1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* sin(x)
13  * Return sine function of x.
14  *
15  * kernel function:
16  *	__kernel_sin		... sine function on [-pi/4,pi/4]
17  *	__kernel_cos		... cose function on [-pi/4,pi/4]
18  *	__ieee754_rem_pio2	... argument reduction routine
19  *
20  * Method.
21  *      Let S,C and T denote the sin, cos and tan respectively on
22  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
23  *	in [-pi/4 , +pi/4], and let n = k mod 4.
24  *	We have
25  *
26  *          n        sin(x)      cos(x)        tan(x)
27  *     ----------------------------------------------------------
28  *	    0	       S	   C		 T
29  *	    1	       C	  -S		-1/T
30  *	    2	      -S	  -C		 T
31  *	    3	      -C	   S		-1/T
32  *     ----------------------------------------------------------
33  *
34  * Special cases:
35  *      Let trig be any of sin, cos, or tan.
36  *      trig(+-INF)  is NaN, with signals;
37  *      trig(NaN)    is that NaN;
38  *
39  * Accuracy:
40  *	TRIG(x) returns trig(x) nearly rounded
41  */
42 
43 #include "math_libm.h"
44 #include "math_private.h"
45 
sin(double x)46 double sin(double x)
47 {
48 	double y[2],z=0.0;
49 	int32_t n, ix;
50 
51     /* High word of x. */
52 	GET_HIGH_WORD(ix,x);
53 
54     /* |x| ~< pi/4 */
55 	ix &= 0x7fffffff;
56 	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
57 
58     /* sin(Inf or NaN) is NaN */
59 	else if (ix>=0x7ff00000) return x-x;
60 
61     /* argument reduction needed */
62 	else {
63 	    n = __ieee754_rem_pio2(x,y);
64 	    switch(n&3) {
65 		case 0: return  __kernel_sin(y[0],y[1],1);
66 		case 1: return  __kernel_cos(y[0],y[1]);
67 		case 2: return -__kernel_sin(y[0],y[1],1);
68 		default:
69 			return -__kernel_cos(y[0],y[1]);
70 	    }
71 	}
72 }
73 libm_hidden_def(sin)
74