 r = -EFAULT;
812 if (copy_from_user(filter->events, user_filter->events,
813 sizeof(filter->events[0]) * filter->nevents))
814 goto cleanup;
815
816 r = prepare_filter_lists(filter);
817 if (r)
818 goto cleanup;
819
820 mutex_lock(&kvm->lock);
821 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
822 mutex_is_locked(&kvm->lock));
823 mutex_unlock(&kvm->lock);
824 synchronize_srcu_expedited(&kvm->srcu);
825
826 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
827 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
828
829 kvm_for_each_vcpu(i, vcpu, kvm)
830 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
831
832 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
833
834 r = 0;
835 cleanup:
836 kfree(filter);
837 return r;
838 }
839