1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* __ieee754_sqrt(x)
13  * Return correctly rounded sqrt.
14  *           ------------------------------------------
15  *	     |  Use the hardware sqrt if you have one |
16  *           ------------------------------------------
17  * Method:
18  *   Bit by bit method using integer arithmetic. (Slow, but portable)
19  *   1. Normalization
20  *	Scale x to y in [1,4) with even powers of 2:
21  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
22  *		sqrt(x) = 2^k * sqrt(y)
23  *   2. Bit by bit computation
24  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
25  *	     i							 0
26  *                                     i+1         2
27  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
28  *	     i      i            i                 i
29  *
30  *	To compute q    from q , one checks whether
31  *		    i+1       i
32  *
33  *			      -(i+1) 2
34  *			(q + 2      ) <= y.			(2)
35  *     			  i
36  *							      -(i+1)
37  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
38  *		 	       i+1   i             i+1   i
39  *
40  *	With some algebric manipulation, it is not difficult to see
41  *	that (2) is equivalent to
42  *                             -(i+1)
43  *			s  +  2       <= y			(3)
44  *			 i                i
45  *
46  *	The advantage of (3) is that s  and y  can be computed by
47  *				      i      i
48  *	the following recurrence formula:
49  *	    if (3) is false
50  *
51  *	    s     =  s  ,	y    = y   ;			(4)
52  *	     i+1      i		 i+1    i
53  *
54  *	    otherwise,
55  *                         -i                     -(i+1)
56  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
57  *           i+1      i          i+1    i     i
58  *
59  *	One may easily use induction to prove (4) and (5).
60  *	Note. Since the left hand side of (3) contain only i+2 bits,
61  *	      it does not necessary to do a full (53-bit) comparison
62  *	      in (3).
63  *   3. Final rounding
64  *	After generating the 53 bits result, we compute one more bit.
65  *	Together with the remainder, we can decide whether the
66  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
67  *	(it will never equal to 1/2ulp).
68  *	The rounding mode can be detected by checking whether
69  *	huge + tiny is equal to huge, and whether huge - tiny is
70  *	equal to huge for some floating point number "huge" and "tiny".
71  *
72  * Special cases:
73  *	sqrt(+-0) = +-0 	... exact
74  *	sqrt(inf) = inf
75  *	sqrt(-ve) = NaN		... with invalid signal
76  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
77  *
78  * Other methods : see the appended file at the end of the program below.
79  *---------------
80  */
81 
82 #include "math_libm.h"
83 #include "math_private.h"
84 
85 static const double one = 1.0, tiny = 1.0e-300;
86 
__ieee754_sqrt(double x)87 double attribute_hidden __ieee754_sqrt(double x)
88 {
89 	double z;
90 	int32_t sign = (int)0x80000000;
91 	int32_t ix0,s0,q,m,t,i;
92 	u_int32_t r,t1,s1,ix1,q1;
93 
94 	EXTRACT_WORDS(ix0,ix1,x);
95 
96     /* take care of Inf and NaN */
97 	if((ix0&0x7ff00000)==0x7ff00000) {
98 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
99 					   sqrt(-inf)=sNaN */
100 	}
101     /* take care of zero */
102 	if(ix0<=0) {
103 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
104 	    else if(ix0<0)
105 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
106 	}
107     /* normalize x */
108 	m = (ix0>>20);
109 	if(m==0) {				/* subnormal x */
110 	    while(ix0==0) {
111 		m -= 21;
112 		ix0 |= (ix1>>11); ix1 <<= 21;
113 	    }
114 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
115 	    m -= i-1;
116 	    ix0 |= (ix1>>(32-i));
117 	    ix1 <<= i;
118 	}
119 	m -= 1023;	/* unbias exponent */
120 	ix0 = (ix0&0x000fffff)|0x00100000;
121 	if(m&1){	/* odd m, double x to make it even */
122 	    ix0 += ix0 + ((ix1&sign)>>31);
123 	    ix1 += ix1;
124 	}
125 	m >>= 1;	/* m = [m/2] */
126 
127     /* generate sqrt(x) bit by bit */
128 	ix0 += ix0 + ((ix1&sign)>>31);
129 	ix1 += ix1;
130 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
131 	r = 0x00200000;		/* r = moving bit from right to left */
132 
133 	while(r!=0) {
134 	    t = s0+r;
135 	    if(t<=ix0) {
136 		s0   = t+r;
137 		ix0 -= t;
138 		q   += r;
139 	    }
140 	    ix0 += ix0 + ((ix1&sign)>>31);
141 	    ix1 += ix1;
142 	    r>>=1;
143 	}
144 
145 	r = sign;
146 	while(r!=0) {
147 	    t1 = s1+r;
148 	    t  = s0;
149 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
150 		s1  = t1+r;
151 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
152 		ix0 -= t;
153 		if (ix1 < t1) ix0 -= 1;
154 		ix1 -= t1;
155 		q1  += r;
156 	    }
157 	    ix0 += ix0 + ((ix1&sign)>>31);
158 	    ix1 += ix1;
159 	    r>>=1;
160 	}
161 
162     /* use floating add to find out rounding direction */
163 	if((ix0|ix1)!=0) {
164 	    z = one-tiny; /* trigger inexact flag */
165 	    if (z>=one) {
166 	        z = one+tiny;
167 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
168 		else if (z>one) {
169 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
170 		    q1+=2;
171 		} else
172 	            q1 += (q1&1);
173 	    }
174 	}
175 	ix0 = (q>>1)+0x3fe00000;
176 	ix1 =  q1>>1;
177 	if ((q&1)==1) ix1 |= sign;
178 	ix0 += (m <<20);
179 	INSERT_WORDS(z,ix0,ix1);
180 	return z;
181 }
182 
183 /*
184  * wrapper sqrt(x)
185  */
186 #ifndef _IEEE_LIBM
sqrt(double x)187 double sqrt(double x)
188 {
189 	double z = __ieee754_sqrt(x);
190 	if (_LIB_VERSION == _IEEE_ || isnan(x))
191 		return z;
192 	if (x < 0.0)
193 		return __kernel_standard(x, x, 26); /* sqrt(negative) */
194 	return z;
195 }
196 #else
197 strong_alias(__ieee754_sqrt, sqrt)
198 #endif
199 libm_hidden_def(sqrt)
200 
201 
202 /*
203 Other methods  (use floating-point arithmetic)
204 -------------
205 (This is a copy of a drafted paper by Prof W. Kahan
206 and K.C. Ng, written in May, 1986)
207 
208 	Two algorithms are given here to implement sqrt(x)
209 	(IEEE double precision arithmetic) in software.
210 	Both supply sqrt(x) correctly rounded. The first algorithm (in
211 	Section A) uses newton iterations and involves four divisions.
212 	The second one uses reciproot iterations to avoid division, but
213 	requires more multiplications. Both algorithms need the ability
214 	to chop results of arithmetic operations instead of round them,
215 	and the INEXACT flag to indicate when an arithmetic operation
216 	is executed exactly with no roundoff error, all part of the
217 	standard (IEEE 754-1985). The ability to perform shift, add,
218 	subtract and logical AND operations upon 32-bit words is needed
219 	too, though not part of the standard.
220 
221 A.  sqrt(x) by Newton Iteration
222 
223    (1)	Initial approximation
224 
225 	Let x0 and x1 be the leading and the trailing 32-bit words of
226 	a floating point number x (in IEEE double format) respectively
227 
228 	    1    11		     52				  ...widths
229 	   ------------------------------------------------------
230 	x: |s|	  e     |	      f				|
231 	   ------------------------------------------------------
232 	      msb    lsb  msb				      lsb ...order
233 
234 
235 	     ------------------------  	     ------------------------
236 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
237 	     ------------------------  	     ------------------------
238 
239 	By performing shifts and subtracts on x0 and x1 (both regarded
240 	as integers), we obtain an 8-bit approximation of sqrt(x) as
241 	follows.
242 
243 		k  := (x0>>1) + 0x1ff80000;
244 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
245 	Here k is a 32-bit integer and T1[] is an integer array containing
246 	correction terms. Now magically the floating value of y (y's
247 	leading 32-bit word is y0, the value of its trailing word is 0)
248 	approximates sqrt(x) to almost 8-bit.
249 
250 	Value of T1:
251 	static int T1[32]= {
252 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
253 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
254 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
255 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
256 
257     (2)	Iterative refinement
258 
259 	Apply Heron's rule three times to y, we have y approximates
260 	sqrt(x) to within 1 ulp (Unit in the Last Place):
261 
262 		y := (y+x/y)/2		... almost 17 sig. bits
263 		y := (y+x/y)/2		... almost 35 sig. bits
264 		y := y-(y-x/y)/2	... within 1 ulp
265 
266 
267 	Remark 1.
268 	    Another way to improve y to within 1 ulp is:
269 
270 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
271 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
272 
273 				2
274 			    (x-y )*y
275 		y := y + 2* ----------	...within 1 ulp
276 			       2
277 			     3y  + x
278 
279 
280 	This formula has one division fewer than the one above; however,
281 	it requires more multiplications and additions. Also x must be
282 	scaled in advance to avoid spurious overflow in evaluating the
283 	expression 3y*y+x. Hence it is not recommended uless division
284 	is slow. If division is very slow, then one should use the
285 	reciproot algorithm given in section B.
286 
287     (3) Final adjustment
288 
289 	By twiddling y's last bit it is possible to force y to be
290 	correctly rounded according to the prevailing rounding mode
291 	as follows. Let r and i be copies of the rounding mode and
292 	inexact flag before entering the square root program. Also we
293 	use the expression y+-ulp for the next representable floating
294 	numbers (up and down) of y. Note that y+-ulp = either fixed
295 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
296 	mode.
297 
298 		I := FALSE;	... reset INEXACT flag I
299 		R := RZ;	... set rounding mode to round-toward-zero
300 		z := x/y;	... chopped quotient, possibly inexact
301 		If(not I) then {	... if the quotient is exact
302 		    if(z=y) {
303 		        I := i;	 ... restore inexact flag
304 		        R := r;  ... restore rounded mode
305 		        return sqrt(x):=y.
306 		    } else {
307 			z := z - ulp;	... special rounding
308 		    }
309 		}
310 		i := TRUE;		... sqrt(x) is inexact
311 		If (r=RN) then z=z+ulp	... rounded-to-nearest
312 		If (r=RP) then {	... round-toward-+inf
313 		    y = y+ulp; z=z+ulp;
314 		}
315 		y := y+z;		... chopped sum
316 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
317 	        I := i;	 		... restore inexact flag
318 	        R := r;  		... restore rounded mode
319 	        return sqrt(x):=y.
320 
321     (4)	Special cases
322 
323 	Square root of +inf, +-0, or NaN is itself;
324 	Square root of a negative number is NaN with invalid signal.
325 
326 
327 B.  sqrt(x) by Reciproot Iteration
328 
329    (1)	Initial approximation
330 
331 	Let x0 and x1 be the leading and the trailing 32-bit words of
332 	a floating point number x (in IEEE double format) respectively
333 	(see section A). By performing shifs and subtracts on x0 and y0,
334 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
335 
336 	    k := 0x5fe80000 - (x0>>1);
337 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
338 
339 	Here k is a 32-bit integer and T2[] is an integer array
340 	containing correction terms. Now magically the floating
341 	value of y (y's leading 32-bit word is y0, the value of
342 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
343 	to almost 7.8-bit.
344 
345 	Value of T2:
346 	static int T2[64]= {
347 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
348 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
349 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
350 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
351 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
352 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
353 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
354 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
355 
356     (2)	Iterative refinement
357 
358 	Apply Reciproot iteration three times to y and multiply the
359 	result by x to get an approximation z that matches sqrt(x)
360 	to about 1 ulp. To be exact, we will have
361 		-1ulp < sqrt(x)-z<1.0625ulp.
362 
363 	... set rounding mode to Round-to-nearest
364 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
365 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
366 	... special arrangement for better accuracy
367 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
368 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
369 
370 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
371 	(a) the term z*y in the final iteration is always less than 1;
372 	(b) the error in the final result is biased upward so that
373 		-1 ulp < sqrt(x) - z < 1.0625 ulp
374 	    instead of |sqrt(x)-z|<1.03125ulp.
375 
376     (3)	Final adjustment
377 
378 	By twiddling y's last bit it is possible to force y to be
379 	correctly rounded according to the prevailing rounding mode
380 	as follows. Let r and i be copies of the rounding mode and
381 	inexact flag before entering the square root program. Also we
382 	use the expression y+-ulp for the next representable floating
383 	numbers (up and down) of y. Note that y+-ulp = either fixed
384 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
385 	mode.
386 
387 	R := RZ;		... set rounding mode to round-toward-zero
388 	switch(r) {
389 	    case RN:		... round-to-nearest
390 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
391 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
392 	       break;
393 	    case RZ:case RM:	... round-to-zero or round-to--inf
394 	       R:=RP;		... reset rounding mod to round-to-+inf
395 	       if(x<z*z ... rounded up) z = z - ulp; else
396 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
397 	       break;
398 	    case RP:		... round-to-+inf
399 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
400 	       if(x>z*z ...chopped) z = z+ulp;
401 	       break;
402 	}
403 
404 	Remark 3. The above comparisons can be done in fixed point. For
405 	example, to compare x and w=z*z chopped, it suffices to compare
406 	x1 and w1 (the trailing parts of x and w), regarding them as
407 	two's complement integers.
408 
409 	...Is z an exact square root?
410 	To determine whether z is an exact square root of x, let z1 be the
411 	trailing part of z, and also let x0 and x1 be the leading and
412 	trailing parts of x.
413 
414 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
415 	    I := 1;		... Raise Inexact flag: z is not exact
416 	else {
417 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
418 	    k := z1 >> 26;		... get z's 25-th and 26-th
419 					    fraction bits
420 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
421 	}
422 	R:= r		... restore rounded mode
423 	return sqrt(x):=z.
424 
425 	If multiplication is cheaper then the foregoing red tape, the
426 	Inexact flag can be evaluated by
427 
428 	    I := i;
429 	    I := (z*z!=x) or I.
430 
431 	Note that z*z can overwrite I; this value must be sensed if it is
432 	True.
433 
434 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
435 	zero.
436 
437 		    --------------------
438 		z1: |        f2        |
439 		    --------------------
440 		bit 31		   bit 0
441 
442 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
443 	or even of logb(x) have the following relations:
444 
445 	-------------------------------------------------
446 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
447 	-------------------------------------------------
448 	00			00		odd and even
449 	01			01		even
450 	10			10		odd
451 	10			00		even
452 	11			01		even
453 	-------------------------------------------------
454 
455     (4)	Special cases (see (4) of Section A).
456 
457  */
458