1 // Special functions -*- C++ -*-
2 
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/modified_bessel_func.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29 
30 //
31 // ISO C++ 14882 TR1: 5.2  Special functions
32 //
33 
34 // Written by Edward Smith-Rowland.
35 //
36 // References:
37 //   (1) Handbook of Mathematical Functions,
38 //       Ed. Milton Abramowitz and Irene A. Stegun,
39 //       Dover Publications,
40 //       Section 9, pp. 355-434, Section 10 pp. 435-478
41 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
42 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
43 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
44 //       2nd ed, pp. 246-249.
45 
46 #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
47 #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
48 
49 #include <tr1/special_function_util.h>
50 
51 namespace std _GLIBCXX_VISIBILITY(default)
52 {
53 _GLIBCXX_BEGIN_NAMESPACE_VERSION
54 
55 #if _GLIBCXX_USE_STD_SPEC_FUNCS
56 #elif defined(_GLIBCXX_TR1_CMATH)
57 namespace tr1
58 {
59 #else
60 # error do not include this header directly, use <cmath> or <tr1/cmath>
61 #endif
62   // [5.2] Special functions
63 
64   // Implementation-space details.
65   namespace __detail
66   {
67     /**
68      *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
69      *           @f$ K_\nu(x) @f$ and their first derivatives
70      *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
71      *           These four functions are computed together for numerical
72      *           stability.
73      *
74      *   @param  __nu  The order of the Bessel functions.
75      *   @param  __x   The argument of the Bessel functions.
76      *   @param  __Inu  The output regular modified Bessel function.
77      *   @param  __Knu  The output irregular modified Bessel function.
78      *   @param  __Ipnu  The output derivative of the regular
79      *                   modified Bessel function.
80      *   @param  __Kpnu  The output derivative of the irregular
81      *                   modified Bessel function.
82      */
83     template <typename _Tp>
84     void
__bessel_ik(_Tp __nu,_Tp __x,_Tp & __Inu,_Tp & __Knu,_Tp & __Ipnu,_Tp & __Kpnu)85     __bessel_ik(_Tp __nu, _Tp __x,
86                 _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
87     {
88       if (__x == _Tp(0))
89         {
90           if (__nu == _Tp(0))
91             {
92               __Inu = _Tp(1);
93               __Ipnu = _Tp(0);
94             }
95           else if (__nu == _Tp(1))
96             {
97               __Inu = _Tp(0);
98               __Ipnu = _Tp(0.5L);
99             }
100           else
101             {
102               __Inu = _Tp(0);
103               __Ipnu = _Tp(0);
104             }
105           __Knu = std::numeric_limits<_Tp>::infinity();
106           __Kpnu = -std::numeric_limits<_Tp>::infinity();
107           return;
108         }
109 
110       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
111       const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
112       const int __max_iter = 15000;
113       const _Tp __x_min = _Tp(2);
114 
115       const int __nl = static_cast<int>(__nu + _Tp(0.5L));
116 
117       const _Tp __mu = __nu - __nl;
118       const _Tp __mu2 = __mu * __mu;
119       const _Tp __xi = _Tp(1) / __x;
120       const _Tp __xi2 = _Tp(2) * __xi;
121       _Tp __h = __nu * __xi;
122       if ( __h < __fp_min )
123         __h = __fp_min;
124       _Tp __b = __xi2 * __nu;
125       _Tp __d = _Tp(0);
126       _Tp __c = __h;
127       int __i;
128       for ( __i = 1; __i <= __max_iter; ++__i )
129         {
130           __b += __xi2;
131           __d = _Tp(1) / (__b + __d);
132           __c = __b + _Tp(1) / __c;
133           const _Tp __del = __c * __d;
134           __h *= __del;
135           if (std::abs(__del - _Tp(1)) < __eps)
136             break;
137         }
138       if (__i > __max_iter)
139         std::__throw_runtime_error(__N("Argument x too large "
140                                        "in __bessel_ik; "
141                                        "try asymptotic expansion."));
142       _Tp __Inul = __fp_min;
143       _Tp __Ipnul = __h * __Inul;
144       _Tp __Inul1 = __Inul;
145       _Tp __Ipnu1 = __Ipnul;
146       _Tp __fact = __nu * __xi;
147       for (int __l = __nl; __l >= 1; --__l)
148         {
149           const _Tp __Inutemp = __fact * __Inul + __Ipnul;
150           __fact -= __xi;
151           __Ipnul = __fact * __Inutemp + __Inul;
152           __Inul = __Inutemp;
153         }
154       _Tp __f = __Ipnul / __Inul;
155       _Tp __Kmu, __Knu1;
156       if (__x < __x_min)
157         {
158           const _Tp __x2 = __x / _Tp(2);
159           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
160           const _Tp __fact = (std::abs(__pimu) < __eps
161                             ? _Tp(1) : __pimu / std::sin(__pimu));
162           _Tp __d = -std::log(__x2);
163           _Tp __e = __mu * __d;
164           const _Tp __fact2 = (std::abs(__e) < __eps
165                             ? _Tp(1) : std::sinh(__e) / __e);
166           _Tp __gam1, __gam2, __gampl, __gammi;
167           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
168           _Tp __ff = __fact
169                    * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
170           _Tp __sum = __ff;
171           __e = std::exp(__e);
172           _Tp __p = __e / (_Tp(2) * __gampl);
173           _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
174           _Tp __c = _Tp(1);
175           __d = __x2 * __x2;
176           _Tp __sum1 = __p;
177           int __i;
178           for (__i = 1; __i <= __max_iter; ++__i)
179             {
180               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
181               __c *= __d / __i;
182               __p /= __i - __mu;
183               __q /= __i + __mu;
184               const _Tp __del = __c * __ff;
185               __sum += __del;
186               const _Tp __del1 = __c * (__p - __i * __ff);
187               __sum1 += __del1;
188               if (std::abs(__del) < __eps * std::abs(__sum))
189                 break;
190             }
191           if (__i > __max_iter)
192             std::__throw_runtime_error(__N("Bessel k series failed to converge "
193                                            "in __bessel_ik."));
194           __Kmu = __sum;
195           __Knu1 = __sum1 * __xi2;
196         }
197       else
198         {
199           _Tp __b = _Tp(2) * (_Tp(1) + __x);
200           _Tp __d = _Tp(1) / __b;
201           _Tp __delh = __d;
202           _Tp __h = __delh;
203           _Tp __q1 = _Tp(0);
204           _Tp __q2 = _Tp(1);
205           _Tp __a1 = _Tp(0.25L) - __mu2;
206           _Tp __q = __c = __a1;
207           _Tp __a = -__a1;
208           _Tp __s = _Tp(1) + __q * __delh;
209           int __i;
210           for (__i = 2; __i <= __max_iter; ++__i)
211             {
212               __a -= 2 * (__i - 1);
213               __c = -__a * __c / __i;
214               const _Tp __qnew = (__q1 - __b * __q2) / __a;
215               __q1 = __q2;
216               __q2 = __qnew;
217               __q += __c * __qnew;
218               __b += _Tp(2);
219               __d = _Tp(1) / (__b + __a * __d);
220               __delh = (__b * __d - _Tp(1)) * __delh;
221               __h += __delh;
222               const _Tp __dels = __q * __delh;
223               __s += __dels;
224               if ( std::abs(__dels / __s) < __eps )
225                 break;
226             }
227           if (__i > __max_iter)
228             std::__throw_runtime_error(__N("Steed's method failed "
229                                            "in __bessel_ik."));
230           __h = __a1 * __h;
231           __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
232                 * std::exp(-__x) / __s;
233           __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
234         }
235 
236       _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
237       _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
238       __Inu = __Inumu * __Inul1 / __Inul;
239       __Ipnu = __Inumu * __Ipnu1 / __Inul;
240       for ( __i = 1; __i <= __nl; ++__i )
241         {
242           const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
243           __Kmu = __Knu1;
244           __Knu1 = __Knutemp;
245         }
246       __Knu = __Kmu;
247       __Kpnu = __nu * __xi * __Kmu - __Knu1;
248 
249       return;
250     }
251 
252 
253     /**
254      *   @brief  Return the regular modified Bessel function of order
255      *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
256      *
257      *   The regular modified cylindrical Bessel function is:
258      *   @f[
259      *    I_{\nu}(x) = \sum_{k=0}^{\infty}
260      *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
261      *   @f]
262      *
263      *   @param  __nu  The order of the regular modified Bessel function.
264      *   @param  __x   The argument of the regular modified Bessel function.
265      *   @return  The output regular modified Bessel function.
266      */
267     template<typename _Tp>
268     _Tp
__cyl_bessel_i(_Tp __nu,_Tp __x)269     __cyl_bessel_i(_Tp __nu, _Tp __x)
270     {
271       if (__nu < _Tp(0) || __x < _Tp(0))
272         std::__throw_domain_error(__N("Bad argument "
273                                       "in __cyl_bessel_i."));
274       else if (__isnan(__nu) || __isnan(__x))
275         return std::numeric_limits<_Tp>::quiet_NaN();
276       else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
277         return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
278       else
279         {
280           _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
281           __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
282           return __I_nu;
283         }
284     }
285 
286 
287     /**
288      *   @brief  Return the irregular modified Bessel function
289      *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
290      *
291      *   The irregular modified Bessel function is defined by:
292      *   @f[
293      *      K_{\nu}(x) = \frac{\pi}{2}
294      *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
295      *   @f]
296      *   where for integral \f$ \nu = n \f$ a limit is taken:
297      *   \f$ lim_{\nu \to n} \f$.
298      *
299      *   @param  __nu  The order of the irregular modified Bessel function.
300      *   @param  __x   The argument of the irregular modified Bessel function.
301      *   @return  The output irregular modified Bessel function.
302      */
303     template<typename _Tp>
304     _Tp
__cyl_bessel_k(_Tp __nu,_Tp __x)305     __cyl_bessel_k(_Tp __nu, _Tp __x)
306     {
307       if (__nu < _Tp(0) || __x < _Tp(0))
308         std::__throw_domain_error(__N("Bad argument "
309                                       "in __cyl_bessel_k."));
310       else if (__isnan(__nu) || __isnan(__x))
311         return std::numeric_limits<_Tp>::quiet_NaN();
312       else
313         {
314           _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
315           __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
316           return __K_nu;
317         }
318     }
319 
320 
321     /**
322      *   @brief  Compute the spherical modified Bessel functions
323      *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
324      *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
325      *           respectively.
326      *
327      *   @param  __n  The order of the modified spherical Bessel function.
328      *   @param  __x  The argument of the modified spherical Bessel function.
329      *   @param  __i_n  The output regular modified spherical Bessel function.
330      *   @param  __k_n  The output irregular modified spherical
331      *                  Bessel function.
332      *   @param  __ip_n  The output derivative of the regular modified
333      *                   spherical Bessel function.
334      *   @param  __kp_n  The output derivative of the irregular modified
335      *                   spherical Bessel function.
336      */
337     template <typename _Tp>
338     void
__sph_bessel_ik(unsigned int __n,_Tp __x,_Tp & __i_n,_Tp & __k_n,_Tp & __ip_n,_Tp & __kp_n)339     __sph_bessel_ik(unsigned int __n, _Tp __x,
340                     _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
341     {
342       const _Tp __nu = _Tp(__n) + _Tp(0.5L);
343 
344       _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
345       __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
346 
347       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
348                          / std::sqrt(__x);
349 
350       __i_n = __factor * __I_nu;
351       __k_n = __factor * __K_nu;
352       __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
353       __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
354 
355       return;
356     }
357 
358 
359     /**
360      *   @brief  Compute the Airy functions
361      *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
362      *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
363      *           respectively.
364      *
365      *   @param  __x  The argument of the Airy functions.
366      *   @param  __Ai  The output Airy function of the first kind.
367      *   @param  __Bi  The output Airy function of the second kind.
368      *   @param  __Aip  The output derivative of the Airy function
369      *                  of the first kind.
370      *   @param  __Bip  The output derivative of the Airy function
371      *                  of the second kind.
372      */
373     template <typename _Tp>
374     void
__airy(_Tp __x,_Tp & __Ai,_Tp & __Bi,_Tp & __Aip,_Tp & __Bip)375     __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
376     {
377       const _Tp __absx = std::abs(__x);
378       const _Tp __rootx = std::sqrt(__absx);
379       const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
380       const _Tp _S_inf = std::numeric_limits<_Tp>::infinity();
381 
382       if (__isnan(__x))
383         __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN();
384       else if (__z == _S_inf)
385         {
386 	  __Aip = __Ai = _Tp(0);
387 	  __Bip = __Bi = _S_inf;
388 	}
389       else if (__z == -_S_inf)
390 	__Bip = __Aip = __Bi = __Ai = _Tp(0);
391       else if (__x > _Tp(0))
392         {
393           _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
394 
395           __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
396           __Ai = __rootx * __K_nu
397                / (__numeric_constants<_Tp>::__sqrt3()
398                 * __numeric_constants<_Tp>::__pi());
399           __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
400                  + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
401 
402           __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
403           __Aip = -__x * __K_nu
404                 / (__numeric_constants<_Tp>::__sqrt3()
405                  * __numeric_constants<_Tp>::__pi());
406           __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
407                       + _Tp(2) * __I_nu
408                       / __numeric_constants<_Tp>::__sqrt3());
409         }
410       else if (__x < _Tp(0))
411         {
412           _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
413 
414           __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
415           __Ai = __rootx * (__J_nu
416                     - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
417           __Bi = -__rootx * (__N_nu
418                     + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
419 
420           __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
421           __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
422                           + __J_nu) / _Tp(2);
423           __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
424                           - __N_nu) / _Tp(2);
425         }
426       else
427         {
428           //  Reference:
429           //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
430           //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
431           __Ai = _Tp(0.35502805388781723926L);
432           __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
433 
434           //  Reference:
435           //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
436           //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
437           __Aip = -_Tp(0.25881940379280679840L);
438           __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
439         }
440 
441       return;
442     }
443   } // namespace __detail
444 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
445 } // namespace tr1
446 #endif
447 
448 _GLIBCXX_END_NAMESPACE_VERSION
449 }
450 
451 #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
452