1 /* ec_dsa.c - TinyCrypt implementation of EC-DSA */
2 
3 /* Copyright (c) 2014, Kenneth MacKay
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *  * Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
18  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.*/
25 
26 /*
27  *  Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
28  *
29  *  Redistribution and use in source and binary forms, with or without
30  *  modification, are permitted provided that the following conditions are met:
31  *
32  *    - Redistributions of source code must retain the above copyright notice,
33  *     this list of conditions and the following disclaimer.
34  *
35  *    - Redistributions in binary form must reproduce the above copyright
36  *    notice, this list of conditions and the following disclaimer in the
37  *    documentation and/or other materials provided with the distribution.
38  *
39  *    - Neither the name of Intel Corporation nor the names of its contributors
40  *    may be used to endorse or promote products derived from this software
41  *    without specific prior written permission.
42  *
43  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
51  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
52  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
53  *  POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include <tinycrypt/constants.h>
57 #include <tinycrypt/ecc.h>
58 #include <tinycrypt/ecc_dsa.h>
59 #include <tinycrypt/ecc_platform_specific.h>
60 
61 #if default_RNG_defined
62 static uECC_RNG_Function g_rng_function = &default_CSPRNG;
63 #else
64 static uECC_RNG_Function g_rng_function = 0;
65 #endif
66 
bits2int(uECC_word_t * native,const uint8_t * bits,unsigned bits_size,uECC_Curve curve)67 static void bits2int(uECC_word_t *native, const uint8_t *bits,
68 		     unsigned bits_size, uECC_Curve curve)
69 {
70 	unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
71 	unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
72 	int shift;
73 	uECC_word_t carry;
74 	uECC_word_t *ptr;
75 
76 	if (bits_size > num_n_bytes) {
77 		bits_size = num_n_bytes;
78 	}
79 
80 	uECC_vli_clear(native, num_n_words);
81 	uECC_vli_bytesToNative(native, bits, bits_size);
82 	if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
83 		return;
84 	}
85 	shift = bits_size * 8 - curve->num_n_bits;
86 	carry = 0;
87 	ptr = native + num_n_words;
88 	while (ptr-- > native) {
89 		uECC_word_t temp = *ptr;
90 		*ptr = (temp >> shift) | carry;
91 		carry = temp << (uECC_WORD_BITS - shift);
92 	}
93 
94 	/* Reduce mod curve_n */
95 	if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
96 		uECC_vli_sub(native, native, curve->n, num_n_words);
97 	}
98 }
99 
uECC_sign_with_k(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uECC_word_t * k,uint8_t * signature,uECC_Curve curve)100 int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
101 		     unsigned hash_size, uECC_word_t *k, uint8_t *signature,
102 		     uECC_Curve curve)
103 {
104 
105 	uECC_word_t tmp[NUM_ECC_WORDS];
106 	uECC_word_t s[NUM_ECC_WORDS];
107 	uECC_word_t *k2[2] = {tmp, s};
108 	uECC_word_t p[NUM_ECC_WORDS * 2];
109 	uECC_word_t carry;
110 	wordcount_t num_words = curve->num_words;
111 	wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
112 	bitcount_t num_n_bits = curve->num_n_bits;
113 
114 	/* Make sure 0 < k < curve_n */
115   	if (uECC_vli_isZero(k, num_words) ||
116 	    uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
117 		return 0;
118 	}
119 
120 	carry = regularize_k(k, tmp, s, curve);
121 	EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
122 	if (uECC_vli_isZero(p, num_words)) {
123 		return 0;
124 	}
125 
126 	/* If an RNG function was specified, get a random number
127 	to prevent side channel analysis of k. */
128 	if (!g_rng_function) {
129 		uECC_vli_clear(tmp, num_n_words);
130 		tmp[0] = 1;
131 	}
132 	else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
133 		return 0;
134 	}
135 
136 	/* Prevent side channel analysis of uECC_vli_modInv() to determine
137 	bits of k / the private key by premultiplying by a random number */
138 	uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
139 	uECC_vli_modInv(k, k, curve->n, num_n_words);       /* k = 1 / k' */
140 	uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
141 
142 	uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
143 
144 	/* tmp = d: */
145 	uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
146 
147 	s[num_n_words - 1] = 0;
148 	uECC_vli_set(s, p, num_words);
149 	uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
150 
151 	bits2int(tmp, message_hash, hash_size, curve);
152 	uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
153 	uECC_vli_modMult(s, s, k, curve->n, num_n_words);  /* s = (e + r*d) / k */
154 	if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
155 		return 0;
156 	}
157 
158 	uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
159 	return 1;
160 }
161 
uECC_sign(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uint8_t * signature,uECC_Curve curve)162 int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
163 	      unsigned hash_size, uint8_t *signature, uECC_Curve curve)
164 {
165 	      uECC_word_t _random[2*NUM_ECC_WORDS];
166 	      uECC_word_t k[NUM_ECC_WORDS];
167 	      uECC_word_t tries;
168 
169 	for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
170 		/* Generating _random uniformly at random: */
171 		uECC_RNG_Function rng_function = uECC_get_rng();
172 		if (!rng_function ||
173 		    !rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) {
174 			return 0;
175 		}
176 
177 		// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
178 		uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
179 
180 		if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
181 		    curve)) {
182 			return 1;
183 		}
184 	}
185 	return 0;
186 }
187 
smax(bitcount_t a,bitcount_t b)188 static bitcount_t smax(bitcount_t a, bitcount_t b)
189 {
190 	return (a > b ? a : b);
191 }
192 
uECC_verify(const uint8_t * public_key,const uint8_t * message_hash,unsigned hash_size,const uint8_t * signature,uECC_Curve curve)193 int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
194 		unsigned hash_size, const uint8_t *signature,
195 	        uECC_Curve curve)
196 {
197 
198 	uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
199 	uECC_word_t z[NUM_ECC_WORDS];
200 	uECC_word_t sum[NUM_ECC_WORDS * 2];
201 	uECC_word_t rx[NUM_ECC_WORDS];
202 	uECC_word_t ry[NUM_ECC_WORDS];
203 	uECC_word_t tx[NUM_ECC_WORDS];
204 	uECC_word_t ty[NUM_ECC_WORDS];
205 	uECC_word_t tz[NUM_ECC_WORDS];
206 	const uECC_word_t *points[4];
207 	const uECC_word_t *point;
208 	bitcount_t num_bits;
209 	bitcount_t i;
210 
211 	uECC_word_t _public[NUM_ECC_WORDS * 2];
212 	uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
213 	wordcount_t num_words = curve->num_words;
214 	wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
215 
216 	rx[num_n_words - 1] = 0;
217 	r[num_n_words - 1] = 0;
218 	s[num_n_words - 1] = 0;
219 
220 	uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
221 	uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
222 			       curve->num_bytes);
223 	uECC_vli_bytesToNative(r, signature, curve->num_bytes);
224 	uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
225 
226 	/* r, s must not be 0. */
227 	if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
228 		return 0;
229 	}
230 
231 	/* r, s must be < n. */
232 	if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
233 	    uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
234 		return 0;
235 	}
236 
237 	/* Calculate u1 and u2. */
238 	uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
239 	u1[num_n_words - 1] = 0;
240 	bits2int(u1, message_hash, hash_size, curve);
241 	uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
242 	uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
243 
244 	/* Calculate sum = G + Q. */
245 	uECC_vli_set(sum, _public, num_words);
246 	uECC_vli_set(sum + num_words, _public + num_words, num_words);
247 	uECC_vli_set(tx, curve->G, num_words);
248 	uECC_vli_set(ty, curve->G + num_words, num_words);
249 	uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
250 	XYcZ_add(tx, ty, sum, sum + num_words, curve);
251 	uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
252 	apply_z(sum, sum + num_words, z, curve);
253 
254 	/* Use Shamir's trick to calculate u1*G + u2*Q */
255 	points[0] = 0;
256 	points[1] = curve->G;
257 	points[2] = _public;
258 	points[3] = sum;
259 	num_bits = smax(uECC_vli_numBits(u1, num_n_words),
260 	uECC_vli_numBits(u2, num_n_words));
261 
262 	point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
263                        ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
264 	uECC_vli_set(rx, point, num_words);
265 	uECC_vli_set(ry, point + num_words, num_words);
266 	uECC_vli_clear(z, num_words);
267 	z[0] = 1;
268 
269 	for (i = num_bits - 2; i >= 0; --i) {
270 		uECC_word_t index;
271 		curve->double_jacobian(rx, ry, z, curve);
272 
273 		index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
274 		point = points[index];
275 		if (point) {
276 			uECC_vli_set(tx, point, num_words);
277 			uECC_vli_set(ty, point + num_words, num_words);
278 			apply_z(tx, ty, z, curve);
279 			uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
280 			XYcZ_add(tx, ty, rx, ry, curve);
281 			uECC_vli_modMult_fast(z, z, tz, curve);
282 		}
283   	}
284 
285 	uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
286 	apply_z(rx, ry, z, curve);
287 
288 	/* v = x1 (mod n) */
289 	if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
290 		uECC_vli_sub(rx, rx, curve->n, num_n_words);
291 	}
292 
293 	/* Accept only if v == r. */
294 	return (int)(uECC_vli_equal(rx, r, num_words) == 0);
295 }
296 
297