1 /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* expm1(x)
13  * Returns exp(x)-1, the exponential of x minus 1.
14  *
15  * Method
16  *   1. Argument reduction:
17  *      Given x, find r and integer k such that
18  *
19  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
20  *
21  *      Here a correction term c will be computed to compensate
22  *      the error in r when rounded to a floating-point number.
23  *
24  *   2. Approximating expm1(r) by a special rational function on
25  *      the interval [0,0.34658]:
26  *      Since
27  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
28  *      we define R1(r*r) by
29  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
30  *      That is,
31  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
32  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
33  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
34  *      We use a special Remez algorithm on [0,0.347] to generate
35  *      a polynomial of degree 5 in r*r to approximate R1. The
36  *      maximum error of this polynomial approximation is bounded
37  *      by 2**-61. In other words,
38  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
39  *      where   Q1  =  -1.6666666666666567384E-2,
40  *              Q2  =   3.9682539681370365873E-4,
41  *              Q3  =  -9.9206344733435987357E-6,
42  *              Q4  =   2.5051361420808517002E-7,
43  *              Q5  =  -6.2843505682382617102E-9;
44  *              z   =  r*r,
45  *      with error bounded by
46  *          |                  5           |     -61
47  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
48  *          |                              |
49  *
50  *      expm1(r) = exp(r)-1 is then computed by the following
51  *      specific way which minimize the accumulation rounding error:
52  *                             2     3
53  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
54  *            expm1(r) = r + --- + --- * [--------------------]
55  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
56  *
57  *      To compensate the error in the argument reduction, we use
58  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
59  *                         ~ expm1(r) + c + r*c
60  *      Thus c+r*c will be added in as the correction terms for
61  *      expm1(r+c). Now rearrange the term to avoid optimization
62  *      screw up:
63  *                      (      2                                    2 )
64  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
65  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
66  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
67  *                      (                                             )
68  *
69  *                 = r - E
70  *   3. Scale back to obtain expm1(x):
71  *      From step 1, we have
72  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
73  *                  = or     2^k*[expm1(r) + (1-2^-k)]
74  *   4. Implementation notes:
75  *      (A). To save one multiplication, we scale the coefficient Qi
76  *           to Qi*2^i, and replace z by (x^2)/2.
77  *      (B). To achieve maximum accuracy, we compute expm1(x) by
78  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
79  *        (ii)  if k=0, return r-E
80  *        (iii) if k=-1, return 0.5*(r-E)-0.5
81  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
82  *                     else          return  1.0+2.0*(r-E);
83  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
84  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
85  *        (vii) return 2^k(1-((E+2^-k)-r))
86  *
87  * Special cases:
88  *      expm1(INF) is INF, expm1(NaN) is NaN;
89  *      expm1(-INF) is -1, and
90  *      for finite argument, only expm1(0)=0 is exact.
91  *
92  * Accuracy:
93  *      according to an error analysis, the error is always less than
94  *      1 ulp (unit in the last place).
95  *
96  * Misc. info.
97  *      For IEEE double
98  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
99  *
100  * Constants:
101  * The hexadecimal values are the intended ones for the following
102  * constants. The decimal values may be used, provided that the
103  * compiler will convert from decimal to binary accurately enough
104  * to produce the hexadecimal values shown.
105  */
106 
107 #include "libm.h"
108 
109 static const double
110 o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
111 ln2_hi      = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
112 ln2_lo      = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
113 invln2      = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
114 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
115 Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
116 Q2 =  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
117 Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
118 Q4 =  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
119 Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
120 
expm1(double x)121 double expm1(double x)
122 {
123 	double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
124 	union {double f; uint64_t i;} u = {x};
125 	uint32_t hx = u.i>>32 & 0x7fffffff;
126 	int k, sign = u.i>>63;
127 
128 	/* filter out huge and non-finite argument */
129 	if (hx >= 0x4043687A) {  /* if |x|>=56*ln2 */
130 		if (isnan(x))
131 			return x;
132 		if (sign)
133 			return -1;
134 		if (x > o_threshold) {
135 			x *= 0x1p1023;
136 			return x;
137 		}
138 	}
139 
140 	/* argument reduction */
141 	if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */
142 		if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */
143 			if (!sign) {
144 				hi = x - ln2_hi;
145 				lo = ln2_lo;
146 				k =  1;
147 			} else {
148 				hi = x + ln2_hi;
149 				lo = -ln2_lo;
150 				k = -1;
151 			}
152 		} else {
153 			k  = invln2*x + (sign ? -0.5 : 0.5);
154 			t  = k;
155 			hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
156 			lo = t*ln2_lo;
157 		}
158 		x = hi-lo;
159 		c = (hi-x)-lo;
160 	} else if (hx < 0x3c900000) {  /* |x| < 2**-54, return x */
161 		if (hx < 0x00100000)
162 			FORCE_EVAL((float)x);
163 		return x;
164 	} else
165 		k = 0;
166 
167 	/* x is now in primary range */
168 	hfx = 0.5*x;
169 	hxs = x*hfx;
170 	r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
171 	t  = 3.0-r1*hfx;
172 	e  = hxs*((r1-t)/(6.0 - x*t));
173 	if (k == 0)   /* c is 0 */
174 		return x - (x*e-hxs);
175 	e  = x*(e-c) - c;
176 	e -= hxs;
177 	/* exp(x) ~ 2^k (x_reduced - e + 1) */
178 	if (k == -1)
179 		return 0.5*(x-e) - 0.5;
180 	if (k == 1) {
181 		if (x < -0.25)
182 			return -2.0*(e-(x+0.5));
183 		return 1.0+2.0*(x-e);
184 	}
185 	u.i = (uint64_t)(0x3ff + k)<<52;  /* 2^k */
186 	twopk = u.f;
187 	if (k < 0 || k > 56) {  /* suffice to return exp(x)-1 */
188 		y = x - e + 1.0;
189 		if (k == 1024)
190 			y = y*2.0*0x1p1023;
191 		else
192 			y = y*twopk;
193 		return y - 1.0;
194 	}
195 	u.i = (uint64_t)(0x3ff - k)<<52;  /* 2^-k */
196 	if (k < 20)
197 		y = (x-e+(1-u.f))*twopk;
198 	else
199 		y = (x-(e+u.f)+1)*twopk;
200 	return y;
201 }
202