1// <experimental/io_service> -*- C++ -*- 2 3// Copyright (C) 2015-2020 Free Software Foundation, Inc. 4// 5// This file is part of the GNU ISO C++ Library. This library is free 6// software; you can redistribute it and/or modify it under the 7// terms of the GNU General Public License as published by the 8// Free Software Foundation; either version 3, or (at your option) 9// any later version. 10 11// This library is distributed in the hope that it will be useful, 12// but WITHOUT ANY WARRANTY; without even the implied warranty of 13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14// GNU General Public License for more details. 15 16// Under Section 7 of GPL version 3, you are granted additional 17// permissions described in the GCC Runtime Library Exception, version 18// 3.1, as published by the Free Software Foundation. 19 20// You should have received a copy of the GNU General Public License and 21// a copy of the GCC Runtime Library Exception along with this program; 22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23// <http://www.gnu.org/licenses/>. 24 25/** @file experimental/io_context 26 * This is a TS C++ Library header. 27 * @ingroup networking-ts 28 */ 29 30#ifndef _GLIBCXX_EXPERIMENTAL_IO_SERVICE 31#define _GLIBCXX_EXPERIMENTAL_IO_SERVICE 1 32 33#pragma GCC system_header 34 35#if __cplusplus >= 201402L 36 37#include <atomic> 38#include <chrono> 39#include <forward_list> 40#include <functional> 41#include <system_error> 42#include <thread> 43#include <experimental/netfwd> 44#include <experimental/executor> 45#if _GLIBCXX_HAVE_UNISTD_H 46# include <unistd.h> 47#endif 48#ifdef _GLIBCXX_HAVE_POLL_H 49# include <poll.h> 50#endif 51#ifdef _GLIBCXX_HAVE_FCNTL_H 52# include <fcntl.h> 53#endif 54 55namespace std _GLIBCXX_VISIBILITY(default) 56{ 57_GLIBCXX_BEGIN_NAMESPACE_VERSION 58namespace experimental 59{ 60namespace net 61{ 62inline namespace v1 63{ 64 65 /** @addtogroup networking-ts 66 * @{ 67 */ 68 69 class __socket_impl; 70 71 /// An ExecutionContext for I/O operations. 72 class io_context : public execution_context 73 { 74 public: 75 // types: 76 77 /// An executor for an io_context. 78 class executor_type 79 { 80 public: 81 // construct / copy / destroy: 82 83 executor_type(const executor_type& __other) noexcept = default; 84 executor_type(executor_type&& __other) noexcept = default; 85 86 executor_type& operator=(const executor_type& __other) noexcept = default; 87 executor_type& operator=(executor_type&& __other) noexcept = default; 88 89 // executor operations: 90 91 bool running_in_this_thread() const noexcept 92 { 93 lock_guard<mutex> __lock(_M_ctx->_M_mtx); 94 auto __end = _M_ctx->_M_call_stack.end(); 95 return std::find(_M_ctx->_M_call_stack.begin(), __end, 96 this_thread::get_id()) != __end; 97 } 98 99 io_context& context() const noexcept { return *_M_ctx; } 100 101 void on_work_started() const noexcept { ++_M_ctx->_M_work_count; } 102 void on_work_finished() const noexcept { --_M_ctx->_M_work_count; } 103 104 template<typename _Func, typename _ProtoAllocator> 105 void 106 dispatch(_Func&& __f, const _ProtoAllocator& __a) const 107 { 108 if (running_in_this_thread()) 109 decay_t<_Func>{std::forward<_Func>(__f)}(); 110 else 111 post(std::forward<_Func>(__f), __a); 112 } 113 114 template<typename _Func, typename _ProtoAllocator> 115 void 116 post(_Func&& __f, const _ProtoAllocator& __a) const 117 { 118 lock_guard<mutex> __lock(_M_ctx->_M_mtx); 119 // TODO (re-use functionality in system_context) 120 _M_ctx->_M_reactor._M_notify(); 121 } 122 123 template<typename _Func, typename _ProtoAllocator> 124 void 125 defer(_Func&& __f, const _ProtoAllocator& __a) const 126 { post(std::forward<_Func>(__f), __a); } 127 128 private: 129 friend io_context; 130 131 explicit 132 executor_type(io_context& __ctx) : _M_ctx(std::addressof(__ctx)) { } 133 134 io_context* _M_ctx; 135 }; 136 137 using count_type = size_t; 138 139 // construct / copy / destroy: 140 141 io_context() : _M_work_count(0) { } 142 143 explicit 144 io_context(int __concurrency_hint) : _M_work_count(0) { } 145 146 io_context(const io_context&) = delete; 147 io_context& operator=(const io_context&) = delete; 148 149 // io_context operations: 150 151 executor_type get_executor() noexcept { return executor_type(*this); } 152 153 count_type 154 run() 155 { 156 count_type __n = 0; 157 while (run_one()) 158 if (__n != numeric_limits<count_type>::max()) 159 ++__n; 160 return __n; 161 } 162 163 template<typename _Rep, typename _Period> 164 count_type 165 run_for(const chrono::duration<_Rep, _Period>& __rel_time) 166 { return run_until(chrono::steady_clock::now() + __rel_time); } 167 168 template<typename _Clock, typename _Duration> 169 count_type 170 run_until(const chrono::time_point<_Clock, _Duration>& __abs_time) 171 { 172 count_type __n = 0; 173 while (run_one_until(__abs_time)) 174 if (__n != numeric_limits<count_type>::max()) 175 ++__n; 176 return __n; 177 } 178 179 count_type 180 run_one() 181 { return _M_do_one(chrono::milliseconds{-1}); } 182 183 template<typename _Rep, typename _Period> 184 count_type 185 run_one_for(const chrono::duration<_Rep, _Period>& __rel_time) 186 { return run_one_until(chrono::steady_clock::now() + __rel_time); } 187 188 template<typename _Clock, typename _Duration> 189 count_type 190 run_one_until(const chrono::time_point<_Clock, _Duration>& __abs_time) 191 { 192 auto __now = _Clock::now(); 193 while (__now < __abs_time) 194 { 195 using namespace std::chrono; 196 auto __ms = duration_cast<milliseconds>(__abs_time - __now); 197 if (_M_do_one(__ms)) 198 return 1; 199 __now = _Clock::now(); 200 } 201 return 0; 202 } 203 204 count_type 205 poll() 206 { 207 count_type __n = 0; 208 while (poll_one()) 209 if (__n != numeric_limits<count_type>::max()) 210 ++__n; 211 return __n; 212 } 213 214 count_type 215 poll_one() 216 { return _M_do_one(chrono::milliseconds{0}); } 217 218 void stop() 219 { 220 lock_guard<mutex> __lock(_M_mtx); 221 _M_stopped = true; 222 _M_reactor._M_notify(); 223 } 224 225 bool stopped() const noexcept 226 { 227 lock_guard<mutex> __lock(_M_mtx); 228 return _M_stopped; 229 } 230 231 void restart() 232 { 233 _M_stopped = false; 234 } 235 236 private: 237 238 template<typename _Clock, typename _WaitTraits> 239 friend class basic_waitable_timer; 240 241 friend __socket_impl; 242 243 template<typename _Protocol> 244 friend class __basic_socket_impl; 245 246 template<typename _Protocol> 247 friend class basic_socket; 248 249 template<typename _Protocol> 250 friend class basic_datagram_socket; 251 252 template<typename _Protocol> 253 friend class basic_stream_socket; 254 255 template<typename _Protocol> 256 friend class basic_socket_acceptor; 257 258 count_type 259 _M_outstanding_work() const 260 { return _M_work_count + !_M_ops.empty(); } 261 262 struct __timer_queue_base : execution_context::service 263 { 264 // return milliseconds until next timer expires, or milliseconds::max() 265 virtual chrono::milliseconds _M_next() const = 0; 266 virtual bool run_one() = 0; 267 268 protected: 269 explicit 270 __timer_queue_base(execution_context& __ctx) : service(__ctx) 271 { 272 auto& __ioc = static_cast<io_context&>(__ctx); 273 lock_guard<mutex> __lock(__ioc._M_mtx); 274 __ioc._M_timers.push_back(this); 275 } 276 277 mutable mutex _M_qmtx; 278 }; 279 280 template<typename _Timer, typename _Key = typename _Timer::_Key> 281 struct __timer_queue : __timer_queue_base 282 { 283 using key_type = __timer_queue; 284 285 explicit 286 __timer_queue(execution_context& __ctx) : __timer_queue_base(__ctx) 287 { } 288 289 void shutdown() noexcept { } 290 291 io_context& context() noexcept 292 { return static_cast<io_context&>(service::context()); } 293 294 // Start an asynchronous wait. 295 void 296 push(const _Timer& __t, function<void(error_code)> __h) 297 { 298 context().get_executor().on_work_started(); 299 lock_guard<mutex> __lock(_M_qmtx); 300 _M_queue.emplace(__t, _M_next_id++, std::move(__h)); 301 // no need to notify reactor unless this timer went to the front? 302 } 303 304 // Cancel all outstanding waits for __t 305 size_t 306 cancel(const _Timer& __t) 307 { 308 lock_guard<mutex> __lock(_M_qmtx); 309 size_t __count = 0; 310 auto __last = _M_queue.end(); 311 for (auto __it = _M_queue.begin(), __end = __last; __it != __end; 312 ++__it) 313 { 314 if (__it->_M_key == __t._M_key.get()) 315 { 316 __it->cancel(); 317 __last = __it; 318 ++__count; 319 } 320 } 321 if (__count) 322 _M_queue._M_sort_to(__last); 323 return __count; 324 } 325 326 // Cancel oldest outstanding wait for __t 327 bool 328 cancel_one(const _Timer& __t) 329 { 330 lock_guard<mutex> __lock(_M_qmtx); 331 const auto __end = _M_queue.end(); 332 auto __oldest = __end; 333 for (auto __it = _M_queue.begin(); __it != __end; ++__it) 334 if (__it->_M_key == __t._M_key.get()) 335 if (__oldest == __end || __it->_M_id < __oldest->_M_id) 336 __oldest = __it; 337 if (__oldest == __end) 338 return false; 339 __oldest->cancel(); 340 _M_queue._M_sort_to(__oldest); 341 return true; 342 } 343 344 chrono::milliseconds 345 _M_next() const override 346 { 347 typename _Timer::time_point __exp; 348 { 349 lock_guard<mutex> __lock(_M_qmtx); 350 if (_M_queue.empty()) 351 return chrono::milliseconds::max(); // no pending timers 352 if (_M_queue.top()._M_key == nullptr) 353 return chrono::milliseconds::zero(); // cancelled, run now 354 __exp = _M_queue.top()._M_expiry; 355 } 356 auto __dur = _Timer::traits_type::to_wait_duration(__exp); 357 if (__dur < __dur.zero()) 358 __dur = __dur.zero(); 359 return chrono::duration_cast<chrono::milliseconds>(__dur); 360 } 361 362 private: 363 364 bool run_one() override 365 { 366 auto __now = _Timer::clock_type::now(); 367 function<void(error_code)> __h; 368 error_code __ec; 369 { 370 lock_guard<mutex> __lock(_M_qmtx); 371 372 if (_M_queue.top()._M_key == nullptr) // cancelled 373 { 374 __h = std::move(_M_queue.top()._M_h); 375 __ec = std::make_error_code(errc::operation_canceled); 376 _M_queue.pop(); 377 } 378 else if (_M_queue.top()._M_expiry <= _Timer::clock_type::now()) 379 { 380 __h = std::move(_M_queue.top()._M_h); 381 _M_queue.pop(); 382 } 383 } 384 if (__h) 385 { 386 __h(__ec); 387 context().get_executor().on_work_finished(); 388 return true; 389 } 390 return false; 391 } 392 393 using __timer_id_type = uint64_t; 394 395 struct __pending_timer 396 { 397 __pending_timer(const _Timer& __t, uint64_t __id, 398 function<void(error_code)> __h) 399 : _M_expiry(__t.expiry()), _M_key(__t._M_key.get()), _M_id(__id), 400 _M_h(std::move(__h)) 401 { } 402 403 typename _Timer::time_point _M_expiry; 404 _Key* _M_key; 405 __timer_id_type _M_id; 406 function<void(error_code)> _M_h; 407 408 void cancel() { _M_expiry = _M_expiry.min(); _M_key = nullptr; } 409 410 bool 411 operator<(const __pending_timer& __rhs) const 412 { return _M_expiry < __rhs._M_expiry; } 413 }; 414 415 struct __queue : priority_queue<__pending_timer> 416 { 417 using iterator = 418 typename priority_queue<__pending_timer>::container_type::iterator; 419 420 // expose begin/end/erase for direct access to underlying container 421 iterator begin() { return this->c.begin(); } 422 iterator end() { return this->c.end(); } 423 iterator erase(iterator __it) { return this->c.erase(__it); } 424 425 void 426 _M_sort_to(iterator __it) 427 { std::stable_sort(this->c.begin(), ++__it); } 428 }; 429 430 __queue _M_queue; 431 __timer_id_type _M_next_id = 0; 432 }; 433 434 template<typename _Timer, typename _CompletionHandler> 435 void 436 async_wait(const _Timer& __timer, _CompletionHandler&& __h) 437 { 438 auto& __queue = use_service<__timer_queue<_Timer>>(*this); 439 __queue.push(__timer, std::move(__h)); 440 _M_reactor._M_notify(); 441 } 442 443 // Cancel all wait operations initiated by __timer. 444 template<typename _Timer> 445 size_t 446 cancel(const _Timer& __timer) 447 { 448 if (!has_service<__timer_queue<_Timer>>(*this)) 449 return 0; 450 451 auto __c = use_service<__timer_queue<_Timer>>(*this).cancel(__timer); 452 if (__c != 0) 453 _M_reactor._M_notify(); 454 return __c; 455 } 456 457 // Cancel the oldest wait operation initiated by __timer. 458 template<typename _Timer> 459 size_t 460 cancel_one(const _Timer& __timer) 461 { 462 if (!has_service<__timer_queue<_Timer>>(*this)) 463 return 0; 464 465 if (use_service<__timer_queue<_Timer>>(*this).cancel_one(__timer)) 466 { 467 _M_reactor._M_notify(); 468 return 1; 469 } 470 return 0; 471 } 472 473 template<typename _Op> 474 void 475 async_wait(int __fd, int __w, _Op&& __op) 476 { 477 lock_guard<mutex> __lock(_M_mtx); 478 // TODO need push_back, use std::list not std::forward_list 479 auto __tail = _M_ops.before_begin(), __it = _M_ops.begin(); 480 while (__it != _M_ops.end()) 481 { 482 ++__it; 483 ++__tail; 484 } 485 using __type = __async_operation_impl<_Op>; 486 _M_ops.emplace_after(__tail, 487 make_unique<__type>(std::move(__op), __fd, __w)); 488 _M_reactor._M_fd_interest(__fd, __w); 489 } 490 491 void _M_add_fd(int __fd) { _M_reactor._M_add_fd(__fd); } 492 void _M_remove_fd(int __fd) { _M_reactor._M_remove_fd(__fd); } 493 494 void cancel(int __fd, error_code&) 495 { 496 lock_guard<mutex> __lock(_M_mtx); 497 const auto __end = _M_ops.end(); 498 auto __it = _M_ops.begin(); 499 auto __prev = _M_ops.before_begin(); 500 while (__it != __end && (*__it)->_M_is_cancelled()) 501 { 502 ++__it; 503 ++__prev; 504 } 505 auto __cancelled = __prev; 506 while (__it != __end) 507 { 508 if ((*__it)->_M_fd == __fd) 509 { 510 (*__it)->cancel(); 511 ++__it; 512 _M_ops.splice_after(__cancelled, _M_ops, __prev); 513 ++__cancelled; 514 } 515 else 516 { 517 ++__it; 518 ++__prev; 519 } 520 } 521 _M_reactor._M_not_interested(__fd); 522 } 523 524 struct __async_operation 525 { 526 __async_operation(int __fd, int __ev) : _M_fd(__fd), _M_ev(__ev) { } 527 528 virtual ~__async_operation() = default; 529 530 int _M_fd; 531 short _M_ev; 532 533 void cancel() { _M_fd = -1; } 534 bool _M_is_cancelled() const { return _M_fd == -1; } 535 virtual void run(io_context&) = 0; 536 }; 537 538 template<typename _Op> 539 struct __async_operation_impl : __async_operation 540 { 541 __async_operation_impl(_Op&& __op, int __fd, int __ev) 542 : __async_operation{__fd, __ev}, _M_op(std::move(__op)) { } 543 544 _Op _M_op; 545 546 void run(io_context& __ctx) 547 { 548 if (_M_is_cancelled()) 549 _M_op(std::make_error_code(errc::operation_canceled)); 550 else 551 _M_op(error_code{}); 552 } 553 }; 554 555 atomic<count_type> _M_work_count; 556 mutable mutex _M_mtx; 557 queue<function<void()>> _M_op; 558 bool _M_stopped = false; 559 560 struct __monitor 561 { 562 __monitor(io_context& __c) : _M_ctx(__c) 563 { 564 lock_guard<mutex> __lock(_M_ctx._M_mtx); 565 _M_ctx._M_call_stack.push_back(this_thread::get_id()); 566 } 567 568 ~__monitor() 569 { 570 lock_guard<mutex> __lock(_M_ctx._M_mtx); 571 _M_ctx._M_call_stack.pop_back(); 572 if (_M_ctx._M_outstanding_work() == 0) 573 { 574 _M_ctx._M_stopped = true; 575 _M_ctx._M_reactor._M_notify(); 576 } 577 } 578 579 __monitor(__monitor&&) = delete; 580 581 io_context& _M_ctx; 582 }; 583 584 bool 585 _M_do_one(chrono::milliseconds __timeout) 586 { 587 const bool __block = __timeout != chrono::milliseconds::zero(); 588 589 __reactor::__fdvec __fds; 590 591 __monitor __mon{*this}; 592 593 __timer_queue_base* __timerq = nullptr; 594 unique_ptr<__async_operation> __async_op; 595 596 while (true) 597 { 598 if (__timerq) 599 { 600 if (__timerq->run_one()) 601 return true; 602 else 603 __timerq = nullptr; 604 } 605 606 if (__async_op) 607 { 608 __async_op->run(*this); 609 // TODO need to unregister __async_op 610 return true; 611 } 612 613 chrono::milliseconds __ms{0}; 614 615 { 616 lock_guard<mutex> __lock(_M_mtx); 617 618 if (_M_stopped) 619 return false; 620 621 // find first timer with something to do 622 for (auto __q : _M_timers) 623 { 624 auto __next = __q->_M_next(); 625 if (__next == __next.zero()) // ready to run immediately 626 { 627 __timerq = __q; 628 __ms = __next; 629 break; 630 } 631 else if (__next != __next.max() && __block 632 && (__next < __ms || __timerq == nullptr)) 633 { 634 __timerq = __q; 635 __ms = __next; 636 } 637 } 638 639 if (__timerq && __ms == __ms.zero()) 640 continue; // restart loop to run a timer immediately 641 642 if (!_M_ops.empty() && _M_ops.front()->_M_is_cancelled()) 643 { 644 _M_ops.front().swap(__async_op); 645 _M_ops.pop_front(); 646 continue; 647 } 648 649 // TODO run any posted items 650 651 if (__block) 652 { 653 if (__timerq == nullptr) 654 __ms = __timeout; 655 else if (__ms.zero() <= __timeout && __timeout < __ms) 656 __ms = __timeout; 657 else if (__ms.count() > numeric_limits<int>::max()) 658 __ms = chrono::milliseconds{numeric_limits<int>::max()}; 659 } 660 // else __ms == 0 and poll() will return immediately 661 662 } 663 664 auto __res = _M_reactor.wait(__fds, __ms); 665 666 if (__res == __reactor::_S_retry) 667 continue; 668 669 if (__res == __reactor::_S_timeout) 670 { 671 if (__timerq == nullptr) 672 return false; 673 else 674 continue; // timed out, so restart loop and process the timer 675 } 676 677 __timerq = nullptr; 678 679 if (__fds.empty()) // nothing to do 680 return false; 681 682 lock_guard<mutex> __lock(_M_mtx); 683 for (auto __it = _M_ops.begin(), __end = _M_ops.end(), 684 __prev = _M_ops.before_begin(); __it != __end; ++__it, ++__prev) 685 { 686 auto& __op = **__it; 687 auto __pos = std::lower_bound(__fds.begin(), __fds.end(), 688 __op._M_fd, 689 [](const auto& __p, int __fd) { return __p.fd < __fd; }); 690 if (__pos != __fds.end() && __pos->fd == __op._M_fd 691 && __pos->revents & __op._M_ev) 692 { 693 __it->swap(__async_op); 694 _M_ops.erase_after(__prev); 695 break; // restart loop and run op 696 } 697 } 698 } 699 } 700 701 struct __reactor 702 { 703 __reactor() : _M_fds(1) 704 { 705 int __pipe[2]; 706 if (::pipe(__pipe) == -1) 707 __throw_system_error(errno); 708 if (::fcntl(__pipe[0], F_SETFL, O_NONBLOCK) == -1 709 || ::fcntl(__pipe[1], F_SETFL, O_NONBLOCK) == -1) 710 { 711 int __e = errno; 712 ::close(__pipe[0]); 713 ::close(__pipe[1]); 714 __throw_system_error(__e); 715 } 716 _M_fds.back().events = POLLIN; 717 _M_fds.back().fd = __pipe[0]; 718 _M_notify_wr = __pipe[1]; 719 } 720 721 ~__reactor() 722 { 723 ::close(_M_fds.back().fd); 724 ::close(_M_notify_wr); 725 } 726 727 // write a notification byte to the pipe (ignoring errors) 728 void _M_notify() 729 { 730 int __n; 731 do { 732 __n = ::write(_M_notify_wr, "", 1); 733 } while (__n == -1 && errno == EINTR); 734 } 735 736 // read all notification bytes from the pipe 737 void _M_on_notify() 738 { 739 // Drain the pipe. 740 char __buf[64]; 741 ssize_t __n; 742 do { 743 __n = ::read(_M_fds.back().fd, __buf, sizeof(__buf)); 744 } while (__n != -1 || errno == EINTR); 745 } 746 747 void 748 _M_add_fd(int __fd) 749 { 750 auto __pos = _M_lower_bound(__fd); 751 if (__pos->fd == __fd) 752 __throw_system_error((int)errc::invalid_argument); 753 _M_fds.insert(__pos, __fdvec::value_type{})->fd = __fd; 754 _M_notify(); 755 } 756 757 void 758 _M_remove_fd(int __fd) 759 { 760 auto __pos = _M_lower_bound(__fd); 761 if (__pos->fd == __fd) 762 _M_fds.erase(__pos); 763 // else bug! 764 _M_notify(); 765 } 766 767 void 768 _M_fd_interest(int __fd, int __w) 769 { 770 auto __pos = _M_lower_bound(__fd); 771 if (__pos->fd == __fd) 772 __pos->events |= __w; 773 // else bug! 774 _M_notify(); 775 } 776 777 void 778 _M_not_interested(int __fd) 779 { 780 auto __pos = _M_lower_bound(__fd); 781 if (__pos->fd == __fd) 782 __pos->events = 0; 783 _M_notify(); 784 } 785 786# ifdef _GLIBCXX_HAVE_POLL_H 787 using __fdvec = vector<::pollfd>; 788 789 // Find first element p such that !(p.fd < __fd) 790 // N.B. always returns a dereferencable iterator. 791 __fdvec::iterator 792 _M_lower_bound(int __fd) 793 { 794 return std::lower_bound(_M_fds.begin(), _M_fds.end() - 1, 795 __fd, [](const auto& __p, int __fd) { return __p.fd < __fd; }); 796 } 797 798 enum __status { _S_retry, _S_timeout, _S_ok, _S_error }; 799 800 __status 801 wait(__fdvec& __fds, chrono::milliseconds __timeout) 802 { 803 // XXX not thread-safe! 804 __fds = _M_fds; // take snapshot to pass to poll() 805 806 int __res = ::poll(__fds.data(), __fds.size(), __timeout.count()); 807 808 if (__res == -1) 809 { 810 __fds.clear(); 811 if (errno == EINTR) 812 return _S_retry; 813 return _S_error; // XXX ??? 814 } 815 else if (__res == 0) 816 { 817 __fds.clear(); 818 return _S_timeout; 819 } 820 else if (__fds.back().revents != 0) // something changed, restart 821 { 822 __fds.clear(); 823 _M_on_notify(); 824 return _S_retry; 825 } 826 827 auto __part = std::stable_partition(__fds.begin(), __fds.end() - 1, 828 [](const __fdvec::value_type& __p) { return __p.revents != 0; }); 829 __fds.erase(__part, __fds.end()); 830 831 return _S_ok; 832 } 833 834 __fdvec _M_fds; // _M_fds.back() is the read end of the self-pipe 835#endif 836 int _M_notify_wr; // write end of the self-pipe 837 }; 838 839 __reactor _M_reactor; 840 841 vector<__timer_queue_base*> _M_timers; 842 forward_list<unique_ptr<__async_operation>> _M_ops; 843 844 vector<thread::id> _M_call_stack; 845 }; 846 847 inline bool 848 operator==(const io_context::executor_type& __a, 849 const io_context::executor_type& __b) noexcept 850 { 851 // https://github.com/chriskohlhoff/asio-tr2/issues/201 852 using executor_type = io_context::executor_type; 853 return std::addressof(executor_type(__a).context()) 854 == std::addressof(executor_type(__b).context()); 855 } 856 857 inline bool 858 operator!=(const io_context::executor_type& __a, 859 const io_context::executor_type& __b) noexcept 860 { return !(__a == __b); } 861 862 template<> struct is_executor<io_context::executor_type> : true_type {}; 863 864 /// @} 865 866} // namespace v1 867} // namespace net 868} // namespace experimental 869_GLIBCXX_END_NAMESPACE_VERSION 870} // namespace std 871 872#endif // C++14 873 874#endif // _GLIBCXX_EXPERIMENTAL_IO_SERVICE 875