/linux-6.3-rc2/drivers/iommu/ |
A D | io-pgfault.c | 50 struct list_head faults; member 85 list_for_each_entry_safe(iopf, next, &group->faults, list) { in iopf_handler() 193 INIT_LIST_HEAD(&group->faults); in iommu_queue_iopf() 194 list_add(&group->last_fault.list, &group->faults); in iommu_queue_iopf() 201 list_move(&iopf->list, &group->faults); in iommu_queue_iopf()
|
/linux-6.3-rc2/drivers/md/ |
A D | md-faulty.c | 79 sector_t faults[MaxFault]; member 105 if (conf->faults[i] >= start && in check_sector() 106 conf->faults[i] < end) { in check_sector() 129 if (conf->faults[i] == start) { in add_sector() 158 conf->faults[n] = start; in add_sector()
|
/linux-6.3-rc2/tools/perf/util/ |
A D | parse-events.l | 347 page-faults|faults { return sym(yyscanner, PERF_TYPE_SOFTWARE, PERF_COUNT_SW_PAGE_FAULTS); } 348 minor-faults { return sym(yyscanner, PERF_TYPE_SOFTWARE, PERF_COUNT_SW_PAGE_FAULTS_MIN); } 349 major-faults { return sym(yyscanner, PERF_TYPE_SOFTWARE, PERF_COUNT_SW_PAGE_FAULTS_MAJ); } 352 alignment-faults { return sym(yyscanner, PERF_TYPE_SOFTWARE, PERF_COUNT_SW_ALIGNMENT_FAULTS); } 353 emulation-faults { return sym(yyscanner, PERF_TYPE_SOFTWARE, PERF_COUNT_SW_EMULATION_FAULTS); }
|
/linux-6.3-rc2/Documentation/userspace-api/media/v4l/ |
A D | ext-ctrls-flash.rst | 63 presence of some faults. See V4L2_CID_FLASH_FAULT. 106 control may not be possible in presence of some faults. See 129 some faults. See V4L2_CID_FLASH_FAULT. 137 Faults related to the flash. The faults tell about specific problems 141 if the fault affects the flash LED. Exactly which faults have such 142 an effect is chip dependent. Reading the faults resets the control
|
/linux-6.3-rc2/Documentation/admin-guide/mm/ |
A D | userfaultfd.rst | 10 memory page faults, something otherwise only the kernel code could do. 19 regions of virtual memory with it. Then, any page faults which occur within the 26 1) ``read/POLLIN`` protocol to notify a userland thread of the faults 63 - Any user can always create a userfaultfd which traps userspace page faults 102 other than page faults are supported. These events are described in more 124 bitmask will specify to the kernel which kind of faults to track for 129 hugetlbfs), or all types of intercepted faults. 160 - For ``UFFDIO_REGISTER_MODE_MISSING`` faults, the fault needs to be 235 page faults in the guest scheduler so those guest processes that 330 not get further userland page faults from the removed area. Still, the [all …]
|
/linux-6.3-rc2/Documentation/admin-guide/cgroup-v1/ |
A D | hugetlb.rst | 25 …rsvd.max_usage_in_bytes # show max "hugepagesize" hugetlb reservations and no-reserve faults 26 …svd.usage_in_bytes # show current reservations and no-reserve faults for "hugepagesize"… 28 …tlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb faults 112 For shared HugeTLB memory, both HugeTLB reservation and page faults are charged 123 When a HugeTLB cgroup goes offline with some reservations or faults still 134 complex compared to the tracking of HugeTLB faults, so it is significantly
|
/linux-6.3-rc2/Documentation/gpu/rfc/ |
A D | i915_vm_bind.rst | 96 newer VM_BIND mode, the VM_BIND mode with GPU page faults and possible future 98 The older execbuf mode and the newer VM_BIND mode without page faults manages 99 residency of backing storage using dma_fence. The VM_BIND mode with page faults 108 In future, when GPU page faults are supported, we can potentially use a 124 When GPU page faults are supported, the execbuf path do not take any of these 180 Where GPU page faults are not available, kernel driver upon buffer invalidation 210 GPU page faults 212 GPU page faults when supported (in future), will only be supported in the 214 binding will require using dma-fence to ensure residency, the GPU page faults 240 faults enabled.
|
/linux-6.3-rc2/Documentation/driver-api/ |
A D | dma-buf.rst | 283 Modern hardware supports recoverable page faults, which has a lot of 289 means any workload using recoverable page faults cannot use DMA fences for 296 faults. Specifically this means implicit synchronization will not be possible. 297 The exception is when page faults are only used as migration hints and never to 299 faults on GPUs are limited to pure compute workloads. 303 job with a DMA fence and a compute workload using recoverable page faults are 334 to guarantee all pending GPU page faults are flushed. 337 allocating memory to repair hardware page faults, either through separate 341 robust to limit the impact of handling hardware page faults to the specific 346 in the kernel even for resolving hardware page faults, e.g. by using copy [all …]
|
/linux-6.3-rc2/drivers/gpu/drm/msm/ |
A D | msm_submitqueue.c | 240 size_t size = min_t(size_t, args->len, sizeof(queue->faults)); in msm_submitqueue_query_faults() 245 args->len = sizeof(queue->faults); in msm_submitqueue_query_faults() 252 ret = copy_to_user(u64_to_user_ptr(args->data), &queue->faults, size); in msm_submitqueue_query_faults()
|
/linux-6.3-rc2/Documentation/ABI/testing/ |
A D | sysfs-class-led-flash | 54 Space separated list of flash faults that may have occurred. 55 Flash faults are re-read after strobing the flash. Possible 56 flash faults:
|
A D | sysfs-bus-iio-thermocouple | 16 Open-circuit fault. The detection of open-circuit faults,
|
/linux-6.3-rc2/tools/testing/selftests/mm/ |
A D | hmm-tests.c | 43 uint64_t faults; member 195 buffer->faults = cmd.faults; in hmm_dmirror_cmd() 335 ASSERT_EQ(buffer->faults, 1); in TEST_F() 445 ASSERT_EQ(buffer->faults, 1); in TEST_F() 489 ASSERT_EQ(buffer->faults, 1); in TEST_F() 511 ASSERT_EQ(buffer->faults, 1); in TEST_F() 588 ASSERT_EQ(buffer->faults, 1); in TEST_F() 666 ASSERT_EQ(buffer->faults, 1); in TEST_F() 722 ASSERT_EQ(buffer->faults, 1); in TEST_F() 826 ASSERT_EQ(buffer->faults, 1); in TEST_F() [all …]
|
/linux-6.3-rc2/Documentation/virt/kvm/devices/ |
A D | s390_flic.rst | 18 - enable/disable for the guest transparent async page faults 58 Enables async page faults for the guest. So in case of a major page fault 62 Disables async page faults for the guest and waits until already pending 63 async page faults are done. This is necessary to trigger a completion interrupt
|
/linux-6.3-rc2/lib/ |
A D | test_hmm_uapi.h | 28 __u64 faults; member
|
/linux-6.3-rc2/Documentation/scheduler/ |
A D | sched-debug.rst | 14 high then the rate the kernel samples for NUMA hinting faults may be 35 Higher scan rates incur higher system overhead as page faults must be
|
/linux-6.3-rc2/kernel/sched/ |
A D | fair.c | 1130 unsigned long faults[]; member 1309 unsigned long faults = 0; in group_faults_priv() local 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; in group_faults_priv() 1316 return faults; in group_faults_priv() 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; in group_faults_shared() 1328 return faults; in group_faults_shared() 1364 unsigned long faults; in score_nearby_nodes() local 1403 score += faults; in score_nearby_nodes() 2332 max_faults = faults; in numa_group_count_active_nodes() 2534 max_faults = faults; in preferred_group_nid() [all …]
|
/linux-6.3-rc2/Documentation/i2c/ |
A D | fault-codes.rst | 11 Not all fault reports imply errors; "page faults" should be a familiar 13 faults. There may be fancier recovery schemes that are appropriate in 82 about probe faults other than ENXIO and ENODEV.)
|
/linux-6.3-rc2/Documentation/arm64/ |
A D | memory-tagging-extension.rst | 75 thread, asynchronously following one or multiple tag check faults, 87 - ``PR_MTE_TCF_NONE`` - *Ignore* tag check faults 92 If no modes are specified, tag check faults are ignored. If a single 172 - No tag checking modes are selected (tag check faults ignored) 321 * tag check faults (based on per-CPU preference) and allow all
|
/linux-6.3-rc2/arch/arm/nwfpe/ |
A D | entry.S | 103 @ ??? For some reason, faults can happen at .Lx2 even with a
|
/linux-6.3-rc2/drivers/hwmon/ |
A D | smm665.c | 145 u16 faults; /* fault status */ member 256 data->faults = val; in smm665_update_device() 351 if (data->faults & (1 << attr->index)) in smm665_show_crit_alarm()
|
/linux-6.3-rc2/drivers/gpu/drm/amd/amdkfd/ |
A D | Kconfig | 25 preemptions and one based on page faults. To enable page fault
|
/linux-6.3-rc2/drivers/ras/ |
A D | Kconfig | 14 faults.
|
/linux-6.3-rc2/Documentation/fault-injection/ |
A D | fault-injection.rst | 206 In order to inject faults while debugfs is not available (early boot time), 226 Note that this file enables all types of faults (slab, futex, etc). 231 This feature is intended for systematic testing of faults in a single 483 Systematic faults using fail-nth 486 The following code systematically faults 0-th, 1-st, 2-nd and so on
|
/linux-6.3-rc2/drivers/infiniband/hw/mlx5/ |
A D | restrack.c | 96 atomic64_read(&mr->odp_stats.faults))) in fill_stat_mr_entry()
|
/linux-6.3-rc2/Documentation/devicetree/bindings/iommu/ |
A D | ti,omap-iommu.txt | 22 back a bus error response on MMU faults.
|