1 // Special functions -*- C++ -*-
2 
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/bessel_function.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29 
30 /* __cyl_bessel_jn_asymp adapted from GNU GSL version 2.4 specfunc/bessel_j.c
31  * Copyright (C) 1996-2003 Gerard Jungman
32  */
33 
34 //
35 // ISO C++ 14882 TR1: 5.2  Special functions
36 //
37 
38 // Written by Edward Smith-Rowland.
39 //
40 // References:
41 //   (1) Handbook of Mathematical Functions,
42 //       ed. Milton Abramowitz and Irene A. Stegun,
43 //       Dover Publications,
44 //       Section 9, pp. 355-434, Section 10 pp. 435-478
45 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
46 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
47 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
48 //       2nd ed, pp. 240-245
49 
50 #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
51 #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
52 
53 #include <tr1/special_function_util.h>
54 
55 namespace std _GLIBCXX_VISIBILITY(default)
56 {
57 _GLIBCXX_BEGIN_NAMESPACE_VERSION
58 
59 #if _GLIBCXX_USE_STD_SPEC_FUNCS
60 # define _GLIBCXX_MATH_NS ::std
61 #elif defined(_GLIBCXX_TR1_CMATH)
62 namespace tr1
63 {
64 # define _GLIBCXX_MATH_NS ::std::tr1
65 #else
66 # error do not include this header directly, use <cmath> or <tr1/cmath>
67 #endif
68   // [5.2] Special functions
69 
70   // Implementation-space details.
71   namespace __detail
72   {
73     /**
74      *   @brief Compute the gamma functions required by the Temme series
75      *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
76      *   @f[
77      *     \Gamma_1 = \frac{1}{2\mu}
78      *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
79      *   @f]
80      *   and
81      *   @f[
82      *     \Gamma_2 = \frac{1}{2}
83      *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
84      *   @f]
85      *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
86      *   is the nearest integer to @f$ \nu @f$.
87      *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
88      *   are returned as well.
89      *
90      *   The accuracy requirements on this are exquisite.
91      *
92      *   @param __mu     The input parameter of the gamma functions.
93      *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
94      *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
95      *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
96      *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
97      */
98     template <typename _Tp>
99     void
__gamma_temme(_Tp __mu,_Tp & __gam1,_Tp & __gam2,_Tp & __gampl,_Tp & __gammi)100     __gamma_temme(_Tp __mu,
101                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
102     {
103 #if _GLIBCXX_USE_C99_MATH_TR1
104       __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
105       __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
106 #else
107       __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
108       __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
109 #endif
110 
111       if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
112         __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
113       else
114         __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
115 
116       __gam2 = (__gammi + __gampl) / (_Tp(2));
117 
118       return;
119     }
120 
121 
122     /**
123      *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
124      *           @f$ N_\nu(x) @f$ functions and their first derivatives
125      *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
126      *           These four functions are computed together for numerical
127      *           stability.
128      *
129      *   @param  __nu  The order of the Bessel functions.
130      *   @param  __x   The argument of the Bessel functions.
131      *   @param  __Jnu  The output Bessel function of the first kind.
132      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
133      *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
134      *   @param  __Npnu  The output derivative of the Neumann function.
135      */
136     template <typename _Tp>
137     void
__bessel_jn(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu,_Tp & __Jpnu,_Tp & __Npnu)138     __bessel_jn(_Tp __nu, _Tp __x,
139                 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
140     {
141       if (__x == _Tp(0))
142         {
143           if (__nu == _Tp(0))
144             {
145               __Jnu = _Tp(1);
146               __Jpnu = _Tp(0);
147             }
148           else if (__nu == _Tp(1))
149             {
150               __Jnu = _Tp(0);
151               __Jpnu = _Tp(0.5L);
152             }
153           else
154             {
155               __Jnu = _Tp(0);
156               __Jpnu = _Tp(0);
157             }
158           __Nnu = -std::numeric_limits<_Tp>::infinity();
159           __Npnu = std::numeric_limits<_Tp>::infinity();
160           return;
161         }
162 
163       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
164       //  When the multiplier is N i.e.
165       //  fp_min = N * min()
166       //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
167       //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
168       const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
169       const int __max_iter = 15000;
170       const _Tp __x_min = _Tp(2);
171 
172       const int __nl = (__x < __x_min
173                     ? static_cast<int>(__nu + _Tp(0.5L))
174                     : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
175 
176       const _Tp __mu = __nu - __nl;
177       const _Tp __mu2 = __mu * __mu;
178       const _Tp __xi = _Tp(1) / __x;
179       const _Tp __xi2 = _Tp(2) * __xi;
180       _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
181       int __isign = 1;
182       _Tp __h = __nu * __xi;
183       if (__h < __fp_min)
184         __h = __fp_min;
185       _Tp __b = __xi2 * __nu;
186       _Tp __d = _Tp(0);
187       _Tp __c = __h;
188       int __i;
189       for (__i = 1; __i <= __max_iter; ++__i)
190         {
191           __b += __xi2;
192           __d = __b - __d;
193           if (std::abs(__d) < __fp_min)
194             __d = __fp_min;
195           __c = __b - _Tp(1) / __c;
196           if (std::abs(__c) < __fp_min)
197             __c = __fp_min;
198           __d = _Tp(1) / __d;
199           const _Tp __del = __c * __d;
200           __h *= __del;
201           if (__d < _Tp(0))
202             __isign = -__isign;
203           if (std::abs(__del - _Tp(1)) < __eps)
204             break;
205         }
206       if (__i > __max_iter)
207         std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
208                                        "try asymptotic expansion."));
209       _Tp __Jnul = __isign * __fp_min;
210       _Tp __Jpnul = __h * __Jnul;
211       _Tp __Jnul1 = __Jnul;
212       _Tp __Jpnu1 = __Jpnul;
213       _Tp __fact = __nu * __xi;
214       for ( int __l = __nl; __l >= 1; --__l )
215         {
216           const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
217           __fact -= __xi;
218           __Jpnul = __fact * __Jnutemp - __Jnul;
219           __Jnul = __Jnutemp;
220         }
221       if (__Jnul == _Tp(0))
222         __Jnul = __eps;
223       _Tp __f= __Jpnul / __Jnul;
224       _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
225       if (__x < __x_min)
226         {
227           const _Tp __x2 = __x / _Tp(2);
228           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
229           _Tp __fact = (std::abs(__pimu) < __eps
230                       ? _Tp(1) : __pimu / std::sin(__pimu));
231           _Tp __d = -std::log(__x2);
232           _Tp __e = __mu * __d;
233           _Tp __fact2 = (std::abs(__e) < __eps
234                        ? _Tp(1) : std::sinh(__e) / __e);
235           _Tp __gam1, __gam2, __gampl, __gammi;
236           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
237           _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
238                    * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
239           __e = std::exp(__e);
240           _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
241           _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
242           const _Tp __pimu2 = __pimu / _Tp(2);
243           _Tp __fact3 = (std::abs(__pimu2) < __eps
244                        ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
245           _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
246           _Tp __c = _Tp(1);
247           __d = -__x2 * __x2;
248           _Tp __sum = __ff + __r * __q;
249           _Tp __sum1 = __p;
250           for (__i = 1; __i <= __max_iter; ++__i)
251             {
252               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
253               __c *= __d / _Tp(__i);
254               __p /= _Tp(__i) - __mu;
255               __q /= _Tp(__i) + __mu;
256               const _Tp __del = __c * (__ff + __r * __q);
257               __sum += __del;
258               const _Tp __del1 = __c * __p - __i * __del;
259               __sum1 += __del1;
260               if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
261                 break;
262             }
263           if ( __i > __max_iter )
264             std::__throw_runtime_error(__N("Bessel y series failed to converge "
265                                            "in __bessel_jn."));
266           __Nmu = -__sum;
267           __Nnu1 = -__sum1 * __xi2;
268           __Npmu = __mu * __xi * __Nmu - __Nnu1;
269           __Jmu = __w / (__Npmu - __f * __Nmu);
270         }
271       else
272         {
273           _Tp __a = _Tp(0.25L) - __mu2;
274           _Tp __q = _Tp(1);
275           _Tp __p = -__xi / _Tp(2);
276           _Tp __br = _Tp(2) * __x;
277           _Tp __bi = _Tp(2);
278           _Tp __fact = __a * __xi / (__p * __p + __q * __q);
279           _Tp __cr = __br + __q * __fact;
280           _Tp __ci = __bi + __p * __fact;
281           _Tp __den = __br * __br + __bi * __bi;
282           _Tp __dr = __br / __den;
283           _Tp __di = -__bi / __den;
284           _Tp __dlr = __cr * __dr - __ci * __di;
285           _Tp __dli = __cr * __di + __ci * __dr;
286           _Tp __temp = __p * __dlr - __q * __dli;
287           __q = __p * __dli + __q * __dlr;
288           __p = __temp;
289           int __i;
290           for (__i = 2; __i <= __max_iter; ++__i)
291             {
292               __a += _Tp(2 * (__i - 1));
293               __bi += _Tp(2);
294               __dr = __a * __dr + __br;
295               __di = __a * __di + __bi;
296               if (std::abs(__dr) + std::abs(__di) < __fp_min)
297                 __dr = __fp_min;
298               __fact = __a / (__cr * __cr + __ci * __ci);
299               __cr = __br + __cr * __fact;
300               __ci = __bi - __ci * __fact;
301               if (std::abs(__cr) + std::abs(__ci) < __fp_min)
302                 __cr = __fp_min;
303               __den = __dr * __dr + __di * __di;
304               __dr /= __den;
305               __di /= -__den;
306               __dlr = __cr * __dr - __ci * __di;
307               __dli = __cr * __di + __ci * __dr;
308               __temp = __p * __dlr - __q * __dli;
309               __q = __p * __dli + __q * __dlr;
310               __p = __temp;
311               if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
312                 break;
313           }
314           if (__i > __max_iter)
315             std::__throw_runtime_error(__N("Lentz's method failed "
316                                            "in __bessel_jn."));
317           const _Tp __gam = (__p - __f) / __q;
318           __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
319 #if _GLIBCXX_USE_C99_MATH_TR1
320           __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
321 #else
322           if (__Jmu * __Jnul < _Tp(0))
323             __Jmu = -__Jmu;
324 #endif
325           __Nmu = __gam * __Jmu;
326           __Npmu = (__p + __q / __gam) * __Nmu;
327           __Nnu1 = __mu * __xi * __Nmu - __Npmu;
328       }
329       __fact = __Jmu / __Jnul;
330       __Jnu = __fact * __Jnul1;
331       __Jpnu = __fact * __Jpnu1;
332       for (__i = 1; __i <= __nl; ++__i)
333         {
334           const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
335           __Nmu = __Nnu1;
336           __Nnu1 = __Nnutemp;
337         }
338       __Nnu = __Nmu;
339       __Npnu = __nu * __xi * __Nmu - __Nnu1;
340 
341       return;
342     }
343 
344 
345     /**
346      *   @brief This routine computes the asymptotic cylindrical Bessel
347      *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
348      *          \f$ N_{\nu} \f$.
349      *
350      *   References:
351      *    (1) Handbook of Mathematical Functions,
352      *        ed. Milton Abramowitz and Irene A. Stegun,
353      *        Dover Publications,
354      *        Section 9 p. 364, Equations 9.2.5-9.2.10
355      *
356      *   @param  __nu  The order of the Bessel functions.
357      *   @param  __x   The argument of the Bessel functions.
358      *   @param  __Jnu  The output Bessel function of the first kind.
359      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
360      */
361     template <typename _Tp>
362     void
__cyl_bessel_jn_asymp(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu)363     __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
364     {
365       const _Tp __mu = _Tp(4) * __nu * __nu;
366       const _Tp __8x = _Tp(8) * __x;
367 
368       _Tp __P = _Tp(0);
369       _Tp __Q = _Tp(0);
370 
371       _Tp __k = _Tp(0);
372       _Tp __term = _Tp(1);
373 
374       int __epsP = 0;
375       int __epsQ = 0;
376 
377       _Tp __eps = std::numeric_limits<_Tp>::epsilon();
378 
379       do
380         {
381           __term *= (__k == 0
382                      ? _Tp(1)
383                      : -(__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x));
384 
385           __epsP = std::abs(__term) < __eps * std::abs(__P);
386           __P += __term;
387 
388           __k++;
389 
390           __term *= (__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x);
391           __epsQ = std::abs(__term) < __eps * std::abs(__Q);
392           __Q += __term;
393 
394           if (__epsP && __epsQ && __k > (__nu / 2.))
395             break;
396 
397           __k++;
398         }
399       while (__k < 1000);
400 
401       const _Tp __chi = __x - (__nu + _Tp(0.5L))
402                              * __numeric_constants<_Tp>::__pi_2();
403 
404       const _Tp __c = std::cos(__chi);
405       const _Tp __s = std::sin(__chi);
406 
407       const _Tp __coef = std::sqrt(_Tp(2)
408                              / (__numeric_constants<_Tp>::__pi() * __x));
409 
410       __Jnu = __coef * (__c * __P - __s * __Q);
411       __Nnu = __coef * (__s * __P + __c * __Q);
412 
413       return;
414     }
415 
416 
417     /**
418      *   @brief This routine returns the cylindrical Bessel functions
419      *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
420      *          by series expansion.
421      *
422      *   The modified cylindrical Bessel function is:
423      *   @f[
424      *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
425      *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
426      *   @f]
427      *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
428      *   \f$ Z = I \f$ or \f$ J \f$ respectively.
429      *
430      *   See Abramowitz & Stegun, 9.1.10
431      *       Abramowitz & Stegun, 9.6.7
432      *    (1) Handbook of Mathematical Functions,
433      *        ed. Milton Abramowitz and Irene A. Stegun,
434      *        Dover Publications,
435      *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
436      *
437      *   @param  __nu  The order of the Bessel function.
438      *   @param  __x   The argument of the Bessel function.
439      *   @param  __sgn  The sign of the alternate terms
440      *                  -1 for the Bessel function of the first kind.
441      *                  +1 for the modified Bessel function of the first kind.
442      *   @return  The output Bessel function.
443      */
444     template <typename _Tp>
445     _Tp
__cyl_bessel_ij_series(_Tp __nu,_Tp __x,_Tp __sgn,unsigned int __max_iter)446     __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
447                            unsigned int __max_iter)
448     {
449       if (__x == _Tp(0))
450 	return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
451 
452       const _Tp __x2 = __x / _Tp(2);
453       _Tp __fact = __nu * std::log(__x2);
454 #if _GLIBCXX_USE_C99_MATH_TR1
455       __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
456 #else
457       __fact -= __log_gamma(__nu + _Tp(1));
458 #endif
459       __fact = std::exp(__fact);
460       const _Tp __xx4 = __sgn * __x2 * __x2;
461       _Tp __Jn = _Tp(1);
462       _Tp __term = _Tp(1);
463 
464       for (unsigned int __i = 1; __i < __max_iter; ++__i)
465         {
466           __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
467           __Jn += __term;
468           if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
469             break;
470         }
471 
472       return __fact * __Jn;
473     }
474 
475 
476     /**
477      *   @brief  Return the Bessel function of order \f$ \nu \f$:
478      *           \f$ J_{\nu}(x) \f$.
479      *
480      *   The cylindrical Bessel function is:
481      *   @f[
482      *    J_{\nu}(x) = \sum_{k=0}^{\infty}
483      *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
484      *   @f]
485      *
486      *   @param  __nu  The order of the Bessel function.
487      *   @param  __x   The argument of the Bessel function.
488      *   @return  The output Bessel function.
489      */
490     template<typename _Tp>
491     _Tp
__cyl_bessel_j(_Tp __nu,_Tp __x)492     __cyl_bessel_j(_Tp __nu, _Tp __x)
493     {
494       if (__nu < _Tp(0) || __x < _Tp(0))
495         std::__throw_domain_error(__N("Bad argument "
496                                       "in __cyl_bessel_j."));
497       else if (__isnan(__nu) || __isnan(__x))
498         return std::numeric_limits<_Tp>::quiet_NaN();
499       else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
500         return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
501       else if (__x > _Tp(1000))
502         {
503           _Tp __J_nu, __N_nu;
504           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
505           return __J_nu;
506         }
507       else
508         {
509           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
510           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
511           return __J_nu;
512         }
513     }
514 
515 
516     /**
517      *   @brief  Return the Neumann function of order \f$ \nu \f$:
518      *           \f$ N_{\nu}(x) \f$.
519      *
520      *   The Neumann function is defined by:
521      *   @f[
522      *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
523      *                        {\sin \nu\pi}
524      *   @f]
525      *   where for integral \f$ \nu = n \f$ a limit is taken:
526      *   \f$ lim_{\nu \to n} \f$.
527      *
528      *   @param  __nu  The order of the Neumann function.
529      *   @param  __x   The argument of the Neumann function.
530      *   @return  The output Neumann function.
531      */
532     template<typename _Tp>
533     _Tp
__cyl_neumann_n(_Tp __nu,_Tp __x)534     __cyl_neumann_n(_Tp __nu, _Tp __x)
535     {
536       if (__nu < _Tp(0) || __x < _Tp(0))
537         std::__throw_domain_error(__N("Bad argument "
538                                       "in __cyl_neumann_n."));
539       else if (__isnan(__nu) || __isnan(__x))
540         return std::numeric_limits<_Tp>::quiet_NaN();
541       else if (__x > _Tp(1000))
542         {
543           _Tp __J_nu, __N_nu;
544           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
545           return __N_nu;
546         }
547       else
548         {
549           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
550           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
551           return __N_nu;
552         }
553     }
554 
555 
556     /**
557      *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
558      *           and Neumann @f$ n_n(x) @f$ functions and their first
559      *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
560      *           respectively.
561      *
562      *   @param  __n  The order of the spherical Bessel function.
563      *   @param  __x  The argument of the spherical Bessel function.
564      *   @param  __j_n  The output spherical Bessel function.
565      *   @param  __n_n  The output spherical Neumann function.
566      *   @param  __jp_n The output derivative of the spherical Bessel function.
567      *   @param  __np_n The output derivative of the spherical Neumann function.
568      */
569     template <typename _Tp>
570     void
__sph_bessel_jn(unsigned int __n,_Tp __x,_Tp & __j_n,_Tp & __n_n,_Tp & __jp_n,_Tp & __np_n)571     __sph_bessel_jn(unsigned int __n, _Tp __x,
572                     _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
573     {
574       const _Tp __nu = _Tp(__n) + _Tp(0.5L);
575 
576       _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
577       __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
578 
579       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
580                          / std::sqrt(__x);
581 
582       __j_n = __factor * __J_nu;
583       __n_n = __factor * __N_nu;
584       __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
585       __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
586 
587       return;
588     }
589 
590 
591     /**
592      *   @brief  Return the spherical Bessel function
593      *           @f$ j_n(x) @f$ of order n.
594      *
595      *   The spherical Bessel function is defined by:
596      *   @f[
597      *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
598      *   @f]
599      *
600      *   @param  __n  The order of the spherical Bessel function.
601      *   @param  __x  The argument of the spherical Bessel function.
602      *   @return  The output spherical Bessel function.
603      */
604     template <typename _Tp>
605     _Tp
__sph_bessel(unsigned int __n,_Tp __x)606     __sph_bessel(unsigned int __n, _Tp __x)
607     {
608       if (__x < _Tp(0))
609         std::__throw_domain_error(__N("Bad argument "
610                                       "in __sph_bessel."));
611       else if (__isnan(__x))
612         return std::numeric_limits<_Tp>::quiet_NaN();
613       else if (__x == _Tp(0))
614         {
615           if (__n == 0)
616             return _Tp(1);
617           else
618             return _Tp(0);
619         }
620       else
621         {
622           _Tp __j_n, __n_n, __jp_n, __np_n;
623           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
624           return __j_n;
625         }
626     }
627 
628 
629     /**
630      *   @brief  Return the spherical Neumann function
631      *           @f$ n_n(x) @f$.
632      *
633      *   The spherical Neumann function is defined by:
634      *   @f[
635      *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
636      *   @f]
637      *
638      *   @param  __n  The order of the spherical Neumann function.
639      *   @param  __x  The argument of the spherical Neumann function.
640      *   @return  The output spherical Neumann function.
641      */
642     template <typename _Tp>
643     _Tp
__sph_neumann(unsigned int __n,_Tp __x)644     __sph_neumann(unsigned int __n, _Tp __x)
645     {
646       if (__x < _Tp(0))
647         std::__throw_domain_error(__N("Bad argument "
648                                       "in __sph_neumann."));
649       else if (__isnan(__x))
650         return std::numeric_limits<_Tp>::quiet_NaN();
651       else if (__x == _Tp(0))
652         return -std::numeric_limits<_Tp>::infinity();
653       else
654         {
655           _Tp __j_n, __n_n, __jp_n, __np_n;
656           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
657           return __n_n;
658         }
659     }
660   } // namespace __detail
661 #undef _GLIBCXX_MATH_NS
662 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
663 } // namespace tr1
664 #endif
665 
666 _GLIBCXX_END_NAMESPACE_VERSION
667 }
668 
669 #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
670