1 /**************************************************************************//**
2  * @file     cmsis_gcc.h
3  * @brief    CMSIS compiler GCC header file
4  * @version  V5.1.0
5  * @date     20. December 2018
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36   #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef   __ASM
41   #define __ASM                                  __asm
42 #endif
43 #ifndef   __INLINE
44   #define __INLINE                               inline
45 #endif
46 #ifndef   __STATIC_INLINE
47   #define __STATIC_INLINE                        static inline
48 #endif
49 #ifndef   __STATIC_FORCEINLINE
50   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51 #endif
52 #ifndef   __NO_RETURN
53   #define __NO_RETURN                            __attribute__((__noreturn__))
54 #endif
55 #ifndef   __USED
56   #define __USED                                 __attribute__((used))
57 #endif
58 #ifndef   __WEAK
59   #define __WEAK                                 __attribute__((weak))
60 #endif
61 #ifndef   __PACKED
62   #define __PACKED                               __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_STRUCT
65   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __PACKED_UNION
68   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef   __UNALIGNED_UINT32        /* deprecated */
71   #pragma GCC diagnostic push
72   #pragma GCC diagnostic ignored "-Wpacked"
73   #pragma GCC diagnostic ignored "-Wattributes"
74   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75   #pragma GCC diagnostic pop
76   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef   __UNALIGNED_UINT16_WRITE
79   #pragma GCC diagnostic push
80   #pragma GCC diagnostic ignored "-Wpacked"
81   #pragma GCC diagnostic ignored "-Wattributes"
82   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83   #pragma GCC diagnostic pop
84   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef   __UNALIGNED_UINT16_READ
87   #pragma GCC diagnostic push
88   #pragma GCC diagnostic ignored "-Wpacked"
89   #pragma GCC diagnostic ignored "-Wattributes"
90   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91   #pragma GCC diagnostic pop
92   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef   __UNALIGNED_UINT32_WRITE
95   #pragma GCC diagnostic push
96   #pragma GCC diagnostic ignored "-Wpacked"
97   #pragma GCC diagnostic ignored "-Wattributes"
98   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99   #pragma GCC diagnostic pop
100   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef   __UNALIGNED_UINT32_READ
103   #pragma GCC diagnostic push
104   #pragma GCC diagnostic ignored "-Wpacked"
105   #pragma GCC diagnostic ignored "-Wattributes"
106   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107   #pragma GCC diagnostic pop
108   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef   __ALIGNED
111   #define __ALIGNED(x)                           __attribute__((aligned(x)))
112 #endif
113 #ifndef   __RESTRICT
114   #define __RESTRICT                             __restrict
115 #endif
116 
117 
118 /* ###########################  Core Function Access  ########################### */
119 /** \ingroup  CMSIS_Core_FunctionInterface
120     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
121   @{
122  */
123 
124 /**
125   \brief   Enable IRQ Interrupts
126   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
127            Can only be executed in Privileged modes.
128  */
__enable_irq(void)129 __STATIC_FORCEINLINE void __enable_irq(void)
130 {
131   __ASM volatile ("cpsie i" : : : "memory");
132 }
133 
134 
135 /**
136   \brief   Disable IRQ Interrupts
137   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
138            Can only be executed in Privileged modes.
139  */
__disable_irq(void)140 __STATIC_FORCEINLINE void __disable_irq(void)
141 {
142   __ASM volatile ("cpsid i" : : : "memory");
143 }
144 
145 
146 /**
147   \brief   Get Control Register
148   \details Returns the content of the Control Register.
149   \return               Control Register value
150  */
__get_CONTROL(void)151 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
152 {
153   uint32_t result;
154 
155   __ASM volatile ("MRS %0, control" : "=r" (result) );
156   return(result);
157 }
158 
159 
160 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
161 /**
162   \brief   Get Control Register (non-secure)
163   \details Returns the content of the non-secure Control Register when in secure mode.
164   \return               non-secure Control Register value
165  */
__TZ_get_CONTROL_NS(void)166 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
167 {
168   uint32_t result;
169 
170   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
171   return(result);
172 }
173 #endif
174 
175 
176 /**
177   \brief   Set Control Register
178   \details Writes the given value to the Control Register.
179   \param [in]    control  Control Register value to set
180  */
__set_CONTROL(uint32_t control)181 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
182 {
183   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
184 }
185 
186 
187 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
188 /**
189   \brief   Set Control Register (non-secure)
190   \details Writes the given value to the non-secure Control Register when in secure state.
191   \param [in]    control  Control Register value to set
192  */
__TZ_set_CONTROL_NS(uint32_t control)193 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
194 {
195   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
196 }
197 #endif
198 
199 
200 /**
201   \brief   Get IPSR Register
202   \details Returns the content of the IPSR Register.
203   \return               IPSR Register value
204  */
__get_IPSR(void)205 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
206 {
207   uint32_t result;
208 
209   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
210   return(result);
211 }
212 
213 
214 /**
215   \brief   Get APSR Register
216   \details Returns the content of the APSR Register.
217   \return               APSR Register value
218  */
__get_APSR(void)219 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
220 {
221   uint32_t result;
222 
223   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
224   return(result);
225 }
226 
227 
228 /**
229   \brief   Get xPSR Register
230   \details Returns the content of the xPSR Register.
231   \return               xPSR Register value
232  */
__get_xPSR(void)233 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
234 {
235   uint32_t result;
236 
237   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
238   return(result);
239 }
240 
241 
242 /**
243   \brief   Get Process Stack Pointer
244   \details Returns the current value of the Process Stack Pointer (PSP).
245   \return               PSP Register value
246  */
__get_PSP(void)247 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
248 {
249   uint32_t result;
250 
251   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
252   return(result);
253 }
254 
255 
256 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
257 /**
258   \brief   Get Process Stack Pointer (non-secure)
259   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
260   \return               PSP Register value
261  */
__TZ_get_PSP_NS(void)262 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
263 {
264   uint32_t result;
265 
266   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
267   return(result);
268 }
269 #endif
270 
271 
272 /**
273   \brief   Set Process Stack Pointer
274   \details Assigns the given value to the Process Stack Pointer (PSP).
275   \param [in]    topOfProcStack  Process Stack Pointer value to set
276  */
__set_PSP(uint32_t topOfProcStack)277 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
278 {
279   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
280 }
281 
282 
283 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
284 /**
285   \brief   Set Process Stack Pointer (non-secure)
286   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
287   \param [in]    topOfProcStack  Process Stack Pointer value to set
288  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)289 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
290 {
291   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
292 }
293 #endif
294 
295 
296 /**
297   \brief   Get Main Stack Pointer
298   \details Returns the current value of the Main Stack Pointer (MSP).
299   \return               MSP Register value
300  */
__get_MSP(void)301 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
302 {
303   uint32_t result;
304 
305   __ASM volatile ("MRS %0, msp" : "=r" (result) );
306   return(result);
307 }
308 
309 
310 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
311 /**
312   \brief   Get Main Stack Pointer (non-secure)
313   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
314   \return               MSP Register value
315  */
__TZ_get_MSP_NS(void)316 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
317 {
318   uint32_t result;
319 
320   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
321   return(result);
322 }
323 #endif
324 
325 
326 /**
327   \brief   Set Main Stack Pointer
328   \details Assigns the given value to the Main Stack Pointer (MSP).
329   \param [in]    topOfMainStack  Main Stack Pointer value to set
330  */
__set_MSP(uint32_t topOfMainStack)331 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
332 {
333   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
334 }
335 
336 
337 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
338 /**
339   \brief   Set Main Stack Pointer (non-secure)
340   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
341   \param [in]    topOfMainStack  Main Stack Pointer value to set
342  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)343 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
344 {
345   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
346 }
347 #endif
348 
349 
350 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351 /**
352   \brief   Get Stack Pointer (non-secure)
353   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
354   \return               SP Register value
355  */
__TZ_get_SP_NS(void)356 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
357 {
358   uint32_t result;
359 
360   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
361   return(result);
362 }
363 
364 
365 /**
366   \brief   Set Stack Pointer (non-secure)
367   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
368   \param [in]    topOfStack  Stack Pointer value to set
369  */
__TZ_set_SP_NS(uint32_t topOfStack)370 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
371 {
372   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
373 }
374 #endif
375 
376 
377 /**
378   \brief   Get Priority Mask
379   \details Returns the current state of the priority mask bit from the Priority Mask Register.
380   \return               Priority Mask value
381  */
__get_PRIMASK(void)382 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
383 {
384   uint32_t result;
385 
386   __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
387   return(result);
388 }
389 
390 
391 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
392 /**
393   \brief   Get Priority Mask (non-secure)
394   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
395   \return               Priority Mask value
396  */
__TZ_get_PRIMASK_NS(void)397 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
398 {
399   uint32_t result;
400 
401   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
402   return(result);
403 }
404 #endif
405 
406 
407 /**
408   \brief   Set Priority Mask
409   \details Assigns the given value to the Priority Mask Register.
410   \param [in]    priMask  Priority Mask
411  */
__set_PRIMASK(uint32_t priMask)412 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
413 {
414   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
415 }
416 
417 
418 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
419 /**
420   \brief   Set Priority Mask (non-secure)
421   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
422   \param [in]    priMask  Priority Mask
423  */
__TZ_set_PRIMASK_NS(uint32_t priMask)424 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
425 {
426   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
427 }
428 #endif
429 
430 
431 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
432      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
433      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
434 /**
435   \brief   Enable FIQ
436   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
437            Can only be executed in Privileged modes.
438  */
__enable_fault_irq(void)439 __STATIC_FORCEINLINE void __enable_fault_irq(void)
440 {
441   __ASM volatile ("cpsie f" : : : "memory");
442 }
443 
444 
445 /**
446   \brief   Disable FIQ
447   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
448            Can only be executed in Privileged modes.
449  */
__disable_fault_irq(void)450 __STATIC_FORCEINLINE void __disable_fault_irq(void)
451 {
452   __ASM volatile ("cpsid f" : : : "memory");
453 }
454 
455 
456 /**
457   \brief   Get Base Priority
458   \details Returns the current value of the Base Priority register.
459   \return               Base Priority register value
460  */
__get_BASEPRI(void)461 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
462 {
463   uint32_t result;
464 
465   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
466   return(result);
467 }
468 
469 
470 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
471 /**
472   \brief   Get Base Priority (non-secure)
473   \details Returns the current value of the non-secure Base Priority register when in secure state.
474   \return               Base Priority register value
475  */
__TZ_get_BASEPRI_NS(void)476 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
477 {
478   uint32_t result;
479 
480   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
481   return(result);
482 }
483 #endif
484 
485 
486 /**
487   \brief   Set Base Priority
488   \details Assigns the given value to the Base Priority register.
489   \param [in]    basePri  Base Priority value to set
490  */
__set_BASEPRI(uint32_t basePri)491 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
492 {
493   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
494 }
495 
496 
497 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
498 /**
499   \brief   Set Base Priority (non-secure)
500   \details Assigns the given value to the non-secure Base Priority register when in secure state.
501   \param [in]    basePri  Base Priority value to set
502  */
__TZ_set_BASEPRI_NS(uint32_t basePri)503 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
504 {
505   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
506 }
507 #endif
508 
509 
510 /**
511   \brief   Set Base Priority with condition
512   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
513            or the new value increases the BASEPRI priority level.
514   \param [in]    basePri  Base Priority value to set
515  */
__set_BASEPRI_MAX(uint32_t basePri)516 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
517 {
518   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
519 }
520 
521 
522 /**
523   \brief   Get Fault Mask
524   \details Returns the current value of the Fault Mask register.
525   \return               Fault Mask register value
526  */
__get_FAULTMASK(void)527 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
528 {
529   uint32_t result;
530 
531   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
532   return(result);
533 }
534 
535 
536 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
537 /**
538   \brief   Get Fault Mask (non-secure)
539   \details Returns the current value of the non-secure Fault Mask register when in secure state.
540   \return               Fault Mask register value
541  */
__TZ_get_FAULTMASK_NS(void)542 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
543 {
544   uint32_t result;
545 
546   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
547   return(result);
548 }
549 #endif
550 
551 
552 /**
553   \brief   Set Fault Mask
554   \details Assigns the given value to the Fault Mask register.
555   \param [in]    faultMask  Fault Mask value to set
556  */
__set_FAULTMASK(uint32_t faultMask)557 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
558 {
559   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
560 }
561 
562 
563 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
564 /**
565   \brief   Set Fault Mask (non-secure)
566   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
567   \param [in]    faultMask  Fault Mask value to set
568  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)569 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
570 {
571   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
572 }
573 #endif
574 
575 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
576            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
577            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
578 
579 
580 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
581      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
582 
583 /**
584   \brief   Get Process Stack Pointer Limit
585   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
586   Stack Pointer Limit register hence zero is returned always in non-secure
587   mode.
588 
589   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
590   \return               PSPLIM Register value
591  */
__get_PSPLIM(void)592 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
593 {
594 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
595     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
596     // without main extensions, the non-secure PSPLIM is RAZ/WI
597   return 0U;
598 #else
599   uint32_t result;
600   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
601   return result;
602 #endif
603 }
604 
605 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
606 /**
607   \brief   Get Process Stack Pointer Limit (non-secure)
608   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
609   Stack Pointer Limit register hence zero is returned always.
610 
611   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
612   \return               PSPLIM Register value
613  */
__TZ_get_PSPLIM_NS(void)614 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
615 {
616 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
617   // without main extensions, the non-secure PSPLIM is RAZ/WI
618   return 0U;
619 #else
620   uint32_t result;
621   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
622   return result;
623 #endif
624 }
625 #endif
626 
627 
628 /**
629   \brief   Set Process Stack Pointer Limit
630   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
631   Stack Pointer Limit register hence the write is silently ignored in non-secure
632   mode.
633 
634   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
635   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
636  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)637 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
638 {
639 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
640     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
641   // without main extensions, the non-secure PSPLIM is RAZ/WI
642   (void)ProcStackPtrLimit;
643 #else
644   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
645 #endif
646 }
647 
648 
649 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
650 /**
651   \brief   Set Process Stack Pointer (non-secure)
652   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
653   Stack Pointer Limit register hence the write is silently ignored.
654 
655   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
656   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
657  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)658 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
659 {
660 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
661   // without main extensions, the non-secure PSPLIM is RAZ/WI
662   (void)ProcStackPtrLimit;
663 #else
664   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
665 #endif
666 }
667 #endif
668 
669 
670 /**
671   \brief   Get Main Stack Pointer Limit
672   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
673   Stack Pointer Limit register hence zero is returned always in non-secure
674   mode.
675 
676   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
677   \return               MSPLIM Register value
678  */
__get_MSPLIM(void)679 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
680 {
681 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
682     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
683   // without main extensions, the non-secure MSPLIM is RAZ/WI
684   return 0U;
685 #else
686   uint32_t result;
687   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
688   return result;
689 #endif
690 }
691 
692 
693 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
694 /**
695   \brief   Get Main Stack Pointer Limit (non-secure)
696   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
697   Stack Pointer Limit register hence zero is returned always.
698 
699   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
700   \return               MSPLIM Register value
701  */
__TZ_get_MSPLIM_NS(void)702 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
703 {
704 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
705   // without main extensions, the non-secure MSPLIM is RAZ/WI
706   return 0U;
707 #else
708   uint32_t result;
709   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
710   return result;
711 #endif
712 }
713 #endif
714 
715 
716 /**
717   \brief   Set Main Stack Pointer Limit
718   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
719   Stack Pointer Limit register hence the write is silently ignored in non-secure
720   mode.
721 
722   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
723   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
724  */
__set_MSPLIM(uint32_t MainStackPtrLimit)725 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
726 {
727 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
728     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
729   // without main extensions, the non-secure MSPLIM is RAZ/WI
730   (void)MainStackPtrLimit;
731 #else
732   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
733 #endif
734 }
735 
736 
737 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
738 /**
739   \brief   Set Main Stack Pointer Limit (non-secure)
740   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
741   Stack Pointer Limit register hence the write is silently ignored.
742 
743   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
744   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
745  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)746 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
747 {
748 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
749   // without main extensions, the non-secure MSPLIM is RAZ/WI
750   (void)MainStackPtrLimit;
751 #else
752   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
753 #endif
754 }
755 #endif
756 
757 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
758            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
759 
760 
761 /**
762   \brief   Get FPSCR
763   \details Returns the current value of the Floating Point Status/Control register.
764   \return               Floating Point Status/Control register value
765  */
__get_FPSCR(void)766 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
767 {
768 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
769      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
770 #if __has_builtin(__builtin_arm_get_fpscr)
771 // Re-enable using built-in when GCC has been fixed
772 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
773   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
774   return __builtin_arm_get_fpscr();
775 #else
776   uint32_t result;
777 
778   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
779   return(result);
780 #endif
781 #else
782   return(0U);
783 #endif
784 }
785 
786 
787 /**
788   \brief   Set FPSCR
789   \details Assigns the given value to the Floating Point Status/Control register.
790   \param [in]    fpscr  Floating Point Status/Control value to set
791  */
__set_FPSCR(uint32_t fpscr)792 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
793 {
794 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
795      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
796 #if __has_builtin(__builtin_arm_set_fpscr)
797 // Re-enable using built-in when GCC has been fixed
798 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
799   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
800   __builtin_arm_set_fpscr(fpscr);
801 #else
802   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
803 #endif
804 #else
805   (void)fpscr;
806 #endif
807 }
808 
809 
810 /*@} end of CMSIS_Core_RegAccFunctions */
811 
812 
813 /* ##########################  Core Instruction Access  ######################### */
814 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
815   Access to dedicated instructions
816   @{
817 */
818 
819 /* Define macros for porting to both thumb1 and thumb2.
820  * For thumb1, use low register (r0-r7), specified by constraint "l"
821  * Otherwise, use general registers, specified by constraint "r" */
822 #if defined (__thumb__) && !defined (__thumb2__)
823 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
824 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
825 #define __CMSIS_GCC_USE_REG(r) "l" (r)
826 #else
827 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
828 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
829 #define __CMSIS_GCC_USE_REG(r) "r" (r)
830 #endif
831 
832 /**
833   \brief   No Operation
834   \details No Operation does nothing. This instruction can be used for code alignment purposes.
835  */
836 #define __NOP()                             __ASM volatile ("nop")
837 
838 /**
839   \brief   Wait For Interrupt
840   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
841  */
842 #define __WFI()                             __ASM volatile ("wfi")
843 
844 
845 /**
846   \brief   Wait For Event
847   \details Wait For Event is a hint instruction that permits the processor to enter
848            a low-power state until one of a number of events occurs.
849  */
850 #define __WFE()                             __ASM volatile ("wfe")
851 
852 
853 /**
854   \brief   Send Event
855   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
856  */
857 #define __SEV()                             __ASM volatile ("sev")
858 
859 
860 /**
861   \brief   Instruction Synchronization Barrier
862   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
863            so that all instructions following the ISB are fetched from cache or memory,
864            after the instruction has been completed.
865  */
__ISB(void)866 __STATIC_FORCEINLINE void __ISB(void)
867 {
868   __ASM volatile ("isb 0xF":::"memory");
869 }
870 
871 
872 /**
873   \brief   Data Synchronization Barrier
874   \details Acts as a special kind of Data Memory Barrier.
875            It completes when all explicit memory accesses before this instruction complete.
876  */
__DSB(void)877 __STATIC_FORCEINLINE void __DSB(void)
878 {
879   __ASM volatile ("dsb 0xF":::"memory");
880 }
881 
882 
883 /**
884   \brief   Data Memory Barrier
885   \details Ensures the apparent order of the explicit memory operations before
886            and after the instruction, without ensuring their completion.
887  */
__DMB(void)888 __STATIC_FORCEINLINE void __DMB(void)
889 {
890   __ASM volatile ("dmb 0xF":::"memory");
891 }
892 
893 
894 /**
895   \brief   Reverse byte order (32 bit)
896   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
897   \param [in]    value  Value to reverse
898   \return               Reversed value
899  */
__REV(uint32_t value)900 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
901 {
902 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
903   return __builtin_bswap32(value);
904 #else
905   uint32_t result;
906 
907   __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
908   return result;
909 #endif
910 }
911 
912 
913 /**
914   \brief   Reverse byte order (16 bit)
915   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
916   \param [in]    value  Value to reverse
917   \return               Reversed value
918  */
__REV16(uint32_t value)919 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
920 {
921   uint32_t result;
922 
923   __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
924   return result;
925 }
926 
927 
928 /**
929   \brief   Reverse byte order (16 bit)
930   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
931   \param [in]    value  Value to reverse
932   \return               Reversed value
933  */
__REVSH(int16_t value)934 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
935 {
936 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
937   return (int16_t)__builtin_bswap16(value);
938 #else
939   int16_t result;
940 
941   __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
942   return result;
943 #endif
944 }
945 
946 
947 /**
948   \brief   Rotate Right in unsigned value (32 bit)
949   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
950   \param [in]    op1  Value to rotate
951   \param [in]    op2  Number of Bits to rotate
952   \return               Rotated value
953  */
__ROR(uint32_t op1,uint32_t op2)954 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
955 {
956   op2 %= 32U;
957   if (op2 == 0U)
958   {
959     return op1;
960   }
961   return (op1 >> op2) | (op1 << (32U - op2));
962 }
963 
964 
965 /**
966   \brief   Breakpoint
967   \details Causes the processor to enter Debug state.
968            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
969   \param [in]    value  is ignored by the processor.
970                  If required, a debugger can use it to store additional information about the breakpoint.
971  */
972 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
973 
974 
975 /**
976   \brief   Reverse bit order of value
977   \details Reverses the bit order of the given value.
978   \param [in]    value  Value to reverse
979   \return               Reversed value
980  */
__RBIT(uint32_t value)981 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
982 {
983   uint32_t result;
984 
985 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
986      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
987      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
988    __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
989 #else
990   uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
991 
992   result = value;                      /* r will be reversed bits of v; first get LSB of v */
993   for (value >>= 1U; value != 0U; value >>= 1U)
994   {
995     result <<= 1U;
996     result |= value & 1U;
997     s--;
998   }
999   result <<= s;                        /* shift when v's highest bits are zero */
1000 #endif
1001   return result;
1002 }
1003 
1004 
1005 /**
1006   \brief   Count leading zeros
1007   \details Counts the number of leading zeros of a data value.
1008   \param [in]  value  Value to count the leading zeros
1009   \return             number of leading zeros in value
1010  */
__CLZ(uint32_t value)1011 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
1012 {
1013   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
1014      __builtin_clz(0) is undefined behaviour, so handle this case specially.
1015      This guarantees ARM-compatible results if happening to compile on a non-ARM
1016      target, and ensures the compiler doesn't decide to activate any
1017      optimisations using the logic "value was passed to __builtin_clz, so it
1018      is non-zero".
1019      ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
1020      single CLZ instruction.
1021    */
1022   if (value == 0U)
1023   {
1024     return 32U;
1025   }
1026   return __builtin_clz(value);
1027 }
1028 
1029 
1030 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1031      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1032      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1033      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1034 /**
1035   \brief   LDR Exclusive (8 bit)
1036   \details Executes a exclusive LDR instruction for 8 bit value.
1037   \param [in]    ptr  Pointer to data
1038   \return             value of type uint8_t at (*ptr)
1039  */
__LDREXB(volatile uint8_t * addr)1040 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
1041 {
1042     uint32_t result;
1043 
1044 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1045    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
1046 #else
1047     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1048        accepted by assembler. So has to use following less efficient pattern.
1049     */
1050    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1051 #endif
1052    return ((uint8_t) result);    /* Add explicit type cast here */
1053 }
1054 
1055 
1056 /**
1057   \brief   LDR Exclusive (16 bit)
1058   \details Executes a exclusive LDR instruction for 16 bit values.
1059   \param [in]    ptr  Pointer to data
1060   \return        value of type uint16_t at (*ptr)
1061  */
__LDREXH(volatile uint16_t * addr)1062 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
1063 {
1064     uint32_t result;
1065 
1066 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1067    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
1068 #else
1069     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1070        accepted by assembler. So has to use following less efficient pattern.
1071     */
1072    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1073 #endif
1074    return ((uint16_t) result);    /* Add explicit type cast here */
1075 }
1076 
1077 
1078 /**
1079   \brief   LDR Exclusive (32 bit)
1080   \details Executes a exclusive LDR instruction for 32 bit values.
1081   \param [in]    ptr  Pointer to data
1082   \return        value of type uint32_t at (*ptr)
1083  */
__LDREXW(volatile uint32_t * addr)1084 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1085 {
1086     uint32_t result;
1087 
1088    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1089    return(result);
1090 }
1091 
1092 
1093 /**
1094   \brief   STR Exclusive (8 bit)
1095   \details Executes a exclusive STR instruction for 8 bit values.
1096   \param [in]  value  Value to store
1097   \param [in]    ptr  Pointer to location
1098   \return          0  Function succeeded
1099   \return          1  Function failed
1100  */
__STREXB(uint8_t value,volatile uint8_t * addr)1101 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1102 {
1103    uint32_t result;
1104 
1105    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1106    return(result);
1107 }
1108 
1109 
1110 /**
1111   \brief   STR Exclusive (16 bit)
1112   \details Executes a exclusive STR instruction for 16 bit values.
1113   \param [in]  value  Value to store
1114   \param [in]    ptr  Pointer to location
1115   \return          0  Function succeeded
1116   \return          1  Function failed
1117  */
__STREXH(uint16_t value,volatile uint16_t * addr)1118 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1119 {
1120    uint32_t result;
1121 
1122    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1123    return(result);
1124 }
1125 
1126 
1127 /**
1128   \brief   STR Exclusive (32 bit)
1129   \details Executes a exclusive STR instruction for 32 bit values.
1130   \param [in]  value  Value to store
1131   \param [in]    ptr  Pointer to location
1132   \return          0  Function succeeded
1133   \return          1  Function failed
1134  */
__STREXW(uint32_t value,volatile uint32_t * addr)1135 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1136 {
1137    uint32_t result;
1138 
1139    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1140    return(result);
1141 }
1142 
1143 
1144 /**
1145   \brief   Remove the exclusive lock
1146   \details Removes the exclusive lock which is created by LDREX.
1147  */
__CLREX(void)1148 __STATIC_FORCEINLINE void __CLREX(void)
1149 {
1150   __ASM volatile ("clrex" ::: "memory");
1151 }
1152 
1153 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1154            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1155            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1156            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1157 
1158 
1159 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1160      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1161      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1162 /**
1163   \brief   Signed Saturate
1164   \details Saturates a signed value.
1165   \param [in]  ARG1  Value to be saturated
1166   \param [in]  ARG2  Bit position to saturate to (1..32)
1167   \return             Saturated value
1168  */
1169 #define __SSAT(ARG1,ARG2) \
1170 __extension__ \
1171 ({                          \
1172   int32_t __RES, __ARG1 = (ARG1); \
1173   __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1174   __RES; \
1175  })
1176 
1177 
1178 /**
1179   \brief   Unsigned Saturate
1180   \details Saturates an unsigned value.
1181   \param [in]  ARG1  Value to be saturated
1182   \param [in]  ARG2  Bit position to saturate to (0..31)
1183   \return             Saturated value
1184  */
1185 #define __USAT(ARG1,ARG2) \
1186  __extension__ \
1187 ({                          \
1188   uint32_t __RES, __ARG1 = (ARG1); \
1189   __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1190   __RES; \
1191  })
1192 
1193 
1194 /**
1195   \brief   Rotate Right with Extend (32 bit)
1196   \details Moves each bit of a bitstring right by one bit.
1197            The carry input is shifted in at the left end of the bitstring.
1198   \param [in]    value  Value to rotate
1199   \return               Rotated value
1200  */
__RRX(uint32_t value)1201 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1202 {
1203   uint32_t result;
1204 
1205   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1206   return(result);
1207 }
1208 
1209 
1210 /**
1211   \brief   LDRT Unprivileged (8 bit)
1212   \details Executes a Unprivileged LDRT instruction for 8 bit value.
1213   \param [in]    ptr  Pointer to data
1214   \return             value of type uint8_t at (*ptr)
1215  */
__LDRBT(volatile uint8_t * ptr)1216 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1217 {
1218     uint32_t result;
1219 
1220 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1221    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1222 #else
1223     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1224        accepted by assembler. So has to use following less efficient pattern.
1225     */
1226    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1227 #endif
1228    return ((uint8_t) result);    /* Add explicit type cast here */
1229 }
1230 
1231 
1232 /**
1233   \brief   LDRT Unprivileged (16 bit)
1234   \details Executes a Unprivileged LDRT instruction for 16 bit values.
1235   \param [in]    ptr  Pointer to data
1236   \return        value of type uint16_t at (*ptr)
1237  */
__LDRHT(volatile uint16_t * ptr)1238 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1239 {
1240     uint32_t result;
1241 
1242 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1243    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1244 #else
1245     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1246        accepted by assembler. So has to use following less efficient pattern.
1247     */
1248    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1249 #endif
1250    return ((uint16_t) result);    /* Add explicit type cast here */
1251 }
1252 
1253 
1254 /**
1255   \brief   LDRT Unprivileged (32 bit)
1256   \details Executes a Unprivileged LDRT instruction for 32 bit values.
1257   \param [in]    ptr  Pointer to data
1258   \return        value of type uint32_t at (*ptr)
1259  */
__LDRT(volatile uint32_t * ptr)1260 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1261 {
1262     uint32_t result;
1263 
1264    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1265    return(result);
1266 }
1267 
1268 
1269 /**
1270   \brief   STRT Unprivileged (8 bit)
1271   \details Executes a Unprivileged STRT instruction for 8 bit values.
1272   \param [in]  value  Value to store
1273   \param [in]    ptr  Pointer to location
1274  */
__STRBT(uint8_t value,volatile uint8_t * ptr)1275 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1276 {
1277    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1278 }
1279 
1280 
1281 /**
1282   \brief   STRT Unprivileged (16 bit)
1283   \details Executes a Unprivileged STRT instruction for 16 bit values.
1284   \param [in]  value  Value to store
1285   \param [in]    ptr  Pointer to location
1286  */
__STRHT(uint16_t value,volatile uint16_t * ptr)1287 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1288 {
1289    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1290 }
1291 
1292 
1293 /**
1294   \brief   STRT Unprivileged (32 bit)
1295   \details Executes a Unprivileged STRT instruction for 32 bit values.
1296   \param [in]  value  Value to store
1297   \param [in]    ptr  Pointer to location
1298  */
__STRT(uint32_t value,volatile uint32_t * ptr)1299 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1300 {
1301    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1302 }
1303 
1304 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1305            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1306            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1307 
1308 /**
1309   \brief   Signed Saturate
1310   \details Saturates a signed value.
1311   \param [in]  value  Value to be saturated
1312   \param [in]    sat  Bit position to saturate to (1..32)
1313   \return             Saturated value
1314  */
__SSAT(int32_t val,uint32_t sat)1315 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1316 {
1317   if ((sat >= 1U) && (sat <= 32U))
1318   {
1319     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1320     const int32_t min = -1 - max ;
1321     if (val > max)
1322     {
1323       return max;
1324     }
1325     else if (val < min)
1326     {
1327       return min;
1328     }
1329   }
1330   return val;
1331 }
1332 
1333 /**
1334   \brief   Unsigned Saturate
1335   \details Saturates an unsigned value.
1336   \param [in]  value  Value to be saturated
1337   \param [in]    sat  Bit position to saturate to (0..31)
1338   \return             Saturated value
1339  */
__USAT(int32_t val,uint32_t sat)1340 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1341 {
1342   if (sat <= 31U)
1343   {
1344     const uint32_t max = ((1U << sat) - 1U);
1345     if (val > (int32_t)max)
1346     {
1347       return max;
1348     }
1349     else if (val < 0)
1350     {
1351       return 0U;
1352     }
1353   }
1354   return (uint32_t)val;
1355 }
1356 
1357 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1358            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1359            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1360 
1361 
1362 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1363      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1364 /**
1365   \brief   Load-Acquire (8 bit)
1366   \details Executes a LDAB instruction for 8 bit value.
1367   \param [in]    ptr  Pointer to data
1368   \return             value of type uint8_t at (*ptr)
1369  */
__LDAB(volatile uint8_t * ptr)1370 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1371 {
1372     uint32_t result;
1373 
1374    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1375    return ((uint8_t) result);
1376 }
1377 
1378 
1379 /**
1380   \brief   Load-Acquire (16 bit)
1381   \details Executes a LDAH instruction for 16 bit values.
1382   \param [in]    ptr  Pointer to data
1383   \return        value of type uint16_t at (*ptr)
1384  */
__LDAH(volatile uint16_t * ptr)1385 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1386 {
1387     uint32_t result;
1388 
1389    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1390    return ((uint16_t) result);
1391 }
1392 
1393 
1394 /**
1395   \brief   Load-Acquire (32 bit)
1396   \details Executes a LDA instruction for 32 bit values.
1397   \param [in]    ptr  Pointer to data
1398   \return        value of type uint32_t at (*ptr)
1399  */
__LDA(volatile uint32_t * ptr)1400 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1401 {
1402     uint32_t result;
1403 
1404    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1405    return(result);
1406 }
1407 
1408 
1409 /**
1410   \brief   Store-Release (8 bit)
1411   \details Executes a STLB instruction for 8 bit values.
1412   \param [in]  value  Value to store
1413   \param [in]    ptr  Pointer to location
1414  */
__STLB(uint8_t value,volatile uint8_t * ptr)1415 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1416 {
1417    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1418 }
1419 
1420 
1421 /**
1422   \brief   Store-Release (16 bit)
1423   \details Executes a STLH instruction for 16 bit values.
1424   \param [in]  value  Value to store
1425   \param [in]    ptr  Pointer to location
1426  */
__STLH(uint16_t value,volatile uint16_t * ptr)1427 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1428 {
1429    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1430 }
1431 
1432 
1433 /**
1434   \brief   Store-Release (32 bit)
1435   \details Executes a STL instruction for 32 bit values.
1436   \param [in]  value  Value to store
1437   \param [in]    ptr  Pointer to location
1438  */
__STL(uint32_t value,volatile uint32_t * ptr)1439 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1440 {
1441    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1442 }
1443 
1444 
1445 /**
1446   \brief   Load-Acquire Exclusive (8 bit)
1447   \details Executes a LDAB exclusive instruction for 8 bit value.
1448   \param [in]    ptr  Pointer to data
1449   \return             value of type uint8_t at (*ptr)
1450  */
__LDAEXB(volatile uint8_t * ptr)1451 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1452 {
1453     uint32_t result;
1454 
1455    __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
1456    return ((uint8_t) result);
1457 }
1458 
1459 
1460 /**
1461   \brief   Load-Acquire Exclusive (16 bit)
1462   \details Executes a LDAH exclusive instruction for 16 bit values.
1463   \param [in]    ptr  Pointer to data
1464   \return        value of type uint16_t at (*ptr)
1465  */
__LDAEXH(volatile uint16_t * ptr)1466 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1467 {
1468     uint32_t result;
1469 
1470    __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
1471    return ((uint16_t) result);
1472 }
1473 
1474 
1475 /**
1476   \brief   Load-Acquire Exclusive (32 bit)
1477   \details Executes a LDA exclusive instruction for 32 bit values.
1478   \param [in]    ptr  Pointer to data
1479   \return        value of type uint32_t at (*ptr)
1480  */
__LDAEX(volatile uint32_t * ptr)1481 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1482 {
1483     uint32_t result;
1484 
1485    __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
1486    return(result);
1487 }
1488 
1489 
1490 /**
1491   \brief   Store-Release Exclusive (8 bit)
1492   \details Executes a STLB exclusive instruction for 8 bit values.
1493   \param [in]  value  Value to store
1494   \param [in]    ptr  Pointer to location
1495   \return          0  Function succeeded
1496   \return          1  Function failed
1497  */
__STLEXB(uint8_t value,volatile uint8_t * ptr)1498 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1499 {
1500    uint32_t result;
1501 
1502    __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1503    return(result);
1504 }
1505 
1506 
1507 /**
1508   \brief   Store-Release Exclusive (16 bit)
1509   \details Executes a STLH exclusive instruction for 16 bit values.
1510   \param [in]  value  Value to store
1511   \param [in]    ptr  Pointer to location
1512   \return          0  Function succeeded
1513   \return          1  Function failed
1514  */
__STLEXH(uint16_t value,volatile uint16_t * ptr)1515 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1516 {
1517    uint32_t result;
1518 
1519    __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1520    return(result);
1521 }
1522 
1523 
1524 /**
1525   \brief   Store-Release Exclusive (32 bit)
1526   \details Executes a STL exclusive instruction for 32 bit values.
1527   \param [in]  value  Value to store
1528   \param [in]    ptr  Pointer to location
1529   \return          0  Function succeeded
1530   \return          1  Function failed
1531  */
__STLEX(uint32_t value,volatile uint32_t * ptr)1532 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1533 {
1534    uint32_t result;
1535 
1536    __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1537    return(result);
1538 }
1539 
1540 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1541            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1542 
1543 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1544 
1545 
1546 /* ###################  Compiler specific Intrinsics  ########################### */
1547 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1548   Access to dedicated SIMD instructions
1549   @{
1550 */
1551 
1552 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1553 
__SADD8(uint32_t op1,uint32_t op2)1554 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1555 {
1556   uint32_t result;
1557 
1558   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1559   return(result);
1560 }
1561 
__QADD8(uint32_t op1,uint32_t op2)1562 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1563 {
1564   uint32_t result;
1565 
1566   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1567   return(result);
1568 }
1569 
__SHADD8(uint32_t op1,uint32_t op2)1570 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1571 {
1572   uint32_t result;
1573 
1574   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1575   return(result);
1576 }
1577 
__UADD8(uint32_t op1,uint32_t op2)1578 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1579 {
1580   uint32_t result;
1581 
1582   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1583   return(result);
1584 }
1585 
__UQADD8(uint32_t op1,uint32_t op2)1586 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1587 {
1588   uint32_t result;
1589 
1590   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1591   return(result);
1592 }
1593 
__UHADD8(uint32_t op1,uint32_t op2)1594 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1595 {
1596   uint32_t result;
1597 
1598   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1599   return(result);
1600 }
1601 
1602 
__SSUB8(uint32_t op1,uint32_t op2)1603 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1604 {
1605   uint32_t result;
1606 
1607   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1608   return(result);
1609 }
1610 
__QSUB8(uint32_t op1,uint32_t op2)1611 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1612 {
1613   uint32_t result;
1614 
1615   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1616   return(result);
1617 }
1618 
__SHSUB8(uint32_t op1,uint32_t op2)1619 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1620 {
1621   uint32_t result;
1622 
1623   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1624   return(result);
1625 }
1626 
__USUB8(uint32_t op1,uint32_t op2)1627 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1628 {
1629   uint32_t result;
1630 
1631   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1632   return(result);
1633 }
1634 
__UQSUB8(uint32_t op1,uint32_t op2)1635 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1636 {
1637   uint32_t result;
1638 
1639   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1640   return(result);
1641 }
1642 
__UHSUB8(uint32_t op1,uint32_t op2)1643 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1644 {
1645   uint32_t result;
1646 
1647   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1648   return(result);
1649 }
1650 
1651 
__SADD16(uint32_t op1,uint32_t op2)1652 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1653 {
1654   uint32_t result;
1655 
1656   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1657   return(result);
1658 }
1659 
__QADD16(uint32_t op1,uint32_t op2)1660 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1661 {
1662   uint32_t result;
1663 
1664   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1665   return(result);
1666 }
1667 
__SHADD16(uint32_t op1,uint32_t op2)1668 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1669 {
1670   uint32_t result;
1671 
1672   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1673   return(result);
1674 }
1675 
__UADD16(uint32_t op1,uint32_t op2)1676 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1677 {
1678   uint32_t result;
1679 
1680   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1681   return(result);
1682 }
1683 
__UQADD16(uint32_t op1,uint32_t op2)1684 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1685 {
1686   uint32_t result;
1687 
1688   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1689   return(result);
1690 }
1691 
__UHADD16(uint32_t op1,uint32_t op2)1692 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1693 {
1694   uint32_t result;
1695 
1696   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1697   return(result);
1698 }
1699 
__SSUB16(uint32_t op1,uint32_t op2)1700 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1701 {
1702   uint32_t result;
1703 
1704   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1705   return(result);
1706 }
1707 
__QSUB16(uint32_t op1,uint32_t op2)1708 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1709 {
1710   uint32_t result;
1711 
1712   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1713   return(result);
1714 }
1715 
__SHSUB16(uint32_t op1,uint32_t op2)1716 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1717 {
1718   uint32_t result;
1719 
1720   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1721   return(result);
1722 }
1723 
__USUB16(uint32_t op1,uint32_t op2)1724 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1725 {
1726   uint32_t result;
1727 
1728   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1729   return(result);
1730 }
1731 
__UQSUB16(uint32_t op1,uint32_t op2)1732 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1733 {
1734   uint32_t result;
1735 
1736   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1737   return(result);
1738 }
1739 
__UHSUB16(uint32_t op1,uint32_t op2)1740 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1741 {
1742   uint32_t result;
1743 
1744   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1745   return(result);
1746 }
1747 
__SASX(uint32_t op1,uint32_t op2)1748 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1749 {
1750   uint32_t result;
1751 
1752   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1753   return(result);
1754 }
1755 
__QASX(uint32_t op1,uint32_t op2)1756 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1757 {
1758   uint32_t result;
1759 
1760   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1761   return(result);
1762 }
1763 
__SHASX(uint32_t op1,uint32_t op2)1764 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1765 {
1766   uint32_t result;
1767 
1768   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1769   return(result);
1770 }
1771 
__UASX(uint32_t op1,uint32_t op2)1772 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1773 {
1774   uint32_t result;
1775 
1776   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1777   return(result);
1778 }
1779 
__UQASX(uint32_t op1,uint32_t op2)1780 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1781 {
1782   uint32_t result;
1783 
1784   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1785   return(result);
1786 }
1787 
__UHASX(uint32_t op1,uint32_t op2)1788 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1789 {
1790   uint32_t result;
1791 
1792   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1793   return(result);
1794 }
1795 
__SSAX(uint32_t op1,uint32_t op2)1796 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1797 {
1798   uint32_t result;
1799 
1800   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1801   return(result);
1802 }
1803 
__QSAX(uint32_t op1,uint32_t op2)1804 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1805 {
1806   uint32_t result;
1807 
1808   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1809   return(result);
1810 }
1811 
__SHSAX(uint32_t op1,uint32_t op2)1812 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1813 {
1814   uint32_t result;
1815 
1816   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1817   return(result);
1818 }
1819 
__USAX(uint32_t op1,uint32_t op2)1820 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1821 {
1822   uint32_t result;
1823 
1824   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1825   return(result);
1826 }
1827 
__UQSAX(uint32_t op1,uint32_t op2)1828 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1829 {
1830   uint32_t result;
1831 
1832   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1833   return(result);
1834 }
1835 
__UHSAX(uint32_t op1,uint32_t op2)1836 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1837 {
1838   uint32_t result;
1839 
1840   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1841   return(result);
1842 }
1843 
__USAD8(uint32_t op1,uint32_t op2)1844 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1845 {
1846   uint32_t result;
1847 
1848   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1849   return(result);
1850 }
1851 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1852 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1853 {
1854   uint32_t result;
1855 
1856   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1857   return(result);
1858 }
1859 
1860 #define __SSAT16(ARG1,ARG2) \
1861 ({                          \
1862   int32_t __RES, __ARG1 = (ARG1); \
1863   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1864   __RES; \
1865  })
1866 
1867 #define __USAT16(ARG1,ARG2) \
1868 ({                          \
1869   uint32_t __RES, __ARG1 = (ARG1); \
1870   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1871   __RES; \
1872  })
1873 
__UXTB16(uint32_t op1)1874 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1875 {
1876   uint32_t result;
1877 
1878   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1879   return(result);
1880 }
1881 
__UXTAB16(uint32_t op1,uint32_t op2)1882 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1883 {
1884   uint32_t result;
1885 
1886   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1887   return(result);
1888 }
1889 
__SXTB16(uint32_t op1)1890 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1891 {
1892   uint32_t result;
1893 
1894   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1895   return(result);
1896 }
1897 
__SXTAB16(uint32_t op1,uint32_t op2)1898 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1899 {
1900   uint32_t result;
1901 
1902   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1903   return(result);
1904 }
1905 
__SMUAD(uint32_t op1,uint32_t op2)1906 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1907 {
1908   uint32_t result;
1909 
1910   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1911   return(result);
1912 }
1913 
__SMUADX(uint32_t op1,uint32_t op2)1914 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1915 {
1916   uint32_t result;
1917 
1918   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1919   return(result);
1920 }
1921 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1922 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1923 {
1924   uint32_t result;
1925 
1926   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1927   return(result);
1928 }
1929 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1930 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1931 {
1932   uint32_t result;
1933 
1934   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1935   return(result);
1936 }
1937 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1938 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1939 {
1940   union llreg_u{
1941     uint32_t w32[2];
1942     uint64_t w64;
1943   } llr;
1944   llr.w64 = acc;
1945 
1946 #ifndef __ARMEB__   /* Little endian */
1947   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1948 #else               /* Big endian */
1949   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1950 #endif
1951 
1952   return(llr.w64);
1953 }
1954 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1955 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1956 {
1957   union llreg_u{
1958     uint32_t w32[2];
1959     uint64_t w64;
1960   } llr;
1961   llr.w64 = acc;
1962 
1963 #ifndef __ARMEB__   /* Little endian */
1964   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1965 #else               /* Big endian */
1966   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1967 #endif
1968 
1969   return(llr.w64);
1970 }
1971 
__SMUSD(uint32_t op1,uint32_t op2)1972 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1973 {
1974   uint32_t result;
1975 
1976   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1977   return(result);
1978 }
1979 
__SMUSDX(uint32_t op1,uint32_t op2)1980 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1981 {
1982   uint32_t result;
1983 
1984   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1985   return(result);
1986 }
1987 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1988 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1989 {
1990   uint32_t result;
1991 
1992   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1993   return(result);
1994 }
1995 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1996 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1997 {
1998   uint32_t result;
1999 
2000   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2001   return(result);
2002 }
2003 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)2004 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2005 {
2006   union llreg_u{
2007     uint32_t w32[2];
2008     uint64_t w64;
2009   } llr;
2010   llr.w64 = acc;
2011 
2012 #ifndef __ARMEB__   /* Little endian */
2013   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2014 #else               /* Big endian */
2015   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2016 #endif
2017 
2018   return(llr.w64);
2019 }
2020 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2021 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2022 {
2023   union llreg_u{
2024     uint32_t w32[2];
2025     uint64_t w64;
2026   } llr;
2027   llr.w64 = acc;
2028 
2029 #ifndef __ARMEB__   /* Little endian */
2030   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2031 #else               /* Big endian */
2032   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2033 #endif
2034 
2035   return(llr.w64);
2036 }
2037 
__SEL(uint32_t op1,uint32_t op2)2038 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2039 {
2040   uint32_t result;
2041 
2042   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2043   return(result);
2044 }
2045 
__QADD(int32_t op1,int32_t op2)2046 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2047 {
2048   int32_t result;
2049 
2050   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2051   return(result);
2052 }
2053 
__QSUB(int32_t op1,int32_t op2)2054 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2055 {
2056   int32_t result;
2057 
2058   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2059   return(result);
2060 }
2061 
2062 #if 0
2063 #define __PKHBT(ARG1,ARG2,ARG3) \
2064 ({                          \
2065   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2066   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2067   __RES; \
2068  })
2069 
2070 #define __PKHTB(ARG1,ARG2,ARG3) \
2071 ({                          \
2072   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2073   if (ARG3 == 0) \
2074     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2075   else \
2076     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2077   __RES; \
2078  })
2079 #endif
2080 
2081 #define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
2082                                            ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
2083 
2084 #define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
2085                                            ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
2086 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2087 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2088 {
2089  int32_t result;
2090 
2091  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2092  return(result);
2093 }
2094 
2095 #endif /* (__ARM_FEATURE_DSP == 1) */
2096 /*@} end of group CMSIS_SIMD_intrinsics */
2097 
2098 
2099 #pragma GCC diagnostic pop
2100 
2101 #endif /* __CMSIS_GCC_H */
2102