1// <mutex> -*- C++ -*-
2
3// Copyright (C) 2003-2021 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/mutex
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_MUTEX
30#define _GLIBCXX_MUTEX 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <tuple>
39#include <chrono>
40#include <exception>
41#include <type_traits>
42#include <system_error>
43#include <bits/std_mutex.h>
44#include <bits/unique_lock.h>
45#if ! _GTHREAD_USE_MUTEX_TIMEDLOCK
46# include <condition_variable>
47# include <thread>
48#endif
49#include <ext/atomicity.h>     // __gnu_cxx::__is_single_threaded
50
51#if defined _GLIBCXX_HAS_GTHREADS && ! defined _GLIBCXX_HAVE_TLS
52# include <bits/std_function.h>  // std::function
53#endif
54
55namespace std _GLIBCXX_VISIBILITY(default)
56{
57_GLIBCXX_BEGIN_NAMESPACE_VERSION
58
59  /**
60   * @addtogroup mutexes
61   * @{
62   */
63
64#ifdef _GLIBCXX_HAS_GTHREADS
65
66  // Common base class for std::recursive_mutex and std::recursive_timed_mutex
67  class __recursive_mutex_base
68  {
69  protected:
70    typedef __gthread_recursive_mutex_t		__native_type;
71
72    __recursive_mutex_base(const __recursive_mutex_base&) = delete;
73    __recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;
74
75#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
76    __native_type  _M_mutex = __GTHREAD_RECURSIVE_MUTEX_INIT;
77
78    __recursive_mutex_base() = default;
79#else
80    __native_type  _M_mutex;
81
82    __recursive_mutex_base()
83    {
84      // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
85      __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
86    }
87
88    ~__recursive_mutex_base()
89    { __gthread_recursive_mutex_destroy(&_M_mutex); }
90#endif
91  };
92
93  /// The standard recursive mutex type.
94  class recursive_mutex : private __recursive_mutex_base
95  {
96  public:
97    typedef __native_type* 			native_handle_type;
98
99    recursive_mutex() = default;
100    ~recursive_mutex() = default;
101
102    recursive_mutex(const recursive_mutex&) = delete;
103    recursive_mutex& operator=(const recursive_mutex&) = delete;
104
105    void
106    lock()
107    {
108      int __e = __gthread_recursive_mutex_lock(&_M_mutex);
109
110      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
111      if (__e)
112	__throw_system_error(__e);
113    }
114
115    bool
116    try_lock() noexcept
117    {
118      // XXX EINVAL, EAGAIN, EBUSY
119      return !__gthread_recursive_mutex_trylock(&_M_mutex);
120    }
121
122    void
123    unlock()
124    {
125      // XXX EINVAL, EAGAIN, EBUSY
126      __gthread_recursive_mutex_unlock(&_M_mutex);
127    }
128
129    native_handle_type
130    native_handle() noexcept
131    { return &_M_mutex; }
132  };
133
134#if _GTHREAD_USE_MUTEX_TIMEDLOCK
135  template<typename _Derived>
136    class __timed_mutex_impl
137    {
138    protected:
139      template<typename _Rep, typename _Period>
140	bool
141	_M_try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
142	{
143#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
144	  using __clock = chrono::steady_clock;
145#else
146	  using __clock = chrono::system_clock;
147#endif
148
149	  auto __rt = chrono::duration_cast<__clock::duration>(__rtime);
150	  if (ratio_greater<__clock::period, _Period>())
151	    ++__rt;
152	  return _M_try_lock_until(__clock::now() + __rt);
153	}
154
155      template<typename _Duration>
156	bool
157	_M_try_lock_until(const chrono::time_point<chrono::system_clock,
158						   _Duration>& __atime)
159	{
160	  auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
161	  auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
162
163	  __gthread_time_t __ts = {
164	    static_cast<std::time_t>(__s.time_since_epoch().count()),
165	    static_cast<long>(__ns.count())
166	  };
167
168	  return static_cast<_Derived*>(this)->_M_timedlock(__ts);
169	}
170
171#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
172      template<typename _Duration>
173	bool
174	_M_try_lock_until(const chrono::time_point<chrono::steady_clock,
175						   _Duration>& __atime)
176	{
177	  auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
178	  auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
179
180	  __gthread_time_t __ts = {
181	    static_cast<std::time_t>(__s.time_since_epoch().count()),
182	    static_cast<long>(__ns.count())
183	  };
184
185	  return static_cast<_Derived*>(this)->_M_clocklock(CLOCK_MONOTONIC,
186							    __ts);
187	}
188#endif
189
190      template<typename _Clock, typename _Duration>
191	bool
192	_M_try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
193	{
194#if __cplusplus > 201703L
195	  static_assert(chrono::is_clock_v<_Clock>);
196#endif
197	  // The user-supplied clock may not tick at the same rate as
198	  // steady_clock, so we must loop in order to guarantee that
199	  // the timeout has expired before returning false.
200	  auto __now = _Clock::now();
201	  do {
202	    auto __rtime = __atime - __now;
203	    if (_M_try_lock_for(__rtime))
204	      return true;
205	    __now = _Clock::now();
206	  } while (__atime > __now);
207	  return false;
208	}
209    };
210
211  /// The standard timed mutex type.
212  class timed_mutex
213  : private __mutex_base, public __timed_mutex_impl<timed_mutex>
214  {
215  public:
216    typedef __native_type* 		  	native_handle_type;
217
218    timed_mutex() = default;
219    ~timed_mutex() = default;
220
221    timed_mutex(const timed_mutex&) = delete;
222    timed_mutex& operator=(const timed_mutex&) = delete;
223
224    void
225    lock()
226    {
227      int __e = __gthread_mutex_lock(&_M_mutex);
228
229      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
230      if (__e)
231	__throw_system_error(__e);
232    }
233
234    bool
235    try_lock() noexcept
236    {
237      // XXX EINVAL, EAGAIN, EBUSY
238      return !__gthread_mutex_trylock(&_M_mutex);
239    }
240
241    template <class _Rep, class _Period>
242      bool
243      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
244      { return _M_try_lock_for(__rtime); }
245
246    template <class _Clock, class _Duration>
247      bool
248      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
249      { return _M_try_lock_until(__atime); }
250
251    void
252    unlock()
253    {
254      // XXX EINVAL, EAGAIN, EBUSY
255      __gthread_mutex_unlock(&_M_mutex);
256    }
257
258    native_handle_type
259    native_handle() noexcept
260    { return &_M_mutex; }
261
262    private:
263      friend class __timed_mutex_impl<timed_mutex>;
264
265      bool
266      _M_timedlock(const __gthread_time_t& __ts)
267      { return !__gthread_mutex_timedlock(&_M_mutex, &__ts); }
268
269#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
270      bool
271      _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
272      { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
273#endif
274  };
275
276  /// recursive_timed_mutex
277  class recursive_timed_mutex
278  : private __recursive_mutex_base,
279    public __timed_mutex_impl<recursive_timed_mutex>
280  {
281  public:
282    typedef __native_type* 			native_handle_type;
283
284    recursive_timed_mutex() = default;
285    ~recursive_timed_mutex() = default;
286
287    recursive_timed_mutex(const recursive_timed_mutex&) = delete;
288    recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
289
290    void
291    lock()
292    {
293      int __e = __gthread_recursive_mutex_lock(&_M_mutex);
294
295      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
296      if (__e)
297	__throw_system_error(__e);
298    }
299
300    bool
301    try_lock() noexcept
302    {
303      // XXX EINVAL, EAGAIN, EBUSY
304      return !__gthread_recursive_mutex_trylock(&_M_mutex);
305    }
306
307    template <class _Rep, class _Period>
308      bool
309      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
310      { return _M_try_lock_for(__rtime); }
311
312    template <class _Clock, class _Duration>
313      bool
314      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
315      { return _M_try_lock_until(__atime); }
316
317    void
318    unlock()
319    {
320      // XXX EINVAL, EAGAIN, EBUSY
321      __gthread_recursive_mutex_unlock(&_M_mutex);
322    }
323
324    native_handle_type
325    native_handle() noexcept
326    { return &_M_mutex; }
327
328    private:
329      friend class __timed_mutex_impl<recursive_timed_mutex>;
330
331      bool
332      _M_timedlock(const __gthread_time_t& __ts)
333      { return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts); }
334
335#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
336      bool
337      _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
338      { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
339#endif
340  };
341
342#else // !_GTHREAD_USE_MUTEX_TIMEDLOCK
343
344  /// timed_mutex
345  class timed_mutex
346  {
347    mutex		_M_mut;
348    condition_variable	_M_cv;
349    bool		_M_locked = false;
350
351  public:
352
353    timed_mutex() = default;
354    ~timed_mutex() { __glibcxx_assert( !_M_locked ); }
355
356    timed_mutex(const timed_mutex&) = delete;
357    timed_mutex& operator=(const timed_mutex&) = delete;
358
359    void
360    lock()
361    {
362      unique_lock<mutex> __lk(_M_mut);
363      _M_cv.wait(__lk, [&]{ return !_M_locked; });
364      _M_locked = true;
365    }
366
367    bool
368    try_lock()
369    {
370      lock_guard<mutex> __lk(_M_mut);
371      if (_M_locked)
372	return false;
373      _M_locked = true;
374      return true;
375    }
376
377    template<typename _Rep, typename _Period>
378      bool
379      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
380      {
381	unique_lock<mutex> __lk(_M_mut);
382	if (!_M_cv.wait_for(__lk, __rtime, [&]{ return !_M_locked; }))
383	  return false;
384	_M_locked = true;
385	return true;
386      }
387
388    template<typename _Clock, typename _Duration>
389      bool
390      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
391      {
392	unique_lock<mutex> __lk(_M_mut);
393	if (!_M_cv.wait_until(__lk, __atime, [&]{ return !_M_locked; }))
394	  return false;
395	_M_locked = true;
396	return true;
397      }
398
399    void
400    unlock()
401    {
402      lock_guard<mutex> __lk(_M_mut);
403      __glibcxx_assert( _M_locked );
404      _M_locked = false;
405      _M_cv.notify_one();
406    }
407  };
408
409  /// recursive_timed_mutex
410  class recursive_timed_mutex
411  {
412    mutex		_M_mut;
413    condition_variable	_M_cv;
414    thread::id		_M_owner;
415    unsigned		_M_count = 0;
416
417    // Predicate type that tests whether the current thread can lock a mutex.
418    struct _Can_lock
419    {
420      // Returns true if the mutex is unlocked or is locked by _M_caller.
421      bool
422      operator()() const noexcept
423      { return _M_mx->_M_count == 0 || _M_mx->_M_owner == _M_caller; }
424
425      const recursive_timed_mutex* _M_mx;
426      thread::id _M_caller;
427    };
428
429  public:
430
431    recursive_timed_mutex() = default;
432    ~recursive_timed_mutex() { __glibcxx_assert( _M_count == 0 ); }
433
434    recursive_timed_mutex(const recursive_timed_mutex&) = delete;
435    recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
436
437    void
438    lock()
439    {
440      auto __id = this_thread::get_id();
441      _Can_lock __can_lock{this, __id};
442      unique_lock<mutex> __lk(_M_mut);
443      _M_cv.wait(__lk, __can_lock);
444      if (_M_count == -1u)
445	__throw_system_error(EAGAIN); // [thread.timedmutex.recursive]/3
446      _M_owner = __id;
447      ++_M_count;
448    }
449
450    bool
451    try_lock()
452    {
453      auto __id = this_thread::get_id();
454      _Can_lock __can_lock{this, __id};
455      lock_guard<mutex> __lk(_M_mut);
456      if (!__can_lock())
457	return false;
458      if (_M_count == -1u)
459	return false;
460      _M_owner = __id;
461      ++_M_count;
462      return true;
463    }
464
465    template<typename _Rep, typename _Period>
466      bool
467      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
468      {
469	auto __id = this_thread::get_id();
470	_Can_lock __can_lock{this, __id};
471	unique_lock<mutex> __lk(_M_mut);
472	if (!_M_cv.wait_for(__lk, __rtime, __can_lock))
473	  return false;
474	if (_M_count == -1u)
475	  return false;
476	_M_owner = __id;
477	++_M_count;
478	return true;
479      }
480
481    template<typename _Clock, typename _Duration>
482      bool
483      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
484      {
485	auto __id = this_thread::get_id();
486	_Can_lock __can_lock{this, __id};
487	unique_lock<mutex> __lk(_M_mut);
488	if (!_M_cv.wait_until(__lk, __atime, __can_lock))
489	  return false;
490	if (_M_count == -1u)
491	  return false;
492	_M_owner = __id;
493	++_M_count;
494	return true;
495      }
496
497    void
498    unlock()
499    {
500      lock_guard<mutex> __lk(_M_mut);
501      __glibcxx_assert( _M_owner == this_thread::get_id() );
502      __glibcxx_assert( _M_count > 0 );
503      if (--_M_count == 0)
504	{
505	  _M_owner = {};
506	  _M_cv.notify_one();
507	}
508    }
509  };
510
511#endif
512#endif // _GLIBCXX_HAS_GTHREADS
513
514  /// @cond undocumented
515  template<typename _Lock>
516    inline unique_lock<_Lock>
517    __try_to_lock(_Lock& __l)
518    { return unique_lock<_Lock>{__l, try_to_lock}; }
519
520  template<int _Idx, bool _Continue = true>
521    struct __try_lock_impl
522    {
523      template<typename... _Lock>
524	static void
525	__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
526	{
527          __idx = _Idx;
528          auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
529          if (__lock.owns_lock())
530            {
531	      constexpr bool __cont = _Idx + 2 < sizeof...(_Lock);
532	      using __try_locker = __try_lock_impl<_Idx + 1, __cont>;
533	      __try_locker::__do_try_lock(__locks, __idx);
534              if (__idx == -1)
535                __lock.release();
536            }
537	}
538    };
539
540  template<int _Idx>
541    struct __try_lock_impl<_Idx, false>
542    {
543      template<typename... _Lock>
544	static void
545	__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
546	{
547          __idx = _Idx;
548          auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
549          if (__lock.owns_lock())
550            {
551              __idx = -1;
552              __lock.release();
553            }
554	}
555    };
556  /// @endcond
557
558  /** @brief Generic try_lock.
559   *  @param __l1 Meets Lockable requirements (try_lock() may throw).
560   *  @param __l2 Meets Lockable requirements (try_lock() may throw).
561   *  @param __l3 Meets Lockable requirements (try_lock() may throw).
562   *  @return Returns -1 if all try_lock() calls return true. Otherwise returns
563   *          a 0-based index corresponding to the argument that returned false.
564   *  @post Either all arguments are locked, or none will be.
565   *
566   *  Sequentially calls try_lock() on each argument.
567   */
568  template<typename _Lock1, typename _Lock2, typename... _Lock3>
569    int
570    try_lock(_Lock1& __l1, _Lock2& __l2, _Lock3&... __l3)
571    {
572      int __idx;
573      auto __locks = std::tie(__l1, __l2, __l3...);
574      __try_lock_impl<0>::__do_try_lock(__locks, __idx);
575      return __idx;
576    }
577
578  /** @brief Generic lock.
579   *  @param __l1 Meets Lockable requirements (try_lock() may throw).
580   *  @param __l2 Meets Lockable requirements (try_lock() may throw).
581   *  @param __l3 Meets Lockable requirements (try_lock() may throw).
582   *  @throw An exception thrown by an argument's lock() or try_lock() member.
583   *  @post All arguments are locked.
584   *
585   *  All arguments are locked via a sequence of calls to lock(), try_lock()
586   *  and unlock().  If the call exits via an exception any locks that were
587   *  obtained will be released.
588   */
589  template<typename _L1, typename _L2, typename... _L3>
590    void
591    lock(_L1& __l1, _L2& __l2, _L3&... __l3)
592    {
593      while (true)
594        {
595          using __try_locker = __try_lock_impl<0, sizeof...(_L3) != 0>;
596          unique_lock<_L1> __first(__l1);
597          int __idx;
598          auto __locks = std::tie(__l2, __l3...);
599          __try_locker::__do_try_lock(__locks, __idx);
600          if (__idx == -1)
601            {
602              __first.release();
603              return;
604            }
605        }
606    }
607
608#if __cplusplus >= 201703L
609#define __cpp_lib_scoped_lock 201703
610  /** @brief A scoped lock type for multiple lockable objects.
611   *
612   * A scoped_lock controls mutex ownership within a scope, releasing
613   * ownership in the destructor.
614   */
615  template<typename... _MutexTypes>
616    class scoped_lock
617    {
618    public:
619      explicit scoped_lock(_MutexTypes&... __m) : _M_devices(std::tie(__m...))
620      { std::lock(__m...); }
621
622      explicit scoped_lock(adopt_lock_t, _MutexTypes&... __m) noexcept
623      : _M_devices(std::tie(__m...))
624      { } // calling thread owns mutex
625
626      ~scoped_lock()
627      { std::apply([](auto&... __m) { (__m.unlock(), ...); }, _M_devices); }
628
629      scoped_lock(const scoped_lock&) = delete;
630      scoped_lock& operator=(const scoped_lock&) = delete;
631
632    private:
633      tuple<_MutexTypes&...> _M_devices;
634    };
635
636  template<>
637    class scoped_lock<>
638    {
639    public:
640      explicit scoped_lock() = default;
641      explicit scoped_lock(adopt_lock_t) noexcept { }
642      ~scoped_lock() = default;
643
644      scoped_lock(const scoped_lock&) = delete;
645      scoped_lock& operator=(const scoped_lock&) = delete;
646    };
647
648  template<typename _Mutex>
649    class scoped_lock<_Mutex>
650    {
651    public:
652      using mutex_type = _Mutex;
653
654      explicit scoped_lock(mutex_type& __m) : _M_device(__m)
655      { _M_device.lock(); }
656
657      explicit scoped_lock(adopt_lock_t, mutex_type& __m) noexcept
658      : _M_device(__m)
659      { } // calling thread owns mutex
660
661      ~scoped_lock()
662      { _M_device.unlock(); }
663
664      scoped_lock(const scoped_lock&) = delete;
665      scoped_lock& operator=(const scoped_lock&) = delete;
666
667    private:
668      mutex_type&  _M_device;
669    };
670#endif // C++17
671
672#ifdef _GLIBCXX_HAS_GTHREADS
673  /// Flag type used by std::call_once
674  struct once_flag
675  {
676    constexpr once_flag() noexcept = default;
677
678    /// Deleted copy constructor
679    once_flag(const once_flag&) = delete;
680    /// Deleted assignment operator
681    once_flag& operator=(const once_flag&) = delete;
682
683  private:
684    // For gthreads targets a pthread_once_t is used with pthread_once, but
685    // for most targets this doesn't work correctly for exceptional executions.
686    __gthread_once_t _M_once = __GTHREAD_ONCE_INIT;
687
688    struct _Prepare_execution;
689
690    template<typename _Callable, typename... _Args>
691      friend void
692      call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
693  };
694
695  /// @cond undocumented
696# ifdef _GLIBCXX_HAVE_TLS
697  // If TLS is available use thread-local state for the type-erased callable
698  // that is being run by std::call_once in the current thread.
699  extern __thread void* __once_callable;
700  extern __thread void (*__once_call)();
701
702  // RAII type to set up state for pthread_once call.
703  struct once_flag::_Prepare_execution
704  {
705    template<typename _Callable>
706      explicit
707      _Prepare_execution(_Callable& __c)
708      {
709	// Store address in thread-local pointer:
710	__once_callable = std::__addressof(__c);
711	// Trampoline function to invoke the closure via thread-local pointer:
712	__once_call = [] { (*static_cast<_Callable*>(__once_callable))(); };
713      }
714
715    ~_Prepare_execution()
716    {
717      // PR libstdc++/82481
718      __once_callable = nullptr;
719      __once_call = nullptr;
720    }
721
722    _Prepare_execution(const _Prepare_execution&) = delete;
723    _Prepare_execution& operator=(const _Prepare_execution&) = delete;
724  };
725
726# else
727  // Without TLS use a global std::mutex and store the callable in a
728  // global std::function.
729  extern function<void()> __once_functor;
730
731  extern void
732  __set_once_functor_lock_ptr(unique_lock<mutex>*);
733
734  extern mutex&
735  __get_once_mutex();
736
737  // RAII type to set up state for pthread_once call.
738  struct once_flag::_Prepare_execution
739  {
740    template<typename _Callable>
741      explicit
742      _Prepare_execution(_Callable& __c)
743      {
744	// Store the callable in the global std::function
745	__once_functor = __c;
746	__set_once_functor_lock_ptr(&_M_functor_lock);
747      }
748
749    ~_Prepare_execution()
750    {
751      if (_M_functor_lock)
752	__set_once_functor_lock_ptr(nullptr);
753    }
754
755  private:
756    // XXX This deadlocks if used recursively (PR 97949)
757    unique_lock<mutex> _M_functor_lock{__get_once_mutex()};
758
759    _Prepare_execution(const _Prepare_execution&) = delete;
760    _Prepare_execution& operator=(const _Prepare_execution&) = delete;
761  };
762# endif
763  /// @endcond
764
765  // This function is passed to pthread_once by std::call_once.
766  // It runs __once_call() or __once_functor().
767  extern "C" void __once_proxy(void);
768
769  /// Invoke a callable and synchronize with other calls using the same flag
770  template<typename _Callable, typename... _Args>
771    void
772    call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
773    {
774      // Closure type that runs the function
775      auto __callable = [&] {
776	  std::__invoke(std::forward<_Callable>(__f),
777			std::forward<_Args>(__args)...);
778      };
779
780      once_flag::_Prepare_execution __exec(__callable);
781
782      // XXX pthread_once does not reset the flag if an exception is thrown.
783      if (int __e = __gthread_once(&__once._M_once, &__once_proxy))
784	__throw_system_error(__e);
785    }
786
787#else // _GLIBCXX_HAS_GTHREADS
788
789  /// Flag type used by std::call_once
790  struct once_flag
791  {
792    constexpr once_flag() noexcept = default;
793
794    /// Deleted copy constructor
795    once_flag(const once_flag&) = delete;
796    /// Deleted assignment operator
797    once_flag& operator=(const once_flag&) = delete;
798
799  private:
800    // There are two different std::once_flag interfaces, abstracting four
801    // different implementations.
802    // The single-threaded interface uses the _M_activate() and _M_finish(bool)
803    // functions, which start and finish an active execution respectively.
804    // See [thread.once.callonce] in C++11 for the definition of
805    // active/passive/returning/exceptional executions.
806    enum _Bits : int { _Init = 0, _Active = 1, _Done = 2 };
807
808    int _M_once = _Bits::_Init;
809
810    // Check to see if all executions will be passive now.
811    bool
812    _M_passive() const noexcept;
813
814    // Attempts to begin an active execution.
815    bool _M_activate();
816
817    // Must be called to complete an active execution.
818    // The argument is true if the active execution was a returning execution,
819    // false if it was an exceptional execution.
820    void _M_finish(bool __returning) noexcept;
821
822    // RAII helper to call _M_finish.
823    struct _Active_execution
824    {
825      explicit _Active_execution(once_flag& __flag) : _M_flag(__flag) { }
826
827      ~_Active_execution() { _M_flag._M_finish(_M_returning); }
828
829      _Active_execution(const _Active_execution&) = delete;
830      _Active_execution& operator=(const _Active_execution&) = delete;
831
832      once_flag& _M_flag;
833      bool _M_returning = false;
834    };
835
836    template<typename _Callable, typename... _Args>
837      friend void
838      call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
839  };
840
841  // Inline definitions of std::once_flag members for single-threaded targets.
842
843  inline bool
844  once_flag::_M_passive() const noexcept
845  { return _M_once == _Bits::_Done; }
846
847  inline bool
848  once_flag::_M_activate()
849  {
850    if (_M_once == _Bits::_Init) [[__likely__]]
851      {
852	_M_once = _Bits::_Active;
853	return true;
854      }
855    else if (_M_passive()) // Caller should have checked this already.
856      return false;
857    else
858      __throw_system_error(EDEADLK);
859  }
860
861  inline void
862  once_flag::_M_finish(bool __returning) noexcept
863  { _M_once = __returning ? _Bits::_Done : _Bits::_Init; }
864
865  /// Invoke a callable and synchronize with other calls using the same flag
866  template<typename _Callable, typename... _Args>
867    inline void
868    call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
869    {
870      if (__once._M_passive())
871	return;
872      else if (__once._M_activate())
873	{
874	  once_flag::_Active_execution __exec(__once);
875
876	  // _GLIBCXX_RESOLVE_LIB_DEFECTS
877	  // 2442. call_once() shouldn't DECAY_COPY()
878	  std::__invoke(std::forward<_Callable>(__f),
879			std::forward<_Args>(__args)...);
880
881	  // __f(__args...) did not throw
882	  __exec._M_returning = true;
883	}
884    }
885#endif // _GLIBCXX_HAS_GTHREADS
886
887  /// @} group mutexes
888_GLIBCXX_END_NAMESPACE_VERSION
889} // namespace
890
891#endif // C++11
892
893#endif // _GLIBCXX_MUTEX
894