1 /*
2  * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <cdefs.h>
9 #include <inttypes.h>
10 #include <stdbool.h>
11 #include <stdint.h>
12 
13 #include "../amu_private.h"
14 #include <arch.h>
15 #include <arch_features.h>
16 #include <arch_helpers.h>
17 #include <common/debug.h>
18 #include <lib/el3_runtime/pubsub_events.h>
19 #include <lib/extensions/amu.h>
20 
21 #include <plat/common/platform.h>
22 
23 #if ENABLE_AMU_FCONF
24 #	include <lib/fconf/fconf.h>
25 #	include <lib/fconf/fconf_amu_getter.h>
26 #endif
27 
28 #if ENABLE_MPMM
29 #	include <lib/mpmm/mpmm.h>
30 #endif
31 
32 struct amu_ctx {
33 	uint64_t group0_cnts[AMU_GROUP0_MAX_COUNTERS];
34 #if ENABLE_AMU_AUXILIARY_COUNTERS
35 	uint64_t group1_cnts[AMU_GROUP1_MAX_COUNTERS];
36 #endif
37 
38 	/* Architected event counter 1 does not have an offset register */
39 	uint64_t group0_voffsets[AMU_GROUP0_MAX_COUNTERS - 1U];
40 #if ENABLE_AMU_AUXILIARY_COUNTERS
41 	uint64_t group1_voffsets[AMU_GROUP1_MAX_COUNTERS];
42 #endif
43 
44 	uint16_t group0_enable;
45 #if ENABLE_AMU_AUXILIARY_COUNTERS
46 	uint16_t group1_enable;
47 #endif
48 };
49 
50 static struct amu_ctx amu_ctxs_[PLATFORM_CORE_COUNT];
51 
52 CASSERT((sizeof(amu_ctxs_[0].group0_enable) * CHAR_BIT) <= AMU_GROUP0_MAX_COUNTERS,
53 	amu_ctx_group0_enable_cannot_represent_all_group0_counters);
54 
55 #if ENABLE_AMU_AUXILIARY_COUNTERS
56 CASSERT((sizeof(amu_ctxs_[0].group1_enable) * CHAR_BIT) <= AMU_GROUP1_MAX_COUNTERS,
57 	amu_ctx_group1_enable_cannot_represent_all_group1_counters);
58 #endif
59 
read_id_aa64pfr0_el1_amu(void)60 static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void)
61 {
62 	return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) &
63 		ID_AA64PFR0_AMU_MASK;
64 }
65 
read_hcr_el2_amvoffen(void)66 static inline __unused uint64_t read_hcr_el2_amvoffen(void)
67 {
68 	return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
69 		HCR_AMVOFFEN_SHIFT;
70 }
71 
write_cptr_el2_tam(uint64_t value)72 static inline __unused void write_cptr_el2_tam(uint64_t value)
73 {
74 	write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
75 		((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
76 }
77 
ctx_write_cptr_el3_tam(cpu_context_t * ctx,uint64_t tam)78 static inline __unused void ctx_write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam)
79 {
80 	uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3);
81 
82 	value &= ~TAM_BIT;
83 	value |= (tam << TAM_SHIFT) & TAM_BIT;
84 
85 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value);
86 }
87 
ctx_write_scr_el3_amvoffen(cpu_context_t * ctx,uint64_t amvoffen)88 static inline __unused void ctx_write_scr_el3_amvoffen(cpu_context_t *ctx, uint64_t amvoffen)
89 {
90 	uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
91 
92 	value &= ~SCR_AMVOFFEN_BIT;
93 	value |= (amvoffen << SCR_AMVOFFEN_SHIFT) & SCR_AMVOFFEN_BIT;
94 
95 	write_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3, value);
96 }
97 
write_hcr_el2_amvoffen(uint64_t value)98 static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
99 {
100 	write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
101 		((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
102 }
103 
write_amcr_el0_cg1rz(uint64_t value)104 static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
105 {
106 	write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
107 		((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
108 }
109 
read_amcfgr_el0_ncg(void)110 static inline __unused uint64_t read_amcfgr_el0_ncg(void)
111 {
112 	return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
113 		AMCFGR_EL0_NCG_MASK;
114 }
115 
read_amcgcr_el0_cg0nc(void)116 static inline __unused uint64_t read_amcgcr_el0_cg0nc(void)
117 {
118 	return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) &
119 		AMCGCR_EL0_CG0NC_MASK;
120 }
121 
read_amcg1idr_el0_voff(void)122 static inline __unused uint64_t read_amcg1idr_el0_voff(void)
123 {
124 	return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
125 		AMCG1IDR_VOFF_MASK;
126 }
127 
read_amcgcr_el0_cg1nc(void)128 static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
129 {
130 	return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
131 		AMCGCR_EL0_CG1NC_MASK;
132 }
133 
read_amcntenset0_el0_px(void)134 static inline __unused uint64_t read_amcntenset0_el0_px(void)
135 {
136 	return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
137 		AMCNTENSET0_EL0_Pn_MASK;
138 }
139 
read_amcntenset1_el0_px(void)140 static inline __unused uint64_t read_amcntenset1_el0_px(void)
141 {
142 	return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
143 		AMCNTENSET1_EL0_Pn_MASK;
144 }
145 
write_amcntenset0_el0_px(uint64_t px)146 static inline __unused void write_amcntenset0_el0_px(uint64_t px)
147 {
148 	uint64_t value = read_amcntenset0_el0();
149 
150 	value &= ~AMCNTENSET0_EL0_Pn_MASK;
151 	value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;
152 
153 	write_amcntenset0_el0(value);
154 }
155 
write_amcntenset1_el0_px(uint64_t px)156 static inline __unused void write_amcntenset1_el0_px(uint64_t px)
157 {
158 	uint64_t value = read_amcntenset1_el0();
159 
160 	value &= ~AMCNTENSET1_EL0_Pn_MASK;
161 	value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;
162 
163 	write_amcntenset1_el0(value);
164 }
165 
write_amcntenclr0_el0_px(uint64_t px)166 static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
167 {
168 	uint64_t value = read_amcntenclr0_el0();
169 
170 	value &= ~AMCNTENCLR0_EL0_Pn_MASK;
171 	value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;
172 
173 	write_amcntenclr0_el0(value);
174 }
175 
write_amcntenclr1_el0_px(uint64_t px)176 static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
177 {
178 	uint64_t value = read_amcntenclr1_el0();
179 
180 	value &= ~AMCNTENCLR1_EL0_Pn_MASK;
181 	value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;
182 
183 	write_amcntenclr1_el0(value);
184 }
185 
amu_supported(void)186 static __unused bool amu_supported(void)
187 {
188 	return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1;
189 }
190 
amu_v1p1_supported(void)191 static __unused bool amu_v1p1_supported(void)
192 {
193 	return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1;
194 }
195 
196 #if ENABLE_AMU_AUXILIARY_COUNTERS
amu_group1_supported(void)197 static __unused bool amu_group1_supported(void)
198 {
199 	return read_amcfgr_el0_ncg() > 0U;
200 }
201 #endif
202 
203 /*
204  * Enable counters. This function is meant to be invoked by the context
205  * management library before exiting from EL3.
206  */
amu_enable(bool el2_unused,cpu_context_t * ctx)207 void amu_enable(bool el2_unused, cpu_context_t *ctx)
208 {
209 	uint64_t id_aa64pfr0_el1_amu;		/* AMU version */
210 
211 	uint64_t amcfgr_el0_ncg;		/* Number of counter groups */
212 	uint64_t amcgcr_el0_cg0nc;		/* Number of group 0 counters */
213 
214 	uint64_t amcntenset0_el0_px = 0x0;	/* Group 0 enable mask */
215 	uint64_t amcntenset1_el0_px = 0x0;	/* Group 1 enable mask */
216 
217 	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
218 	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
219 		/*
220 		 * If the AMU is unsupported, nothing needs to be done.
221 		 */
222 
223 		return;
224 	}
225 
226 	if (el2_unused) {
227 		/*
228 		 * CPTR_EL2.TAM: Set to zero so any accesses to the Activity
229 		 * Monitor registers do not trap to EL2.
230 		 */
231 		write_cptr_el2_tam(0U);
232 	}
233 
234 	/*
235 	 * Retrieve and update the CPTR_EL3 value from the context mentioned
236 	 * in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to
237 	 * the Activity Monitor registers do not trap to EL3.
238 	 */
239 	ctx_write_cptr_el3_tam(ctx, 0U);
240 
241 	/*
242 	 * Retrieve the number of architected counters. All of these counters
243 	 * are enabled by default.
244 	 */
245 
246 	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
247 	amcntenset0_el0_px = (UINT64_C(1) << (amcgcr_el0_cg0nc)) - 1U;
248 
249 	assert(amcgcr_el0_cg0nc <= AMU_AMCGCR_CG0NC_MAX);
250 
251 	/*
252 	 * The platform may opt to enable specific auxiliary counters. This can
253 	 * be done via the common FCONF getter, or via the platform-implemented
254 	 * function.
255 	 */
256 
257 #if ENABLE_AMU_AUXILIARY_COUNTERS
258 	const struct amu_topology *topology;
259 
260 #if ENABLE_AMU_FCONF
261 	topology = FCONF_GET_PROPERTY(amu, config, topology);
262 #else
263 	topology = plat_amu_topology();
264 #endif /* ENABLE_AMU_FCONF */
265 
266 	if (topology != NULL) {
267 		unsigned int core_pos = plat_my_core_pos();
268 
269 		amcntenset1_el0_px = topology->cores[core_pos].enable;
270 	} else {
271 		ERROR("AMU: failed to generate AMU topology\n");
272 	}
273 #endif /* ENABLE_AMU_AUXILIARY_COUNTERS */
274 
275 	/*
276 	 * Enable the requested counters.
277 	 */
278 
279 	write_amcntenset0_el0_px(amcntenset0_el0_px);
280 
281 	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
282 	if (amcfgr_el0_ncg > 0U) {
283 		write_amcntenset1_el0_px(amcntenset1_el0_px);
284 
285 #if !ENABLE_AMU_AUXILIARY_COUNTERS
286 		VERBOSE("AMU: auxiliary counters detected but support is disabled\n");
287 #endif
288 	}
289 
290 	/* Initialize FEAT_AMUv1p1 features if present. */
291 	if (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) {
292 		if (el2_unused) {
293 			/*
294 			 * Make sure virtual offsets are disabled if EL2 not
295 			 * used.
296 			 */
297 			write_hcr_el2_amvoffen(0U);
298 		} else {
299 			/*
300 			 * Virtual offset registers are only accessible from EL3
301 			 * and EL2, when clear, this bit traps accesses from EL2
302 			 * so we set it to 1 when EL2 is present.
303 			 */
304 			ctx_write_scr_el3_amvoffen(ctx, 1U);
305 		}
306 
307 #if AMU_RESTRICT_COUNTERS
308 		/*
309 		 * FEAT_AMUv1p1 adds a register field to restrict access to
310 		 * group 1 counters at all but the highest implemented EL. This
311 		 * is controlled with the `AMU_RESTRICT_COUNTERS` compile time
312 		 * flag, when set, system register reads at lower ELs return
313 		 * zero. Reads from the memory mapped view are unaffected.
314 		 */
315 		VERBOSE("AMU group 1 counter access restricted.\n");
316 		write_amcr_el0_cg1rz(1U);
317 #else
318 		write_amcr_el0_cg1rz(0U);
319 #endif
320 	}
321 
322 #if ENABLE_MPMM
323 	mpmm_enable();
324 #endif
325 }
326 
327 /* Read the group 0 counter identified by the given `idx`. */
amu_group0_cnt_read(unsigned int idx)328 static uint64_t amu_group0_cnt_read(unsigned int idx)
329 {
330 	assert(amu_supported());
331 	assert(idx < read_amcgcr_el0_cg0nc());
332 
333 	return amu_group0_cnt_read_internal(idx);
334 }
335 
336 /* Write the group 0 counter identified by the given `idx` with `val` */
amu_group0_cnt_write(unsigned int idx,uint64_t val)337 static void amu_group0_cnt_write(unsigned  int idx, uint64_t val)
338 {
339 	assert(amu_supported());
340 	assert(idx < read_amcgcr_el0_cg0nc());
341 
342 	amu_group0_cnt_write_internal(idx, val);
343 	isb();
344 }
345 
346 /*
347  * Unlike with auxiliary counters, we cannot detect at runtime whether an
348  * architected counter supports a virtual offset. These are instead fixed
349  * according to FEAT_AMUv1p1, but this switch will need to be updated if later
350  * revisions of FEAT_AMU add additional architected counters.
351  */
amu_group0_voffset_supported(uint64_t idx)352 static bool amu_group0_voffset_supported(uint64_t idx)
353 {
354 	switch (idx) {
355 	case 0U:
356 	case 2U:
357 	case 3U:
358 		return true;
359 
360 	case 1U:
361 		return false;
362 
363 	default:
364 		ERROR("AMU: can't set up virtual offset for unknown "
365 		      "architected counter %" PRIu64 "!\n", idx);
366 
367 		panic();
368 	}
369 }
370 
371 /*
372  * Read the group 0 offset register for a given index. Index must be 0, 2,
373  * or 3, the register for 1 does not exist.
374  *
375  * Using this function requires FEAT_AMUv1p1 support.
376  */
amu_group0_voffset_read(unsigned int idx)377 static uint64_t amu_group0_voffset_read(unsigned int idx)
378 {
379 	assert(amu_v1p1_supported());
380 	assert(idx < read_amcgcr_el0_cg0nc());
381 	assert(idx != 1U);
382 
383 	return amu_group0_voffset_read_internal(idx);
384 }
385 
386 /*
387  * Write the group 0 offset register for a given index. Index must be 0, 2, or
388  * 3, the register for 1 does not exist.
389  *
390  * Using this function requires FEAT_AMUv1p1 support.
391  */
amu_group0_voffset_write(unsigned int idx,uint64_t val)392 static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
393 {
394 	assert(amu_v1p1_supported());
395 	assert(idx < read_amcgcr_el0_cg0nc());
396 	assert(idx != 1U);
397 
398 	amu_group0_voffset_write_internal(idx, val);
399 	isb();
400 }
401 
402 #if ENABLE_AMU_AUXILIARY_COUNTERS
403 /* Read the group 1 counter identified by the given `idx` */
amu_group1_cnt_read(unsigned int idx)404 static uint64_t amu_group1_cnt_read(unsigned int idx)
405 {
406 	assert(amu_supported());
407 	assert(amu_group1_supported());
408 	assert(idx < read_amcgcr_el0_cg1nc());
409 
410 	return amu_group1_cnt_read_internal(idx);
411 }
412 
413 /* Write the group 1 counter identified by the given `idx` with `val` */
amu_group1_cnt_write(unsigned int idx,uint64_t val)414 static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
415 {
416 	assert(amu_supported());
417 	assert(amu_group1_supported());
418 	assert(idx < read_amcgcr_el0_cg1nc());
419 
420 	amu_group1_cnt_write_internal(idx, val);
421 	isb();
422 }
423 
424 /*
425  * Read the group 1 offset register for a given index.
426  *
427  * Using this function requires FEAT_AMUv1p1 support.
428  */
amu_group1_voffset_read(unsigned int idx)429 static uint64_t amu_group1_voffset_read(unsigned int idx)
430 {
431 	assert(amu_v1p1_supported());
432 	assert(amu_group1_supported());
433 	assert(idx < read_amcgcr_el0_cg1nc());
434 	assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
435 
436 	return amu_group1_voffset_read_internal(idx);
437 }
438 
439 /*
440  * Write the group 1 offset register for a given index.
441  *
442  * Using this function requires FEAT_AMUv1p1 support.
443  */
amu_group1_voffset_write(unsigned int idx,uint64_t val)444 static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
445 {
446 	assert(amu_v1p1_supported());
447 	assert(amu_group1_supported());
448 	assert(idx < read_amcgcr_el0_cg1nc());
449 	assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
450 
451 	amu_group1_voffset_write_internal(idx, val);
452 	isb();
453 }
454 #endif
455 
amu_context_save(const void * arg)456 static void *amu_context_save(const void *arg)
457 {
458 	uint64_t i, j;
459 
460 	unsigned int core_pos;
461 	struct amu_ctx *ctx;
462 
463 	uint64_t id_aa64pfr0_el1_amu;	/* AMU version */
464 	uint64_t hcr_el2_amvoffen;	/* AMU virtual offsets enabled */
465 	uint64_t amcgcr_el0_cg0nc;	/* Number of group 0 counters */
466 
467 #if ENABLE_AMU_AUXILIARY_COUNTERS
468 	uint64_t amcg1idr_el0_voff;	/* Auxiliary counters with virtual offsets */
469 	uint64_t amcfgr_el0_ncg;	/* Number of counter groups */
470 	uint64_t amcgcr_el0_cg1nc;	/* Number of group 1 counters */
471 #endif
472 
473 	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
474 	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
475 		return (void *)0;
476 	}
477 
478 	core_pos = plat_my_core_pos();
479 	ctx = &amu_ctxs_[core_pos];
480 
481 	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
482 	hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
483 		read_hcr_el2_amvoffen() : 0U;
484 
485 #if ENABLE_AMU_AUXILIARY_COUNTERS
486 	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
487 	amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
488 	amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
489 #endif
490 
491 	/*
492 	 * Disable all AMU counters.
493 	 */
494 
495 	ctx->group0_enable = read_amcntenset0_el0_px();
496 	write_amcntenclr0_el0_px(ctx->group0_enable);
497 
498 #if ENABLE_AMU_AUXILIARY_COUNTERS
499 	if (amcfgr_el0_ncg > 0U) {
500 		ctx->group1_enable = read_amcntenset1_el0_px();
501 		write_amcntenclr1_el0_px(ctx->group1_enable);
502 	}
503 #endif
504 
505 	/*
506 	 * Save the counters to the local context.
507 	 */
508 
509 	isb(); /* Ensure counters have been stopped */
510 
511 	for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
512 		ctx->group0_cnts[i] = amu_group0_cnt_read(i);
513 	}
514 
515 #if ENABLE_AMU_AUXILIARY_COUNTERS
516 	for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
517 		ctx->group1_cnts[i] = amu_group1_cnt_read(i);
518 	}
519 #endif
520 
521 	/*
522 	 * Save virtual offsets for counters that offer them.
523 	 */
524 
525 	if (hcr_el2_amvoffen != 0U) {
526 		for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
527 			if (!amu_group0_voffset_supported(i)) {
528 				continue; /* No virtual offset */
529 			}
530 
531 			ctx->group0_voffsets[j++] = amu_group0_voffset_read(i);
532 		}
533 
534 #if ENABLE_AMU_AUXILIARY_COUNTERS
535 		for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
536 			if ((amcg1idr_el0_voff >> i) & 1U) {
537 				continue; /* No virtual offset */
538 			}
539 
540 			ctx->group1_voffsets[j++] = amu_group1_voffset_read(i);
541 		}
542 #endif
543 	}
544 
545 	return (void *)0;
546 }
547 
amu_context_restore(const void * arg)548 static void *amu_context_restore(const void *arg)
549 {
550 	uint64_t i, j;
551 
552 	unsigned int core_pos;
553 	struct amu_ctx *ctx;
554 
555 	uint64_t id_aa64pfr0_el1_amu;	/* AMU version */
556 
557 	uint64_t hcr_el2_amvoffen;	/* AMU virtual offsets enabled */
558 
559 	uint64_t amcfgr_el0_ncg;	/* Number of counter groups */
560 	uint64_t amcgcr_el0_cg0nc;	/* Number of group 0 counters */
561 
562 #if ENABLE_AMU_AUXILIARY_COUNTERS
563 	uint64_t amcgcr_el0_cg1nc;	/* Number of group 1 counters */
564 	uint64_t amcg1idr_el0_voff;	/* Auxiliary counters with virtual offsets */
565 #endif
566 
567 	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
568 	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
569 		return (void *)0;
570 	}
571 
572 	core_pos = plat_my_core_pos();
573 	ctx = &amu_ctxs_[core_pos];
574 
575 	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
576 	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
577 
578 	hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
579 		read_hcr_el2_amvoffen() : 0U;
580 
581 #if ENABLE_AMU_AUXILIARY_COUNTERS
582 	amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
583 	amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
584 #endif
585 
586 	/*
587 	 * Sanity check that all counters were disabled when the context was
588 	 * previously saved.
589 	 */
590 
591 	assert(read_amcntenset0_el0_px() == 0U);
592 
593 	if (amcfgr_el0_ncg > 0U) {
594 		assert(read_amcntenset1_el0_px() == 0U);
595 	}
596 
597 	/*
598 	 * Restore the counter values from the local context.
599 	 */
600 
601 	for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
602 		amu_group0_cnt_write(i, ctx->group0_cnts[i]);
603 	}
604 
605 #if ENABLE_AMU_AUXILIARY_COUNTERS
606 	for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
607 		amu_group1_cnt_write(i, ctx->group1_cnts[i]);
608 	}
609 #endif
610 
611 	/*
612 	 * Restore virtual offsets for counters that offer them.
613 	 */
614 
615 	if (hcr_el2_amvoffen != 0U) {
616 		for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
617 			if (!amu_group0_voffset_supported(i)) {
618 				continue; /* No virtual offset */
619 			}
620 
621 			amu_group0_voffset_write(i, ctx->group0_voffsets[j++]);
622 		}
623 
624 #if ENABLE_AMU_AUXILIARY_COUNTERS
625 		for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
626 			if ((amcg1idr_el0_voff >> i) & 1U) {
627 				continue; /* No virtual offset */
628 			}
629 
630 			amu_group1_voffset_write(i, ctx->group1_voffsets[j++]);
631 		}
632 #endif
633 	}
634 
635 	/*
636 	 * Re-enable counters that were disabled during context save.
637 	 */
638 
639 	write_amcntenset0_el0_px(ctx->group0_enable);
640 
641 #if ENABLE_AMU_AUXILIARY_COUNTERS
642 	if (amcfgr_el0_ncg > 0) {
643 		write_amcntenset1_el0_px(ctx->group1_enable);
644 	}
645 #endif
646 
647 #if ENABLE_MPMM
648 	mpmm_enable();
649 #endif
650 
651 	return (void *)0;
652 }
653 
654 SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
655 SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);
656