1/* 2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <arch.h> 8#include <asm_macros.S> 9#include <common/bl_common.h> 10#include <cortex_a53.h> 11#include <cortex_a57.h> 12#include <cortex_a72.h> 13#include <cpu_macros.S> 14#include <platform_def.h> 15 16 .globl plat_reset_handler 17 .globl plat_arm_calc_core_pos 18#if JUNO_AARCH32_EL3_RUNTIME 19 .globl plat_get_my_entrypoint 20 .globl juno_reset_to_aarch32_state 21#endif 22 23#define JUNO_REVISION(rev) REV_JUNO_R##rev 24#define JUNO_HANDLER(rev) plat_reset_handler_juno_r##rev 25#define JUMP_TO_HANDLER_IF_JUNO_R(revision) \ 26 jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision) 27 28 /* -------------------------------------------------------------------- 29 * Helper macro to jump to the given handler if the board revision 30 * matches. 31 * Expects the Juno board revision in x0. 32 * -------------------------------------------------------------------- 33 */ 34 .macro jump_to_handler _revision, _handler 35 cmp x0, #\_revision 36 b.eq \_handler 37 .endm 38 39 /* -------------------------------------------------------------------- 40 * Platform reset handler for Juno R0. 41 * 42 * Juno R0 has the following topology: 43 * - Quad core Cortex-A53 processor cluster; 44 * - Dual core Cortex-A57 processor cluster. 45 * 46 * This handler does the following: 47 * - Implement workaround for defect id 831273 by enabling an event 48 * stream every 65536 cycles. 49 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 50 * - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 51 * -------------------------------------------------------------------- 52 */ 53func JUNO_HANDLER(0) 54 /* -------------------------------------------------------------------- 55 * Enable the event stream every 65536 cycles 56 * -------------------------------------------------------------------- 57 */ 58 mov x0, #(0xf << EVNTI_SHIFT) 59 orr x0, x0, #EVNTEN_BIT 60 msr CNTKCTL_EL1, x0 61 62 /* -------------------------------------------------------------------- 63 * Nothing else to do on Cortex-A53. 64 * -------------------------------------------------------------------- 65 */ 66 jump_if_cpu_midr CORTEX_A53_MIDR, 1f 67 68 /* -------------------------------------------------------------------- 69 * Cortex-A57 specific settings 70 * -------------------------------------------------------------------- 71 */ 72 mov x0, #((CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \ 73 (CORTEX_A57_L2_TAG_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_TAG_RAM_LATENCY_SHIFT)) 74 msr CORTEX_A57_L2CTLR_EL1, x0 751: 76 isb 77 ret 78endfunc JUNO_HANDLER(0) 79 80 /* -------------------------------------------------------------------- 81 * Platform reset handler for Juno R1. 82 * 83 * Juno R1 has the following topology: 84 * - Quad core Cortex-A53 processor cluster; 85 * - Dual core Cortex-A57 processor cluster. 86 * 87 * This handler does the following: 88 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57 89 * 90 * Note that: 91 * - The default value for the L2 Tag RAM latency for Cortex-A57 is 92 * suitable. 93 * - Defect #831273 doesn't affect Juno R1. 94 * -------------------------------------------------------------------- 95 */ 96func JUNO_HANDLER(1) 97 /* -------------------------------------------------------------------- 98 * Nothing to do on Cortex-A53. 99 * -------------------------------------------------------------------- 100 */ 101 jump_if_cpu_midr CORTEX_A57_MIDR, A57 102 ret 103 104A57: 105 /* -------------------------------------------------------------------- 106 * Cortex-A57 specific settings 107 * -------------------------------------------------------------------- 108 */ 109 mov x0, #(CORTEX_A57_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A57_L2CTLR_DATA_RAM_LATENCY_SHIFT) 110 msr CORTEX_A57_L2CTLR_EL1, x0 111 isb 112 ret 113endfunc JUNO_HANDLER(1) 114 115 /* -------------------------------------------------------------------- 116 * Platform reset handler for Juno R2. 117 * 118 * Juno R2 has the following topology: 119 * - Quad core Cortex-A53 processor cluster; 120 * - Dual core Cortex-A72 processor cluster. 121 * 122 * This handler does the following: 123 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72 124 * - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72 125 * 126 * Note that: 127 * - Defect #831273 doesn't affect Juno R2. 128 * -------------------------------------------------------------------- 129 */ 130func JUNO_HANDLER(2) 131 /* -------------------------------------------------------------------- 132 * Nothing to do on Cortex-A53. 133 * -------------------------------------------------------------------- 134 */ 135 jump_if_cpu_midr CORTEX_A72_MIDR, A72 136 ret 137 138A72: 139 /* -------------------------------------------------------------------- 140 * Cortex-A72 specific settings 141 * -------------------------------------------------------------------- 142 */ 143 mov x0, #((CORTEX_A72_L2_DATA_RAM_LATENCY_3_CYCLES << CORTEX_A72_L2CTLR_DATA_RAM_LATENCY_SHIFT) | \ 144 (CORTEX_A72_L2_TAG_RAM_LATENCY_2_CYCLES << CORTEX_A72_L2CTLR_TAG_RAM_LATENCY_SHIFT)) 145 msr CORTEX_A57_L2CTLR_EL1, x0 146 isb 147 ret 148endfunc JUNO_HANDLER(2) 149 150 /* -------------------------------------------------------------------- 151 * void plat_reset_handler(void); 152 * 153 * Determine the Juno board revision and call the appropriate reset 154 * handler. 155 * -------------------------------------------------------------------- 156 */ 157func plat_reset_handler 158 /* Read the V2M SYS_ID register */ 159 mov_imm x0, (V2M_SYSREGS_BASE + V2M_SYS_ID) 160 ldr w1, [x0] 161 /* Extract board revision from the SYS_ID */ 162 ubfx x0, x1, #V2M_SYS_ID_REV_SHIFT, #4 163 164 JUMP_TO_HANDLER_IF_JUNO_R(0) 165 JUMP_TO_HANDLER_IF_JUNO_R(1) 166 JUMP_TO_HANDLER_IF_JUNO_R(2) 167 168 /* Board revision is not supported */ 169 no_ret plat_panic_handler 170 171endfunc plat_reset_handler 172 173 /* ----------------------------------------------------- 174 * void juno_do_reset_to_aarch32_state(void); 175 * 176 * Request warm reset to AArch32 mode. 177 * ----------------------------------------------------- 178 */ 179func juno_do_reset_to_aarch32_state 180 mov x0, #RMR_EL3_RR_BIT 181 dsb sy 182 msr rmr_el3, x0 183 isb 184 wfi 185 b plat_panic_handler 186endfunc juno_do_reset_to_aarch32_state 187 188 /* ----------------------------------------------------- 189 * unsigned int plat_arm_calc_core_pos(u_register_t mpidr) 190 * Helper function to calculate the core position. 191 * ----------------------------------------------------- 192 */ 193func plat_arm_calc_core_pos 194 b css_calc_core_pos_swap_cluster 195endfunc plat_arm_calc_core_pos 196 197#if JUNO_AARCH32_EL3_RUNTIME 198 /* --------------------------------------------------------------------- 199 * uintptr_t plat_get_my_entrypoint (void); 200 * 201 * Main job of this routine is to distinguish between a cold and a warm 202 * boot. On JUNO platform, this distinction is based on the contents of 203 * the Trusted Mailbox. It is initialised to zero by the SCP before the 204 * AP cores are released from reset. Therefore, a zero mailbox means 205 * it's a cold reset. If it is a warm boot then a request to reset to 206 * AArch32 state is issued. This is the only way to reset to AArch32 207 * in EL3 on Juno. A trampoline located at the high vector address 208 * has already been prepared by BL1. 209 * 210 * This functions returns the contents of the mailbox, i.e.: 211 * - 0 for a cold boot; 212 * - request warm reset in AArch32 state for warm boot case; 213 * --------------------------------------------------------------------- 214 */ 215func plat_get_my_entrypoint 216 mov_imm x0, PLAT_ARM_TRUSTED_MAILBOX_BASE 217 ldr x0, [x0] 218 cbz x0, return 219 b juno_do_reset_to_aarch32_state 220return: 221 ret 222endfunc plat_get_my_entrypoint 223 224/* 225 * Emit a "movw r0, #imm16" which moves the lower 226 * 16 bits of `_val` into r0. 227 */ 228.macro emit_movw _reg_d, _val 229 mov_imm \_reg_d, (0xe3000000 | \ 230 ((\_val & 0xfff) | \ 231 ((\_val & 0xf000) << 4))) 232.endm 233 234/* 235 * Emit a "movt r0, #imm16" which moves the upper 236 * 16 bits of `_val` into r0. 237 */ 238.macro emit_movt _reg_d, _val 239 mov_imm \_reg_d, (0xe3400000 | \ 240 (((\_val & 0x0fff0000) >> 16) | \ 241 ((\_val & 0xf0000000) >> 12))) 242.endm 243 244/* 245 * This function writes the trampoline code at HI-VEC (0xFFFF0000) 246 * address which loads r0 with the entrypoint address for 247 * BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset 248 * to AArch32 mode is then requested by writing into RMR_EL3. 249 */ 250func juno_reset_to_aarch32_state 251 /* 252 * Invalidate all caches before the warm reset to AArch32 state. 253 * This is required on the Juno AArch32 boot flow because the L2 254 * unified cache may contain code and data from when the processor 255 * was still executing in AArch64 state. This code only runs on 256 * the primary core, all other cores are powered down. 257 */ 258 mov x0, #DCISW 259 bl dcsw_op_all 260 261 emit_movw w0, BL32_BASE 262 emit_movt w1, BL32_BASE 263 /* opcode "bx r0" to branch using r0 in AArch32 mode */ 264 mov_imm w2, 0xe12fff10 265 266 /* Write the above opcodes at HI-VECTOR location */ 267 mov_imm x3, HI_VECTOR_BASE 268 str w0, [x3], #4 269 str w1, [x3], #4 270 str w2, [x3] 271 272 b juno_do_reset_to_aarch32_state 273endfunc juno_reset_to_aarch32_state 274 275#endif /* JUNO_AARCH32_EL3_RUNTIME */ 276