1 /* cmac_mode.c - TinyCrypt CMAC mode implementation */
2 
3 /*
4  *  Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
5  *
6  *  Redistribution and use in source and binary forms, with or without
7  *  modification, are permitted provided that the following conditions are met:
8  *
9  *    - Redistributions of source code must retain the above copyright notice,
10  *     this list of conditions and the following disclaimer.
11  *
12  *    - Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  *    - Neither the name of Intel Corporation nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  *  POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <tinycrypt/aes.h>
34 #include <tinycrypt/cmac_mode.h>
35 #include <tinycrypt/constants.h>
36 #include <tinycrypt/utils.h>
37 
38 /* max number of calls until change the key (2^48).*/
39 const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
40 
41 /*
42  *  gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
43  *  array with byte 0 the most significant and byte 15 the least significant.
44  *  High bit carry reduction is based on the primitive polynomial
45  *
46  *                     X^128 + X^7 + X^2 + X + 1,
47  *
48  *  which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
49  *  since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
50  *  addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
51  *  add X^128 to both sides to get
52  *
53  *       X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
54  *
55  *  and the coefficients of the polynomial on the right hand side form the
56  *  string 1000 0111 = 0x87, which is the value of gf_wrap.
57  *
58  *  This gets used in the following way. Doubling in GF(2^128) is just a left
59  *  shift by 1 bit, except when the most significant bit is 1. In the latter
60  *  case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
61  *  that overflows beyond 128 bits can be replaced by addition of
62  *  X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
63  *  in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
64  *  into the low order byte after a left shift when the starting high order
65  *  bit is 1.
66  */
67 const unsigned char gf_wrap = 0x87;
68 
69 /*
70  *  assumes: out != NULL and points to a GF(2^n) value to receive the
71  *            doubled value;
72  *           in != NULL and points to a 16 byte GF(2^n) value
73  *            to double;
74  *           the in and out buffers do not overlap.
75  *  effects: doubles the GF(2^n) value pointed to by "in" and places
76  *           the result in the GF(2^n) value pointed to by "out."
77  */
gf_double(uint8_t * out,uint8_t * in)78 void gf_double(uint8_t *out, uint8_t *in)
79 {
80 
81 	/* start with low order byte */
82 	uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
83 
84 	/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
85 	uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
86 
87 	out += (TC_AES_BLOCK_SIZE - 1);
88 	for (;;) {
89 		*out-- = (*x << 1) ^ carry;
90 		if (x == in) {
91 			break;
92 		}
93 		carry = *x-- >> 7;
94 	}
95 }
96 
tc_cmac_setup(TCCmacState_t s,const uint8_t * key,TCAesKeySched_t sched)97 int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
98 {
99 
100 	/* input sanity check: */
101 	if (s == (TCCmacState_t) 0 ||
102 	    key == (const uint8_t *) 0) {
103 		return TC_CRYPTO_FAIL;
104 	}
105 
106 	/* put s into a known state */
107 	_set(s, 0, sizeof(*s));
108 	s->sched = sched;
109 
110 	/* configure the encryption key used by the underlying block cipher */
111 	tc_aes128_set_encrypt_key(s->sched, key);
112 
113 	/* compute s->K1 and s->K2 from s->iv using s->keyid */
114 	_set(s->iv, 0, TC_AES_BLOCK_SIZE);
115 	tc_aes_encrypt(s->iv, s->iv, s->sched);
116 	gf_double (s->K1, s->iv);
117 	gf_double (s->K2, s->K1);
118 
119 	/* reset s->iv to 0 in case someone wants to compute now */
120 	tc_cmac_init(s);
121 
122 	return TC_CRYPTO_SUCCESS;
123 }
124 
tc_cmac_erase(TCCmacState_t s)125 int tc_cmac_erase(TCCmacState_t s)
126 {
127 	if (s == (TCCmacState_t) 0) {
128 		return TC_CRYPTO_FAIL;
129 	}
130 
131 	/* destroy the current state */
132 	_set(s, 0, sizeof(*s));
133 
134 	return TC_CRYPTO_SUCCESS;
135 }
136 
tc_cmac_init(TCCmacState_t s)137 int tc_cmac_init(TCCmacState_t s)
138 {
139 	/* input sanity check: */
140 	if (s == (TCCmacState_t) 0) {
141 		return TC_CRYPTO_FAIL;
142 	}
143 
144 	/* CMAC starts with an all zero initialization vector */
145 	_set(s->iv, 0, TC_AES_BLOCK_SIZE);
146 
147 	/* and the leftover buffer is empty */
148 	_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
149 	s->leftover_offset = 0;
150 
151 	/* Set countdown to max number of calls allowed before re-keying: */
152 	s->countdown = MAX_CALLS;
153 
154 	return TC_CRYPTO_SUCCESS;
155 }
156 
tc_cmac_update(TCCmacState_t s,const uint8_t * data,size_t data_length)157 int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
158 {
159 	unsigned int i;
160 
161 	/* input sanity check: */
162 	if (s == (TCCmacState_t) 0) {
163 		return TC_CRYPTO_FAIL;
164 	}
165 	if (data_length == 0) {
166 		return  TC_CRYPTO_SUCCESS;
167 	}
168 	if (data == (const uint8_t *) 0) {
169 		return TC_CRYPTO_FAIL;
170 	}
171 
172 	if (s->countdown == 0) {
173 		return TC_CRYPTO_FAIL;
174 	}
175 
176 	s->countdown--;
177 
178 	if (s->leftover_offset > 0) {
179 		/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
180 		size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
181 
182 		if (data_length < remaining_space) {
183 			/* still not enough data to encrypt this time either */
184 			_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
185 			s->leftover_offset += data_length;
186 			return TC_CRYPTO_SUCCESS;
187 		}
188 		/* leftover block is now full; encrypt it first */
189 		_copy(&s->leftover[s->leftover_offset],
190 		      remaining_space,
191 		      data,
192 		      remaining_space);
193 		data_length -= remaining_space;
194 		data += remaining_space;
195 		s->leftover_offset = 0;
196 
197 		for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
198 			s->iv[i] ^= s->leftover[i];
199 		}
200 		tc_aes_encrypt(s->iv, s->iv, s->sched);
201 	}
202 
203 	/* CBC encrypt each (except the last) of the data blocks */
204 	while (data_length > TC_AES_BLOCK_SIZE) {
205 		for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
206 			s->iv[i] ^= data[i];
207 		}
208 		tc_aes_encrypt(s->iv, s->iv, s->sched);
209 		data += TC_AES_BLOCK_SIZE;
210 		data_length  -= TC_AES_BLOCK_SIZE;
211 	}
212 
213 	if (data_length > 0) {
214 		/* save leftover data for next time */
215 		_copy(s->leftover, data_length, data, data_length);
216 		s->leftover_offset = data_length;
217 	}
218 
219 	return TC_CRYPTO_SUCCESS;
220 }
221 
tc_cmac_final(uint8_t * tag,TCCmacState_t s)222 int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
223 {
224 	uint8_t *k;
225 	unsigned int i;
226 
227 	/* input sanity check: */
228 	if (tag == (uint8_t *) 0 ||
229 	    s == (TCCmacState_t) 0) {
230 		return TC_CRYPTO_FAIL;
231 	}
232 
233 	if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
234 		/* the last message block is a full-sized block */
235 		k = (uint8_t *) s->K1;
236 	} else {
237 		/* the final message block is not a full-sized  block */
238 		size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
239 
240 		_set(&s->leftover[s->leftover_offset], 0, remaining);
241 		s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
242 		k = (uint8_t *) s->K2;
243 	}
244 	for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
245 		s->iv[i] ^= s->leftover[i] ^ k[i];
246 	}
247 
248 	tc_aes_encrypt(tag, s->iv, s->sched);
249 
250 	/* erasing state: */
251 	tc_cmac_erase(s);
252 
253 	return TC_CRYPTO_SUCCESS;
254 }
255