1 /*********************************************************************
2 * Source:     https://github.com/B-Con/crypto-algorithms
3 * Filename:   sha256.c
4 * Author:     Brad Conte (brad AT bradconte.com)
5 * Copyright:  This code is released into the public domain.
6 * Disclaimer: This code is presented "as is" without any guarantees.
7 * Details:    Implementation of the SHA-256 hashing algorithm.
8               SHA-256 is one of the three algorithms in the SHA2
9               specification. The others, SHA-384 and SHA-512, are not
10               offered in this implementation.
11               Algorithm specification can be found here:
12                * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
13               This implementation uses little endian byte order.
14 *********************************************************************/
15 
16 /*************************** HEADER FILES ***************************/
17 #include <stdlib.h>
18 #include "sha256.h"
19 
20 /****************************** MACROS ******************************/
21 #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
22 #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
23 
24 #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
25 #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
26 #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
27 #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
28 #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
29 #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
30 
31 /**************************** VARIABLES *****************************/
32 static const WORD k[64] = {
33 	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
34 	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
35 	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
36 	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
37 	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
38 	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
39 	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
40 	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
41 };
42 
43 /*********************** FUNCTION DEFINITIONS ***********************/
sha256_transform(CRYAL_SHA256_CTX * ctx,const BYTE data[])44 static void sha256_transform(CRYAL_SHA256_CTX *ctx, const BYTE data[])
45 {
46 	WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
47 
48 	for (i = 0, j = 0; i < 16; ++i, j += 4)
49 		m[i] = ((uint32_t)data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
50 	for ( ; i < 64; ++i)
51 		m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
52 
53 	a = ctx->state[0];
54 	b = ctx->state[1];
55 	c = ctx->state[2];
56 	d = ctx->state[3];
57 	e = ctx->state[4];
58 	f = ctx->state[5];
59 	g = ctx->state[6];
60 	h = ctx->state[7];
61 
62 	for (i = 0; i < 64; ++i) {
63 		t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
64 		t2 = EP0(a) + MAJ(a,b,c);
65 		h = g;
66 		g = f;
67 		f = e;
68 		e = d + t1;
69 		d = c;
70 		c = b;
71 		b = a;
72 		a = t1 + t2;
73 	}
74 
75 	ctx->state[0] += a;
76 	ctx->state[1] += b;
77 	ctx->state[2] += c;
78 	ctx->state[3] += d;
79 	ctx->state[4] += e;
80 	ctx->state[5] += f;
81 	ctx->state[6] += g;
82 	ctx->state[7] += h;
83 }
84 
sha256_init(CRYAL_SHA256_CTX * ctx)85 void sha256_init(CRYAL_SHA256_CTX *ctx)
86 {
87 	ctx->datalen = 0;
88 	ctx->bitlen = 0;
89 	ctx->state[0] = 0x6a09e667;
90 	ctx->state[1] = 0xbb67ae85;
91 	ctx->state[2] = 0x3c6ef372;
92 	ctx->state[3] = 0xa54ff53a;
93 	ctx->state[4] = 0x510e527f;
94 	ctx->state[5] = 0x9b05688c;
95 	ctx->state[6] = 0x1f83d9ab;
96 	ctx->state[7] = 0x5be0cd19;
97 }
98 
sha256_update(CRYAL_SHA256_CTX * ctx,const BYTE data[],size_t len)99 void sha256_update(CRYAL_SHA256_CTX *ctx, const BYTE data[], size_t len)
100 {
101 	WORD i;
102 
103 	for (i = 0; i < len; ++i) {
104 		ctx->data[ctx->datalen] = data[i];
105 		ctx->datalen++;
106 		if (ctx->datalen == 64) {
107 			sha256_transform(ctx, ctx->data);
108 			ctx->bitlen += 512;
109 			ctx->datalen = 0;
110 		}
111 	}
112 }
113 
sha256_final(CRYAL_SHA256_CTX * ctx,BYTE hash[])114 void sha256_final(CRYAL_SHA256_CTX *ctx, BYTE hash[])
115 {
116 	WORD i;
117 
118 	i = ctx->datalen;
119 
120 	// Pad whatever data is left in the buffer.
121 	if (ctx->datalen < 56) {
122 		ctx->data[i++] = 0x80;
123 		while (i < 56)
124 			ctx->data[i++] = 0x00;
125 	}
126 	else {
127 		ctx->data[i++] = 0x80;
128 		while (i < 64)
129 			ctx->data[i++] = 0x00;
130 		sha256_transform(ctx, ctx->data);
131 		memset(ctx->data, 0, 56);
132 	}
133 
134 	// Append to the padding the total message's length in bits and transform.
135 	ctx->bitlen += ctx->datalen * 8;
136 	ctx->data[63] = ctx->bitlen;
137 	ctx->data[62] = ctx->bitlen >> 8;
138 	ctx->data[61] = ctx->bitlen >> 16;
139 	ctx->data[60] = ctx->bitlen >> 24;
140 	ctx->data[59] = ctx->bitlen >> 32;
141 	ctx->data[58] = ctx->bitlen >> 40;
142 	ctx->data[57] = ctx->bitlen >> 48;
143 	ctx->data[56] = ctx->bitlen >> 56;
144 	sha256_transform(ctx, ctx->data);
145 
146 	// Since this implementation uses little endian byte ordering and SHA uses big endian,
147 	// reverse all the bytes when copying the final state to the output hash.
148 	for (i = 0; i < 4; ++i) {
149 		hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
150 		hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
151 		hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
152 		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
153 		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
154 		hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
155 		hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
156 		hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
157 	}
158 }
159