1// <functional> -*- C++ -*-
2
3// Copyright (C) 2001-2014 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 * Copyright (c) 1997
27 * Silicon Graphics Computer Systems, Inc.
28 *
29 * Permission to use, copy, modify, distribute and sell this software
30 * and its documentation for any purpose is hereby granted without fee,
31 * provided that the above copyright notice appear in all copies and
32 * that both that copyright notice and this permission notice appear
33 * in supporting documentation.  Silicon Graphics makes no
34 * representations about the suitability of this software for any
35 * purpose.  It is provided "as is" without express or implied warranty.
36 *
37 */
38
39/** @file include/functional
40 *  This is a Standard C++ Library header.
41 */
42
43#ifndef _GLIBCXX_FUNCTIONAL
44#define _GLIBCXX_FUNCTIONAL 1
45
46#pragma GCC system_header
47
48#include <bits/c++config.h>
49#include <bits/stl_function.h>
50
51#if __cplusplus >= 201103L
52
53#include <typeinfo>
54#include <new>
55#include <tuple>
56#include <type_traits>
57#include <bits/functexcept.h>
58#include <bits/functional_hash.h>
59
60namespace std _GLIBCXX_VISIBILITY(default)
61{
62_GLIBCXX_BEGIN_NAMESPACE_VERSION
63
64  template<typename _MemberPointer>
65    class _Mem_fn;
66  template<typename _Tp, typename _Class>
67    _Mem_fn<_Tp _Class::*>
68    mem_fn(_Tp _Class::*) noexcept;
69
70_GLIBCXX_HAS_NESTED_TYPE(result_type)
71
72  /// If we have found a result_type, extract it.
73  template<bool _Has_result_type, typename _Functor>
74    struct _Maybe_get_result_type
75    { };
76
77  template<typename _Functor>
78    struct _Maybe_get_result_type<true, _Functor>
79    { typedef typename _Functor::result_type result_type; };
80
81  /**
82   *  Base class for any function object that has a weak result type, as
83   *  defined in 3.3/3 of TR1.
84  */
85  template<typename _Functor>
86    struct _Weak_result_type_impl
87    : _Maybe_get_result_type<__has_result_type<_Functor>::value, _Functor>
88    { };
89
90  /// Retrieve the result type for a function type.
91  template<typename _Res, typename... _ArgTypes>
92    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
93    { typedef _Res result_type; };
94
95  template<typename _Res, typename... _ArgTypes>
96    struct _Weak_result_type_impl<_Res(_ArgTypes......)>
97    { typedef _Res result_type; };
98
99  template<typename _Res, typename... _ArgTypes>
100    struct _Weak_result_type_impl<_Res(_ArgTypes...) const>
101    { typedef _Res result_type; };
102
103  template<typename _Res, typename... _ArgTypes>
104    struct _Weak_result_type_impl<_Res(_ArgTypes......) const>
105    { typedef _Res result_type; };
106
107  template<typename _Res, typename... _ArgTypes>
108    struct _Weak_result_type_impl<_Res(_ArgTypes...) volatile>
109    { typedef _Res result_type; };
110
111  template<typename _Res, typename... _ArgTypes>
112    struct _Weak_result_type_impl<_Res(_ArgTypes......) volatile>
113    { typedef _Res result_type; };
114
115  template<typename _Res, typename... _ArgTypes>
116    struct _Weak_result_type_impl<_Res(_ArgTypes...) const volatile>
117    { typedef _Res result_type; };
118
119  template<typename _Res, typename... _ArgTypes>
120    struct _Weak_result_type_impl<_Res(_ArgTypes......) const volatile>
121    { typedef _Res result_type; };
122
123  /// Retrieve the result type for a function reference.
124  template<typename _Res, typename... _ArgTypes>
125    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
126    { typedef _Res result_type; };
127
128  template<typename _Res, typename... _ArgTypes>
129    struct _Weak_result_type_impl<_Res(&)(_ArgTypes......)>
130    { typedef _Res result_type; };
131
132  /// Retrieve the result type for a function pointer.
133  template<typename _Res, typename... _ArgTypes>
134    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
135    { typedef _Res result_type; };
136
137  template<typename _Res, typename... _ArgTypes>
138    struct _Weak_result_type_impl<_Res(*)(_ArgTypes......)>
139    { typedef _Res result_type; };
140
141  /// Retrieve result type for a member function pointer.
142  template<typename _Res, typename _Class, typename... _ArgTypes>
143    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
144    { typedef _Res result_type; };
145
146  template<typename _Res, typename _Class, typename... _ArgTypes>
147    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)>
148    { typedef _Res result_type; };
149
150  /// Retrieve result type for a const member function pointer.
151  template<typename _Res, typename _Class, typename... _ArgTypes>
152    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
153    { typedef _Res result_type; };
154
155  template<typename _Res, typename _Class, typename... _ArgTypes>
156    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) const>
157    { typedef _Res result_type; };
158
159  /// Retrieve result type for a volatile member function pointer.
160  template<typename _Res, typename _Class, typename... _ArgTypes>
161    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
162    { typedef _Res result_type; };
163
164  template<typename _Res, typename _Class, typename... _ArgTypes>
165    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) volatile>
166    { typedef _Res result_type; };
167
168  /// Retrieve result type for a const volatile member function pointer.
169  template<typename _Res, typename _Class, typename... _ArgTypes>
170    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)
171				  const volatile>
172    { typedef _Res result_type; };
173
174  template<typename _Res, typename _Class, typename... _ArgTypes>
175    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)
176				  const volatile>
177    { typedef _Res result_type; };
178
179  /**
180   *  Strip top-level cv-qualifiers from the function object and let
181   *  _Weak_result_type_impl perform the real work.
182  */
183  template<typename _Functor>
184    struct _Weak_result_type
185    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
186    { };
187
188  /**
189   * Invoke a function object, which may be either a member pointer or a
190   * function object. The first parameter will tell which.
191   */
192  template<typename _Functor, typename... _Args>
193    inline
194    typename enable_if<
195	     (!is_member_pointer<_Functor>::value
196	      && !is_function<_Functor>::value
197	      && !is_function<typename remove_pointer<_Functor>::type>::value),
198	     typename result_of<_Functor&(_Args&&...)>::type
199	   >::type
200    __invoke(_Functor& __f, _Args&&... __args)
201    {
202      return __f(std::forward<_Args>(__args)...);
203    }
204
205  template<typename _Functor, typename... _Args>
206    inline
207    typename enable_if<
208             (is_member_pointer<_Functor>::value
209              && !is_function<_Functor>::value
210              && !is_function<typename remove_pointer<_Functor>::type>::value),
211             typename result_of<_Functor(_Args&&...)>::type
212           >::type
213    __invoke(_Functor& __f, _Args&&... __args)
214    {
215      return std::mem_fn(__f)(std::forward<_Args>(__args)...);
216    }
217
218  // To pick up function references (that will become function pointers)
219  template<typename _Functor, typename... _Args>
220    inline
221    typename enable_if<
222	     (is_pointer<_Functor>::value
223	      && is_function<typename remove_pointer<_Functor>::type>::value),
224	     typename result_of<_Functor(_Args&&...)>::type
225	   >::type
226    __invoke(_Functor __f, _Args&&... __args)
227    {
228      return __f(std::forward<_Args>(__args)...);
229    }
230
231  /**
232   *  Knowing which of unary_function and binary_function _Tp derives
233   *  from, derives from the same and ensures that reference_wrapper
234   *  will have a weak result type. See cases below.
235   */
236  template<bool _Unary, bool _Binary, typename _Tp>
237    struct _Reference_wrapper_base_impl;
238
239  // None of the nested argument types.
240  template<typename _Tp>
241    struct _Reference_wrapper_base_impl<false, false, _Tp>
242    : _Weak_result_type<_Tp>
243    { };
244
245  // Nested argument_type only.
246  template<typename _Tp>
247    struct _Reference_wrapper_base_impl<true, false, _Tp>
248    : _Weak_result_type<_Tp>
249    {
250      typedef typename _Tp::argument_type argument_type;
251    };
252
253  // Nested first_argument_type and second_argument_type only.
254  template<typename _Tp>
255    struct _Reference_wrapper_base_impl<false, true, _Tp>
256    : _Weak_result_type<_Tp>
257    {
258      typedef typename _Tp::first_argument_type first_argument_type;
259      typedef typename _Tp::second_argument_type second_argument_type;
260    };
261
262  // All the nested argument types.
263   template<typename _Tp>
264    struct _Reference_wrapper_base_impl<true, true, _Tp>
265    : _Weak_result_type<_Tp>
266    {
267      typedef typename _Tp::argument_type argument_type;
268      typedef typename _Tp::first_argument_type first_argument_type;
269      typedef typename _Tp::second_argument_type second_argument_type;
270    };
271
272  _GLIBCXX_HAS_NESTED_TYPE(argument_type)
273  _GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
274  _GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
275
276  /**
277   *  Derives from unary_function or binary_function when it
278   *  can. Specializations handle all of the easy cases. The primary
279   *  template determines what to do with a class type, which may
280   *  derive from both unary_function and binary_function.
281  */
282  template<typename _Tp>
283    struct _Reference_wrapper_base
284    : _Reference_wrapper_base_impl<
285      __has_argument_type<_Tp>::value,
286      __has_first_argument_type<_Tp>::value
287      && __has_second_argument_type<_Tp>::value,
288      _Tp>
289    { };
290
291  // - a function type (unary)
292  template<typename _Res, typename _T1>
293    struct _Reference_wrapper_base<_Res(_T1)>
294    : unary_function<_T1, _Res>
295    { };
296
297  template<typename _Res, typename _T1>
298    struct _Reference_wrapper_base<_Res(_T1) const>
299    : unary_function<_T1, _Res>
300    { };
301
302  template<typename _Res, typename _T1>
303    struct _Reference_wrapper_base<_Res(_T1) volatile>
304    : unary_function<_T1, _Res>
305    { };
306
307  template<typename _Res, typename _T1>
308    struct _Reference_wrapper_base<_Res(_T1) const volatile>
309    : unary_function<_T1, _Res>
310    { };
311
312  // - a function type (binary)
313  template<typename _Res, typename _T1, typename _T2>
314    struct _Reference_wrapper_base<_Res(_T1, _T2)>
315    : binary_function<_T1, _T2, _Res>
316    { };
317
318  template<typename _Res, typename _T1, typename _T2>
319    struct _Reference_wrapper_base<_Res(_T1, _T2) const>
320    : binary_function<_T1, _T2, _Res>
321    { };
322
323  template<typename _Res, typename _T1, typename _T2>
324    struct _Reference_wrapper_base<_Res(_T1, _T2) volatile>
325    : binary_function<_T1, _T2, _Res>
326    { };
327
328  template<typename _Res, typename _T1, typename _T2>
329    struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile>
330    : binary_function<_T1, _T2, _Res>
331    { };
332
333  // - a function pointer type (unary)
334  template<typename _Res, typename _T1>
335    struct _Reference_wrapper_base<_Res(*)(_T1)>
336    : unary_function<_T1, _Res>
337    { };
338
339  // - a function pointer type (binary)
340  template<typename _Res, typename _T1, typename _T2>
341    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
342    : binary_function<_T1, _T2, _Res>
343    { };
344
345  // - a pointer to member function type (unary, no qualifiers)
346  template<typename _Res, typename _T1>
347    struct _Reference_wrapper_base<_Res (_T1::*)()>
348    : unary_function<_T1*, _Res>
349    { };
350
351  // - a pointer to member function type (binary, no qualifiers)
352  template<typename _Res, typename _T1, typename _T2>
353    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
354    : binary_function<_T1*, _T2, _Res>
355    { };
356
357  // - a pointer to member function type (unary, const)
358  template<typename _Res, typename _T1>
359    struct _Reference_wrapper_base<_Res (_T1::*)() const>
360    : unary_function<const _T1*, _Res>
361    { };
362
363  // - a pointer to member function type (binary, const)
364  template<typename _Res, typename _T1, typename _T2>
365    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
366    : binary_function<const _T1*, _T2, _Res>
367    { };
368
369  // - a pointer to member function type (unary, volatile)
370  template<typename _Res, typename _T1>
371    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
372    : unary_function<volatile _T1*, _Res>
373    { };
374
375  // - a pointer to member function type (binary, volatile)
376  template<typename _Res, typename _T1, typename _T2>
377    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
378    : binary_function<volatile _T1*, _T2, _Res>
379    { };
380
381  // - a pointer to member function type (unary, const volatile)
382  template<typename _Res, typename _T1>
383    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
384    : unary_function<const volatile _T1*, _Res>
385    { };
386
387  // - a pointer to member function type (binary, const volatile)
388  template<typename _Res, typename _T1, typename _T2>
389    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
390    : binary_function<const volatile _T1*, _T2, _Res>
391    { };
392
393  /**
394   *  @brief Primary class template for reference_wrapper.
395   *  @ingroup functors
396   *  @{
397   */
398  template<typename _Tp>
399    class reference_wrapper
400    : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
401    {
402      _Tp* _M_data;
403
404    public:
405      typedef _Tp type;
406
407      reference_wrapper(_Tp& __indata) noexcept
408      : _M_data(std::__addressof(__indata))
409      { }
410
411      reference_wrapper(_Tp&&) = delete;
412
413      reference_wrapper(const reference_wrapper<_Tp>& __inref) noexcept
414      : _M_data(__inref._M_data)
415      { }
416
417      reference_wrapper&
418      operator=(const reference_wrapper<_Tp>& __inref) noexcept
419      {
420	_M_data = __inref._M_data;
421	return *this;
422      }
423
424      operator _Tp&() const noexcept
425      { return this->get(); }
426
427      _Tp&
428      get() const noexcept
429      { return *_M_data; }
430
431      template<typename... _Args>
432	typename result_of<_Tp&(_Args&&...)>::type
433	operator()(_Args&&... __args) const
434	{
435	  return __invoke(get(), std::forward<_Args>(__args)...);
436	}
437    };
438
439
440  /// Denotes a reference should be taken to a variable.
441  template<typename _Tp>
442    inline reference_wrapper<_Tp>
443    ref(_Tp& __t) noexcept
444    { return reference_wrapper<_Tp>(__t); }
445
446  /// Denotes a const reference should be taken to a variable.
447  template<typename _Tp>
448    inline reference_wrapper<const _Tp>
449    cref(const _Tp& __t) noexcept
450    { return reference_wrapper<const _Tp>(__t); }
451
452  template<typename _Tp>
453    void ref(const _Tp&&) = delete;
454
455  template<typename _Tp>
456    void cref(const _Tp&&) = delete;
457
458  /// Partial specialization.
459  template<typename _Tp>
460    inline reference_wrapper<_Tp>
461    ref(reference_wrapper<_Tp> __t) noexcept
462    { return ref(__t.get()); }
463
464  /// Partial specialization.
465  template<typename _Tp>
466    inline reference_wrapper<const _Tp>
467    cref(reference_wrapper<_Tp> __t) noexcept
468    { return cref(__t.get()); }
469
470  // @} group functors
471
472  template<typename... _Types>
473    struct _Pack : integral_constant<size_t, sizeof...(_Types)>
474    { };
475
476  template<typename _From, typename _To, bool = _From::value == _To::value>
477    struct _AllConvertible : false_type
478    { };
479
480  template<typename... _From, typename... _To>
481    struct _AllConvertible<_Pack<_From...>, _Pack<_To...>, true>
482    : __and_<is_convertible<_From, _To>...>
483    { };
484
485  template<typename _Tp1, typename _Tp2>
486    using _NotSame = __not_<is_same<typename std::decay<_Tp1>::type,
487				    typename std::decay<_Tp2>::type>>;
488
489  /**
490   * Derives from @c unary_function or @c binary_function, or perhaps
491   * nothing, depending on the number of arguments provided. The
492   * primary template is the basis case, which derives nothing.
493   */
494  template<typename _Res, typename... _ArgTypes>
495    struct _Maybe_unary_or_binary_function { };
496
497  /// Derives from @c unary_function, as appropriate.
498  template<typename _Res, typename _T1>
499    struct _Maybe_unary_or_binary_function<_Res, _T1>
500    : std::unary_function<_T1, _Res> { };
501
502  /// Derives from @c binary_function, as appropriate.
503  template<typename _Res, typename _T1, typename _T2>
504    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
505    : std::binary_function<_T1, _T2, _Res> { };
506
507  /// Implementation of @c mem_fn for member function pointers.
508  template<typename _Res, typename _Class, typename... _ArgTypes>
509    class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
510    : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
511    {
512      typedef _Res (_Class::*_Functor)(_ArgTypes...);
513
514      template<typename _Tp, typename... _Args>
515	_Res
516	_M_call(_Tp&& __object, const volatile _Class *,
517		_Args&&... __args) const
518	{
519	  return (std::forward<_Tp>(__object).*__pmf)
520	    (std::forward<_Args>(__args)...);
521	}
522
523      template<typename _Tp, typename... _Args>
524	_Res
525	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
526	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
527
528      // Require each _Args to be convertible to corresponding _ArgTypes
529      template<typename... _Args>
530	using _RequireValidArgs
531	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
532
533      // Require each _Args to be convertible to corresponding _ArgTypes
534      // and require _Tp is not _Class, _Class& or _Class*
535      template<typename _Tp, typename... _Args>
536	using _RequireValidArgs2
537	  = _Require<_NotSame<_Class, _Tp>, _NotSame<_Class*, _Tp>,
538		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
539
540      // Require each _Args to be convertible to corresponding _ArgTypes
541      // and require _Tp is _Class or derived from _Class
542      template<typename _Tp, typename... _Args>
543	using _RequireValidArgs3
544	  = _Require<is_base_of<_Class, _Tp>,
545		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
546
547    public:
548      typedef _Res result_type;
549
550      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
551
552      // Handle objects
553      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
554	_Res
555	operator()(_Class& __object, _Args&&... __args) const
556	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }
557
558      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
559	_Res
560	operator()(_Class&& __object, _Args&&... __args) const
561	{
562	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
563	}
564
565      // Handle pointers
566      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
567	_Res
568	operator()(_Class* __object, _Args&&... __args) const
569	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }
570
571      // Handle smart pointers, references and pointers to derived
572      template<typename _Tp, typename... _Args,
573	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
574	_Res
575	operator()(_Tp&& __object, _Args&&... __args) const
576	{
577	  return _M_call(std::forward<_Tp>(__object), &__object,
578	      std::forward<_Args>(__args)...);
579	}
580
581      template<typename _Tp, typename... _Args,
582	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
583	_Res
584	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
585	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }
586
587    private:
588      _Functor __pmf;
589    };
590
591  /// Implementation of @c mem_fn for const member function pointers.
592  template<typename _Res, typename _Class, typename... _ArgTypes>
593    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
594    : public _Maybe_unary_or_binary_function<_Res, const _Class*,
595					     _ArgTypes...>
596    {
597      typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
598
599      template<typename _Tp, typename... _Args>
600	_Res
601	_M_call(_Tp&& __object, const volatile _Class *,
602		_Args&&... __args) const
603	{
604	  return (std::forward<_Tp>(__object).*__pmf)
605	    (std::forward<_Args>(__args)...);
606	}
607
608      template<typename _Tp, typename... _Args>
609	_Res
610	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
611	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
612
613      template<typename... _Args>
614	using _RequireValidArgs
615	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
616
617      template<typename _Tp, typename... _Args>
618	using _RequireValidArgs2
619	  = _Require<_NotSame<_Class, _Tp>, _NotSame<const _Class*, _Tp>,
620		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
621
622      template<typename _Tp, typename... _Args>
623	using _RequireValidArgs3
624	  = _Require<is_base_of<_Class, _Tp>,
625		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
626
627    public:
628      typedef _Res result_type;
629
630      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
631
632      // Handle objects
633      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
634	_Res
635	operator()(const _Class& __object, _Args&&... __args) const
636	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }
637
638      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
639	_Res
640	operator()(const _Class&& __object, _Args&&... __args) const
641	{
642	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
643	}
644
645      // Handle pointers
646      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
647	_Res
648	operator()(const _Class* __object, _Args&&... __args) const
649	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }
650
651      // Handle smart pointers, references and pointers to derived
652      template<typename _Tp, typename... _Args,
653	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
654	_Res operator()(_Tp&& __object, _Args&&... __args) const
655	{
656	  return _M_call(std::forward<_Tp>(__object), &__object,
657	      std::forward<_Args>(__args)...);
658	}
659
660      template<typename _Tp, typename... _Args,
661	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
662	_Res
663	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
664	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }
665
666    private:
667      _Functor __pmf;
668    };
669
670  /// Implementation of @c mem_fn for volatile member function pointers.
671  template<typename _Res, typename _Class, typename... _ArgTypes>
672    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
673    : public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
674					     _ArgTypes...>
675    {
676      typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
677
678      template<typename _Tp, typename... _Args>
679	_Res
680	_M_call(_Tp&& __object, const volatile _Class *,
681		_Args&&... __args) const
682	{
683	  return (std::forward<_Tp>(__object).*__pmf)
684	    (std::forward<_Args>(__args)...);
685	}
686
687      template<typename _Tp, typename... _Args>
688	_Res
689	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
690	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
691
692      template<typename... _Args>
693	using _RequireValidArgs
694	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
695
696      template<typename _Tp, typename... _Args>
697	using _RequireValidArgs2
698	  = _Require<_NotSame<_Class, _Tp>, _NotSame<volatile _Class*, _Tp>,
699		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
700
701      template<typename _Tp, typename... _Args>
702	using _RequireValidArgs3
703	  = _Require<is_base_of<_Class, _Tp>,
704		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
705
706    public:
707      typedef _Res result_type;
708
709      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
710
711      // Handle objects
712      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
713	_Res
714	operator()(volatile _Class& __object, _Args&&... __args) const
715	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }
716
717      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
718	_Res
719	operator()(volatile _Class&& __object, _Args&&... __args) const
720	{
721	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
722	}
723
724      // Handle pointers
725      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
726	_Res
727	operator()(volatile _Class* __object, _Args&&... __args) const
728	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }
729
730      // Handle smart pointers, references and pointers to derived
731      template<typename _Tp, typename... _Args,
732	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
733	_Res
734	operator()(_Tp&& __object, _Args&&... __args) const
735	{
736	  return _M_call(std::forward<_Tp>(__object), &__object,
737	      std::forward<_Args>(__args)...);
738	}
739
740      template<typename _Tp, typename... _Args,
741	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
742	_Res
743	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
744	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }
745
746    private:
747      _Functor __pmf;
748    };
749
750  /// Implementation of @c mem_fn for const volatile member function pointers.
751  template<typename _Res, typename _Class, typename... _ArgTypes>
752    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
753    : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
754					     _ArgTypes...>
755    {
756      typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
757
758      template<typename _Tp, typename... _Args>
759	_Res
760	_M_call(_Tp&& __object, const volatile _Class *,
761		_Args&&... __args) const
762	{
763	  return (std::forward<_Tp>(__object).*__pmf)
764	    (std::forward<_Args>(__args)...);
765	}
766
767      template<typename _Tp, typename... _Args>
768	_Res
769	_M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
770	{ return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
771
772      template<typename... _Args>
773	using _RequireValidArgs
774	  = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
775
776      template<typename _Tp, typename... _Args>
777	using _RequireValidArgs2
778	  = _Require<_NotSame<_Class, _Tp>,
779		     _NotSame<const volatile _Class*, _Tp>,
780		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
781
782      template<typename _Tp, typename... _Args>
783	using _RequireValidArgs3
784	  = _Require<is_base_of<_Class, _Tp>,
785		     _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
786
787    public:
788      typedef _Res result_type;
789
790      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
791
792      // Handle objects
793      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
794	_Res
795	operator()(const volatile _Class& __object, _Args&&... __args) const
796	{ return (__object.*__pmf)(std::forward<_Args>(__args)...); }
797
798      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
799	_Res
800	operator()(const volatile _Class&& __object, _Args&&... __args) const
801	{
802	  return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
803	}
804
805      // Handle pointers
806      template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
807	_Res
808	operator()(const volatile _Class* __object, _Args&&... __args) const
809	{ return (__object->*__pmf)(std::forward<_Args>(__args)...); }
810
811      // Handle smart pointers, references and pointers to derived
812      template<typename _Tp, typename... _Args,
813	       typename _Req = _RequireValidArgs2<_Tp, _Args...>>
814	_Res operator()(_Tp&& __object, _Args&&... __args) const
815	{
816	  return _M_call(std::forward<_Tp>(__object), &__object,
817	      std::forward<_Args>(__args)...);
818	}
819
820      template<typename _Tp, typename... _Args,
821	       typename _Req = _RequireValidArgs3<_Tp, _Args...>>
822	_Res
823	operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
824	{ return operator()(__ref.get(), std::forward<_Args>(__args)...); }
825
826    private:
827      _Functor __pmf;
828    };
829
830
831  template<typename _Tp, bool>
832    struct _Mem_fn_const_or_non
833    {
834      typedef const _Tp& type;
835    };
836
837  template<typename _Tp>
838    struct _Mem_fn_const_or_non<_Tp, false>
839    {
840      typedef _Tp& type;
841    };
842
843  template<typename _Res, typename _Class>
844    class _Mem_fn<_Res _Class::*>
845    {
846      using __pm_type = _Res _Class::*;
847
848      // This bit of genius is due to Peter Dimov, improved slightly by
849      // Douglas Gregor.
850      // Made less elegant to support perfect forwarding and noexcept.
851      template<typename _Tp>
852	auto
853	_M_call(_Tp&& __object, const _Class *) const noexcept
854	-> decltype(std::forward<_Tp>(__object).*std::declval<__pm_type&>())
855	{ return std::forward<_Tp>(__object).*__pm; }
856
857      template<typename _Tp, typename _Up>
858	auto
859	_M_call(_Tp&& __object, _Up * const *) const noexcept
860	-> decltype((*std::forward<_Tp>(__object)).*std::declval<__pm_type&>())
861	{ return (*std::forward<_Tp>(__object)).*__pm; }
862
863      template<typename _Tp>
864	auto
865	_M_call(_Tp&& __ptr, const volatile void*) const
866	noexcept(noexcept((*__ptr).*std::declval<__pm_type&>()))
867	-> decltype((*__ptr).*std::declval<__pm_type&>())
868	{ return (*__ptr).*__pm; }
869
870    public:
871      explicit
872      _Mem_fn(_Res _Class::*__pm) noexcept : __pm(__pm) { }
873
874      // Handle objects
875      _Res&
876      operator()(_Class& __object) const noexcept
877      { return __object.*__pm; }
878
879      const _Res&
880      operator()(const _Class& __object) const noexcept
881      { return __object.*__pm; }
882
883      _Res&&
884      operator()(_Class&& __object) const noexcept
885      { return std::forward<_Class>(__object).*__pm; }
886
887      const _Res&&
888      operator()(const _Class&& __object) const noexcept
889      { return std::forward<const _Class>(__object).*__pm; }
890
891      // Handle pointers
892      _Res&
893      operator()(_Class* __object) const noexcept
894      { return __object->*__pm; }
895
896      const _Res&
897      operator()(const _Class* __object) const noexcept
898      { return __object->*__pm; }
899
900      // Handle smart pointers and derived
901      template<typename _Tp, typename _Req = _Require<_NotSame<_Class*, _Tp>>>
902	auto
903	operator()(_Tp&& __unknown) const
904	noexcept(noexcept(std::declval<_Mem_fn*>()->_M_call
905			  (std::forward<_Tp>(__unknown), &__unknown)))
906	-> decltype(this->_M_call(std::forward<_Tp>(__unknown), &__unknown))
907	{ return _M_call(std::forward<_Tp>(__unknown), &__unknown); }
908
909      template<typename _Tp, typename _Req = _Require<is_base_of<_Class, _Tp>>>
910	auto
911	operator()(reference_wrapper<_Tp> __ref) const
912	noexcept(noexcept(std::declval<_Mem_fn&>()(__ref.get())))
913	-> decltype((*this)(__ref.get()))
914	{ return (*this)(__ref.get()); }
915
916    private:
917      _Res _Class::*__pm;
918    };
919
920  // _GLIBCXX_RESOLVE_LIB_DEFECTS
921  // 2048.  Unnecessary mem_fn overloads
922  /**
923   *  @brief Returns a function object that forwards to the member
924   *  pointer @a pm.
925   *  @ingroup functors
926   */
927  template<typename _Tp, typename _Class>
928    inline _Mem_fn<_Tp _Class::*>
929    mem_fn(_Tp _Class::* __pm) noexcept
930    {
931      return _Mem_fn<_Tp _Class::*>(__pm);
932    }
933
934  /**
935   *  @brief Determines if the given type _Tp is a function object
936   *  should be treated as a subexpression when evaluating calls to
937   *  function objects returned by bind(). [TR1 3.6.1]
938   *  @ingroup binders
939   */
940  template<typename _Tp>
941    struct is_bind_expression
942    : public false_type { };
943
944  /**
945   *  @brief Determines if the given type _Tp is a placeholder in a
946   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
947   *  @ingroup binders
948   */
949  template<typename _Tp>
950    struct is_placeholder
951    : public integral_constant<int, 0>
952    { };
953
954  /** @brief The type of placeholder objects defined by libstdc++.
955   *  @ingroup binders
956   */
957  template<int _Num> struct _Placeholder { };
958
959  _GLIBCXX_END_NAMESPACE_VERSION
960
961  /** @namespace std::placeholders
962   *  @brief ISO C++11 entities sub-namespace for functional.
963   *  @ingroup binders
964   */
965  namespace placeholders
966  {
967  _GLIBCXX_BEGIN_NAMESPACE_VERSION
968  /* Define a large number of placeholders. There is no way to
969   * simplify this with variadic templates, because we're introducing
970   * unique names for each.
971   */
972    extern const _Placeholder<1> _1;
973    extern const _Placeholder<2> _2;
974    extern const _Placeholder<3> _3;
975    extern const _Placeholder<4> _4;
976    extern const _Placeholder<5> _5;
977    extern const _Placeholder<6> _6;
978    extern const _Placeholder<7> _7;
979    extern const _Placeholder<8> _8;
980    extern const _Placeholder<9> _9;
981    extern const _Placeholder<10> _10;
982    extern const _Placeholder<11> _11;
983    extern const _Placeholder<12> _12;
984    extern const _Placeholder<13> _13;
985    extern const _Placeholder<14> _14;
986    extern const _Placeholder<15> _15;
987    extern const _Placeholder<16> _16;
988    extern const _Placeholder<17> _17;
989    extern const _Placeholder<18> _18;
990    extern const _Placeholder<19> _19;
991    extern const _Placeholder<20> _20;
992    extern const _Placeholder<21> _21;
993    extern const _Placeholder<22> _22;
994    extern const _Placeholder<23> _23;
995    extern const _Placeholder<24> _24;
996    extern const _Placeholder<25> _25;
997    extern const _Placeholder<26> _26;
998    extern const _Placeholder<27> _27;
999    extern const _Placeholder<28> _28;
1000    extern const _Placeholder<29> _29;
1001  _GLIBCXX_END_NAMESPACE_VERSION
1002  }
1003
1004  _GLIBCXX_BEGIN_NAMESPACE_VERSION
1005
1006  /**
1007   *  Partial specialization of is_placeholder that provides the placeholder
1008   *  number for the placeholder objects defined by libstdc++.
1009   *  @ingroup binders
1010   */
1011  template<int _Num>
1012    struct is_placeholder<_Placeholder<_Num> >
1013    : public integral_constant<int, _Num>
1014    { };
1015
1016  template<int _Num>
1017    struct is_placeholder<const _Placeholder<_Num> >
1018    : public integral_constant<int, _Num>
1019    { };
1020
1021  /**
1022   * Used by _Safe_tuple_element to indicate that there is no tuple
1023   * element at this position.
1024   */
1025  struct _No_tuple_element;
1026
1027  /**
1028   * Implementation helper for _Safe_tuple_element. This primary
1029   * template handles the case where it is safe to use @c
1030   * tuple_element.
1031   */
1032  template<std::size_t __i, typename _Tuple, bool _IsSafe>
1033    struct _Safe_tuple_element_impl
1034    : tuple_element<__i, _Tuple> { };
1035
1036  /**
1037   * Implementation helper for _Safe_tuple_element. This partial
1038   * specialization handles the case where it is not safe to use @c
1039   * tuple_element. We just return @c _No_tuple_element.
1040   */
1041  template<std::size_t __i, typename _Tuple>
1042    struct _Safe_tuple_element_impl<__i, _Tuple, false>
1043    {
1044      typedef _No_tuple_element type;
1045    };
1046
1047  /**
1048   * Like tuple_element, but returns @c _No_tuple_element when
1049   * tuple_element would return an error.
1050   */
1051 template<std::size_t __i, typename _Tuple>
1052   struct _Safe_tuple_element
1053   : _Safe_tuple_element_impl<__i, _Tuple,
1054			      (__i < tuple_size<_Tuple>::value)>
1055   { };
1056
1057  /**
1058   *  Maps an argument to bind() into an actual argument to the bound
1059   *  function object [TR1 3.6.3/5]. Only the first parameter should
1060   *  be specified: the rest are used to determine among the various
1061   *  implementations. Note that, although this class is a function
1062   *  object, it isn't entirely normal because it takes only two
1063   *  parameters regardless of the number of parameters passed to the
1064   *  bind expression. The first parameter is the bound argument and
1065   *  the second parameter is a tuple containing references to the
1066   *  rest of the arguments.
1067   */
1068  template<typename _Arg,
1069	   bool _IsBindExp = is_bind_expression<_Arg>::value,
1070	   bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
1071    class _Mu;
1072
1073  /**
1074   *  If the argument is reference_wrapper<_Tp>, returns the
1075   *  underlying reference. [TR1 3.6.3/5 bullet 1]
1076   */
1077  template<typename _Tp>
1078    class _Mu<reference_wrapper<_Tp>, false, false>
1079    {
1080    public:
1081      typedef _Tp& result_type;
1082
1083      /* Note: This won't actually work for const volatile
1084       * reference_wrappers, because reference_wrapper::get() is const
1085       * but not volatile-qualified. This might be a defect in the TR.
1086       */
1087      template<typename _CVRef, typename _Tuple>
1088	result_type
1089	operator()(_CVRef& __arg, _Tuple&) const volatile
1090	{ return __arg.get(); }
1091    };
1092
1093  /**
1094   *  If the argument is a bind expression, we invoke the underlying
1095   *  function object with the same cv-qualifiers as we are given and
1096   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
1097   */
1098  template<typename _Arg>
1099    class _Mu<_Arg, true, false>
1100    {
1101    public:
1102      template<typename _CVArg, typename... _Args>
1103	auto
1104	operator()(_CVArg& __arg,
1105		   tuple<_Args...>& __tuple) const volatile
1106	-> decltype(__arg(declval<_Args>()...))
1107	{
1108	  // Construct an index tuple and forward to __call
1109	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
1110	    _Indexes;
1111	  return this->__call(__arg, __tuple, _Indexes());
1112	}
1113
1114    private:
1115      // Invokes the underlying function object __arg by unpacking all
1116      // of the arguments in the tuple.
1117      template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
1118	auto
1119	__call(_CVArg& __arg, tuple<_Args...>& __tuple,
1120	       const _Index_tuple<_Indexes...>&) const volatile
1121	-> decltype(__arg(declval<_Args>()...))
1122	{
1123	  return __arg(std::forward<_Args>(get<_Indexes>(__tuple))...);
1124	}
1125    };
1126
1127  /**
1128   *  If the argument is a placeholder for the Nth argument, returns
1129   *  a reference to the Nth argument to the bind function object.
1130   *  [TR1 3.6.3/5 bullet 3]
1131   */
1132  template<typename _Arg>
1133    class _Mu<_Arg, false, true>
1134    {
1135    public:
1136      template<typename _Signature> class result;
1137
1138      template<typename _CVMu, typename _CVArg, typename _Tuple>
1139	class result<_CVMu(_CVArg, _Tuple)>
1140	{
1141	  // Add a reference, if it hasn't already been done for us.
1142	  // This allows us to be a little bit sloppy in constructing
1143	  // the tuple that we pass to result_of<...>.
1144	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
1145						- 1), _Tuple>::type
1146	    __base_type;
1147
1148	public:
1149	  typedef typename add_rvalue_reference<__base_type>::type type;
1150	};
1151
1152      template<typename _Tuple>
1153	typename result<_Mu(_Arg, _Tuple)>::type
1154	operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
1155	{
1156	  return std::forward<typename result<_Mu(_Arg, _Tuple)>::type>(
1157	      ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple));
1158	}
1159    };
1160
1161  /**
1162   *  If the argument is just a value, returns a reference to that
1163   *  value. The cv-qualifiers on the reference are the same as the
1164   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
1165   */
1166  template<typename _Arg>
1167    class _Mu<_Arg, false, false>
1168    {
1169    public:
1170      template<typename _Signature> struct result;
1171
1172      template<typename _CVMu, typename _CVArg, typename _Tuple>
1173	struct result<_CVMu(_CVArg, _Tuple)>
1174	{
1175	  typedef typename add_lvalue_reference<_CVArg>::type type;
1176	};
1177
1178      // Pick up the cv-qualifiers of the argument
1179      template<typename _CVArg, typename _Tuple>
1180	_CVArg&&
1181	operator()(_CVArg&& __arg, _Tuple&) const volatile
1182	{ return std::forward<_CVArg>(__arg); }
1183    };
1184
1185  /**
1186   *  Maps member pointers into instances of _Mem_fn but leaves all
1187   *  other function objects untouched. Used by tr1::bind(). The
1188   *  primary template handles the non--member-pointer case.
1189   */
1190  template<typename _Tp>
1191    struct _Maybe_wrap_member_pointer
1192    {
1193      typedef _Tp type;
1194
1195      static const _Tp&
1196      __do_wrap(const _Tp& __x)
1197      { return __x; }
1198
1199      static _Tp&&
1200      __do_wrap(_Tp&& __x)
1201      { return static_cast<_Tp&&>(__x); }
1202    };
1203
1204  /**
1205   *  Maps member pointers into instances of _Mem_fn but leaves all
1206   *  other function objects untouched. Used by tr1::bind(). This
1207   *  partial specialization handles the member pointer case.
1208   */
1209  template<typename _Tp, typename _Class>
1210    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
1211    {
1212      typedef _Mem_fn<_Tp _Class::*> type;
1213
1214      static type
1215      __do_wrap(_Tp _Class::* __pm)
1216      { return type(__pm); }
1217    };
1218
1219  // Specialization needed to prevent "forming reference to void" errors when
1220  // bind<void>() is called, because argument deduction instantiates
1221  // _Maybe_wrap_member_pointer<void> outside the immediate context where
1222  // SFINAE applies.
1223  template<>
1224    struct _Maybe_wrap_member_pointer<void>
1225    {
1226      typedef void type;
1227    };
1228
1229  // std::get<I> for volatile-qualified tuples
1230  template<std::size_t _Ind, typename... _Tp>
1231    inline auto
1232    __volget(volatile tuple<_Tp...>& __tuple)
1233    -> typename tuple_element<_Ind, tuple<_Tp...>>::type volatile&
1234    { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }
1235
1236  // std::get<I> for const-volatile-qualified tuples
1237  template<std::size_t _Ind, typename... _Tp>
1238    inline auto
1239    __volget(const volatile tuple<_Tp...>& __tuple)
1240    -> typename tuple_element<_Ind, tuple<_Tp...>>::type const volatile&
1241    { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }
1242
1243  /// Type of the function object returned from bind().
1244  template<typename _Signature>
1245    struct _Bind;
1246
1247   template<typename _Functor, typename... _Bound_args>
1248    class _Bind<_Functor(_Bound_args...)>
1249    : public _Weak_result_type<_Functor>
1250    {
1251      typedef _Bind __self_type;
1252      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1253	_Bound_indexes;
1254
1255      _Functor _M_f;
1256      tuple<_Bound_args...> _M_bound_args;
1257
1258      // Call unqualified
1259      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1260	_Result
1261	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
1262	{
1263	  return _M_f(_Mu<_Bound_args>()
1264		      (get<_Indexes>(_M_bound_args), __args)...);
1265	}
1266
1267      // Call as const
1268      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1269	_Result
1270	__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
1271	{
1272	  return _M_f(_Mu<_Bound_args>()
1273		      (get<_Indexes>(_M_bound_args), __args)...);
1274	}
1275
1276      // Call as volatile
1277      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1278	_Result
1279	__call_v(tuple<_Args...>&& __args,
1280		 _Index_tuple<_Indexes...>) volatile
1281	{
1282	  return _M_f(_Mu<_Bound_args>()
1283		      (__volget<_Indexes>(_M_bound_args), __args)...);
1284	}
1285
1286      // Call as const volatile
1287      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1288	_Result
1289	__call_c_v(tuple<_Args...>&& __args,
1290		   _Index_tuple<_Indexes...>) const volatile
1291	{
1292	  return _M_f(_Mu<_Bound_args>()
1293		      (__volget<_Indexes>(_M_bound_args), __args)...);
1294	}
1295
1296     public:
1297      template<typename... _Args>
1298	explicit _Bind(const _Functor& __f, _Args&&... __args)
1299	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1300	{ }
1301
1302      template<typename... _Args>
1303	explicit _Bind(_Functor&& __f, _Args&&... __args)
1304	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1305	{ }
1306
1307      _Bind(const _Bind&) = default;
1308
1309      _Bind(_Bind&& __b)
1310      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1311      { }
1312
1313      // Call unqualified
1314      template<typename... _Args, typename _Result
1315	= decltype( std::declval<_Functor&>()(
1316	      _Mu<_Bound_args>()( std::declval<_Bound_args&>(),
1317				  std::declval<tuple<_Args...>&>() )... ) )>
1318	_Result
1319	operator()(_Args&&... __args)
1320	{
1321	  return this->__call<_Result>(
1322	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1323	      _Bound_indexes());
1324	}
1325
1326      // Call as const
1327      template<typename... _Args, typename _Result
1328	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1329		       typename add_const<_Functor>::type&>::type>()(
1330	      _Mu<_Bound_args>()( std::declval<const _Bound_args&>(),
1331				  std::declval<tuple<_Args...>&>() )... ) )>
1332	_Result
1333	operator()(_Args&&... __args) const
1334	{
1335	  return this->__call_c<_Result>(
1336	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1337	      _Bound_indexes());
1338	}
1339
1340      // Call as volatile
1341      template<typename... _Args, typename _Result
1342	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1343                       typename add_volatile<_Functor>::type&>::type>()(
1344	      _Mu<_Bound_args>()( std::declval<volatile _Bound_args&>(),
1345				  std::declval<tuple<_Args...>&>() )... ) )>
1346	_Result
1347	operator()(_Args&&... __args) volatile
1348	{
1349	  return this->__call_v<_Result>(
1350	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1351	      _Bound_indexes());
1352	}
1353
1354      // Call as const volatile
1355      template<typename... _Args, typename _Result
1356	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1357                       typename add_cv<_Functor>::type&>::type>()(
1358	      _Mu<_Bound_args>()( std::declval<const volatile _Bound_args&>(),
1359				  std::declval<tuple<_Args...>&>() )... ) )>
1360	_Result
1361	operator()(_Args&&... __args) const volatile
1362	{
1363	  return this->__call_c_v<_Result>(
1364	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1365	      _Bound_indexes());
1366	}
1367    };
1368
1369  /// Type of the function object returned from bind<R>().
1370  template<typename _Result, typename _Signature>
1371    struct _Bind_result;
1372
1373  template<typename _Result, typename _Functor, typename... _Bound_args>
1374    class _Bind_result<_Result, _Functor(_Bound_args...)>
1375    {
1376      typedef _Bind_result __self_type;
1377      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1378	_Bound_indexes;
1379
1380      _Functor _M_f;
1381      tuple<_Bound_args...> _M_bound_args;
1382
1383      // sfinae types
1384      template<typename _Res>
1385	struct __enable_if_void : enable_if<is_void<_Res>::value, int> { };
1386      template<typename _Res>
1387	struct __disable_if_void : enable_if<!is_void<_Res>::value, int> { };
1388
1389      // Call unqualified
1390      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1391	_Result
1392	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1393	    typename __disable_if_void<_Res>::type = 0)
1394	{
1395	  return _M_f(_Mu<_Bound_args>()
1396		      (get<_Indexes>(_M_bound_args), __args)...);
1397	}
1398
1399      // Call unqualified, return void
1400      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1401	void
1402	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1403	    typename __enable_if_void<_Res>::type = 0)
1404	{
1405	  _M_f(_Mu<_Bound_args>()
1406	       (get<_Indexes>(_M_bound_args), __args)...);
1407	}
1408
1409      // Call as const
1410      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1411	_Result
1412	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1413	    typename __disable_if_void<_Res>::type = 0) const
1414	{
1415	  return _M_f(_Mu<_Bound_args>()
1416		      (get<_Indexes>(_M_bound_args), __args)...);
1417	}
1418
1419      // Call as const, return void
1420      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1421	void
1422	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1423	    typename __enable_if_void<_Res>::type = 0) const
1424	{
1425	  _M_f(_Mu<_Bound_args>()
1426	       (get<_Indexes>(_M_bound_args),  __args)...);
1427	}
1428
1429      // Call as volatile
1430      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1431	_Result
1432	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1433	    typename __disable_if_void<_Res>::type = 0) volatile
1434	{
1435	  return _M_f(_Mu<_Bound_args>()
1436		      (__volget<_Indexes>(_M_bound_args), __args)...);
1437	}
1438
1439      // Call as volatile, return void
1440      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1441	void
1442	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1443	    typename __enable_if_void<_Res>::type = 0) volatile
1444	{
1445	  _M_f(_Mu<_Bound_args>()
1446	       (__volget<_Indexes>(_M_bound_args), __args)...);
1447	}
1448
1449      // Call as const volatile
1450      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1451	_Result
1452	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1453	    typename __disable_if_void<_Res>::type = 0) const volatile
1454	{
1455	  return _M_f(_Mu<_Bound_args>()
1456		      (__volget<_Indexes>(_M_bound_args), __args)...);
1457	}
1458
1459      // Call as const volatile, return void
1460      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1461	void
1462	__call(tuple<_Args...>&& __args,
1463	       _Index_tuple<_Indexes...>,
1464	    typename __enable_if_void<_Res>::type = 0) const volatile
1465	{
1466	  _M_f(_Mu<_Bound_args>()
1467	       (__volget<_Indexes>(_M_bound_args), __args)...);
1468	}
1469
1470    public:
1471      typedef _Result result_type;
1472
1473      template<typename... _Args>
1474	explicit _Bind_result(const _Functor& __f, _Args&&... __args)
1475	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1476	{ }
1477
1478      template<typename... _Args>
1479	explicit _Bind_result(_Functor&& __f, _Args&&... __args)
1480	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1481	{ }
1482
1483      _Bind_result(const _Bind_result&) = default;
1484
1485      _Bind_result(_Bind_result&& __b)
1486      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1487      { }
1488
1489      // Call unqualified
1490      template<typename... _Args>
1491	result_type
1492	operator()(_Args&&... __args)
1493	{
1494	  return this->__call<_Result>(
1495	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1496	      _Bound_indexes());
1497	}
1498
1499      // Call as const
1500      template<typename... _Args>
1501	result_type
1502	operator()(_Args&&... __args) const
1503	{
1504	  return this->__call<_Result>(
1505	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1506	      _Bound_indexes());
1507	}
1508
1509      // Call as volatile
1510      template<typename... _Args>
1511	result_type
1512	operator()(_Args&&... __args) volatile
1513	{
1514	  return this->__call<_Result>(
1515	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1516	      _Bound_indexes());
1517	}
1518
1519      // Call as const volatile
1520      template<typename... _Args>
1521	result_type
1522	operator()(_Args&&... __args) const volatile
1523	{
1524	  return this->__call<_Result>(
1525	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1526	      _Bound_indexes());
1527	}
1528    };
1529
1530  /**
1531   *  @brief Class template _Bind is always a bind expression.
1532   *  @ingroup binders
1533   */
1534  template<typename _Signature>
1535    struct is_bind_expression<_Bind<_Signature> >
1536    : public true_type { };
1537
1538  /**
1539   *  @brief Class template _Bind is always a bind expression.
1540   *  @ingroup binders
1541   */
1542  template<typename _Signature>
1543    struct is_bind_expression<const _Bind<_Signature> >
1544    : public true_type { };
1545
1546  /**
1547   *  @brief Class template _Bind is always a bind expression.
1548   *  @ingroup binders
1549   */
1550  template<typename _Signature>
1551    struct is_bind_expression<volatile _Bind<_Signature> >
1552    : public true_type { };
1553
1554  /**
1555   *  @brief Class template _Bind is always a bind expression.
1556   *  @ingroup binders
1557   */
1558  template<typename _Signature>
1559    struct is_bind_expression<const volatile _Bind<_Signature>>
1560    : public true_type { };
1561
1562  /**
1563   *  @brief Class template _Bind_result is always a bind expression.
1564   *  @ingroup binders
1565   */
1566  template<typename _Result, typename _Signature>
1567    struct is_bind_expression<_Bind_result<_Result, _Signature>>
1568    : public true_type { };
1569
1570  /**
1571   *  @brief Class template _Bind_result is always a bind expression.
1572   *  @ingroup binders
1573   */
1574  template<typename _Result, typename _Signature>
1575    struct is_bind_expression<const _Bind_result<_Result, _Signature>>
1576    : public true_type { };
1577
1578  /**
1579   *  @brief Class template _Bind_result is always a bind expression.
1580   *  @ingroup binders
1581   */
1582  template<typename _Result, typename _Signature>
1583    struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
1584    : public true_type { };
1585
1586  /**
1587   *  @brief Class template _Bind_result is always a bind expression.
1588   *  @ingroup binders
1589   */
1590  template<typename _Result, typename _Signature>
1591    struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
1592    : public true_type { };
1593
1594  // Trait type used to remove std::bind() from overload set via SFINAE
1595  // when first argument has integer type, so that std::bind() will
1596  // not be a better match than ::bind() from the BSD Sockets API.
1597  template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
1598    using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;
1599
1600  template<bool _SocketLike, typename _Func, typename... _BoundArgs>
1601    struct _Bind_helper
1602    {
1603      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1604	__maybe_type;
1605      typedef typename __maybe_type::type __func_type;
1606      typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
1607    };
1608
1609  // Partial specialization for is_socketlike == true, does not define
1610  // nested type so std::bind() will not participate in overload resolution
1611  // when the first argument might be a socket file descriptor.
1612  template<typename _Func, typename... _BoundArgs>
1613    struct _Bind_helper<true, _Func, _BoundArgs...>
1614    { };
1615
1616  /**
1617   *  @brief Function template for std::bind.
1618   *  @ingroup binders
1619   */
1620  template<typename _Func, typename... _BoundArgs>
1621    inline typename
1622    _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
1623    bind(_Func&& __f, _BoundArgs&&... __args)
1624    {
1625      typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
1626      typedef typename __helper_type::__maybe_type __maybe_type;
1627      typedef typename __helper_type::type __result_type;
1628      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1629			   std::forward<_BoundArgs>(__args)...);
1630    }
1631
1632  template<typename _Result, typename _Func, typename... _BoundArgs>
1633    struct _Bindres_helper
1634    {
1635      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1636	__maybe_type;
1637      typedef typename __maybe_type::type __functor_type;
1638      typedef _Bind_result<_Result,
1639			   __functor_type(typename decay<_BoundArgs>::type...)>
1640	type;
1641    };
1642
1643  /**
1644   *  @brief Function template for std::bind<R>.
1645   *  @ingroup binders
1646   */
1647  template<typename _Result, typename _Func, typename... _BoundArgs>
1648    inline
1649    typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
1650    bind(_Func&& __f, _BoundArgs&&... __args)
1651    {
1652      typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
1653      typedef typename __helper_type::__maybe_type __maybe_type;
1654      typedef typename __helper_type::type __result_type;
1655      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1656			   std::forward<_BoundArgs>(__args)...);
1657    }
1658
1659  template<typename _Signature>
1660    struct _Bind_simple;
1661
1662  template<typename _Callable, typename... _Args>
1663    struct _Bind_simple<_Callable(_Args...)>
1664    {
1665      typedef typename result_of<_Callable(_Args...)>::type result_type;
1666
1667      template<typename... _Args2, typename = typename
1668               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1669        explicit
1670        _Bind_simple(const _Callable& __callable, _Args2&&... __args)
1671        : _M_bound(__callable, std::forward<_Args2>(__args)...)
1672        { }
1673
1674      template<typename... _Args2, typename = typename
1675               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1676        explicit
1677        _Bind_simple(_Callable&& __callable, _Args2&&... __args)
1678        : _M_bound(std::move(__callable), std::forward<_Args2>(__args)...)
1679        { }
1680
1681      _Bind_simple(const _Bind_simple&) = default;
1682      _Bind_simple(_Bind_simple&&) = default;
1683
1684      result_type
1685      operator()()
1686      {
1687        typedef typename _Build_index_tuple<sizeof...(_Args)>::__type _Indices;
1688        return _M_invoke(_Indices());
1689      }
1690
1691    private:
1692
1693      template<std::size_t... _Indices>
1694        typename result_of<_Callable(_Args...)>::type
1695        _M_invoke(_Index_tuple<_Indices...>)
1696        {
1697	  // std::bind always forwards bound arguments as lvalues,
1698	  // but this type can call functions which only accept rvalues.
1699          return std::forward<_Callable>(std::get<0>(_M_bound))(
1700              std::forward<_Args>(std::get<_Indices+1>(_M_bound))...);
1701        }
1702
1703      std::tuple<_Callable, _Args...> _M_bound;
1704    };
1705
1706  template<typename _Func, typename... _BoundArgs>
1707    struct _Bind_simple_helper
1708    {
1709      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1710        __maybe_type;
1711      typedef typename __maybe_type::type __func_type;
1712      typedef _Bind_simple<__func_type(typename decay<_BoundArgs>::type...)>
1713       	__type;
1714    };
1715
1716  // Simplified version of std::bind for internal use, without support for
1717  // unbound arguments, placeholders or nested bind expressions.
1718  template<typename _Callable, typename... _Args>
1719    typename _Bind_simple_helper<_Callable, _Args...>::__type
1720    __bind_simple(_Callable&& __callable, _Args&&... __args)
1721    {
1722      typedef _Bind_simple_helper<_Callable, _Args...> __helper_type;
1723      typedef typename __helper_type::__maybe_type __maybe_type;
1724      typedef typename __helper_type::__type __result_type;
1725      return __result_type(
1726          __maybe_type::__do_wrap( std::forward<_Callable>(__callable)),
1727          std::forward<_Args>(__args)...);
1728    }
1729
1730  /**
1731   *  @brief Exception class thrown when class template function's
1732   *  operator() is called with an empty target.
1733   *  @ingroup exceptions
1734   */
1735  class bad_function_call : public std::exception
1736  {
1737  public:
1738    virtual ~bad_function_call() noexcept;
1739
1740    const char* what() const noexcept;
1741  };
1742
1743  /**
1744   *  Trait identifying "location-invariant" types, meaning that the
1745   *  address of the object (or any of its members) will not escape.
1746   *  Also implies a trivial copy constructor and assignment operator.
1747   */
1748  template<typename _Tp>
1749    struct __is_location_invariant
1750    : integral_constant<bool, (is_pointer<_Tp>::value
1751			       || is_member_pointer<_Tp>::value)>
1752    { };
1753
1754  class _Undefined_class;
1755
1756  union _Nocopy_types
1757  {
1758    void*       _M_object;
1759    const void* _M_const_object;
1760    void (*_M_function_pointer)();
1761    void (_Undefined_class::*_M_member_pointer)();
1762  };
1763
1764  union _Any_data
1765  {
1766    void*       _M_access()       { return &_M_pod_data[0]; }
1767    const void* _M_access() const { return &_M_pod_data[0]; }
1768
1769    template<typename _Tp>
1770      _Tp&
1771      _M_access()
1772      { return *static_cast<_Tp*>(_M_access()); }
1773
1774    template<typename _Tp>
1775      const _Tp&
1776      _M_access() const
1777      { return *static_cast<const _Tp*>(_M_access()); }
1778
1779    _Nocopy_types _M_unused;
1780    char _M_pod_data[sizeof(_Nocopy_types)];
1781  };
1782
1783  enum _Manager_operation
1784  {
1785    __get_type_info,
1786    __get_functor_ptr,
1787    __clone_functor,
1788    __destroy_functor
1789  };
1790
1791  // Simple type wrapper that helps avoid annoying const problems
1792  // when casting between void pointers and pointers-to-pointers.
1793  template<typename _Tp>
1794    struct _Simple_type_wrapper
1795    {
1796      _Simple_type_wrapper(_Tp __value) : __value(__value) { }
1797
1798      _Tp __value;
1799    };
1800
1801  template<typename _Tp>
1802    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
1803    : __is_location_invariant<_Tp>
1804    { };
1805
1806  // Converts a reference to a function object into a callable
1807  // function object.
1808  template<typename _Functor>
1809    inline _Functor&
1810    __callable_functor(_Functor& __f)
1811    { return __f; }
1812
1813  template<typename _Member, typename _Class>
1814    inline _Mem_fn<_Member _Class::*>
1815    __callable_functor(_Member _Class::* &__p)
1816    { return std::mem_fn(__p); }
1817
1818  template<typename _Member, typename _Class>
1819    inline _Mem_fn<_Member _Class::*>
1820    __callable_functor(_Member _Class::* const &__p)
1821    { return std::mem_fn(__p); }
1822
1823  template<typename _Member, typename _Class>
1824    inline _Mem_fn<_Member _Class::*>
1825    __callable_functor(_Member _Class::* volatile &__p)
1826    { return std::mem_fn(__p); }
1827
1828  template<typename _Member, typename _Class>
1829    inline _Mem_fn<_Member _Class::*>
1830    __callable_functor(_Member _Class::* const volatile &__p)
1831    { return std::mem_fn(__p); }
1832
1833  template<typename _Signature>
1834    class function;
1835
1836  /// Base class of all polymorphic function object wrappers.
1837  class _Function_base
1838  {
1839  public:
1840    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
1841    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
1842
1843    template<typename _Functor>
1844      class _Base_manager
1845      {
1846      protected:
1847	static const bool __stored_locally =
1848	(__is_location_invariant<_Functor>::value
1849	 && sizeof(_Functor) <= _M_max_size
1850	 && __alignof__(_Functor) <= _M_max_align
1851	 && (_M_max_align % __alignof__(_Functor) == 0));
1852
1853	typedef integral_constant<bool, __stored_locally> _Local_storage;
1854
1855	// Retrieve a pointer to the function object
1856	static _Functor*
1857	_M_get_pointer(const _Any_data& __source)
1858	{
1859	  const _Functor* __ptr =
1860	    __stored_locally? std::__addressof(__source._M_access<_Functor>())
1861	    /* have stored a pointer */ : __source._M_access<_Functor*>();
1862	  return const_cast<_Functor*>(__ptr);
1863	}
1864
1865	// Clone a location-invariant function object that fits within
1866	// an _Any_data structure.
1867	static void
1868	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
1869	{
1870	  new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
1871	}
1872
1873	// Clone a function object that is not location-invariant or
1874	// that cannot fit into an _Any_data structure.
1875	static void
1876	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
1877	{
1878	  __dest._M_access<_Functor*>() =
1879	    new _Functor(*__source._M_access<_Functor*>());
1880	}
1881
1882	// Destroying a location-invariant object may still require
1883	// destruction.
1884	static void
1885	_M_destroy(_Any_data& __victim, true_type)
1886	{
1887	  __victim._M_access<_Functor>().~_Functor();
1888	}
1889
1890	// Destroying an object located on the heap.
1891	static void
1892	_M_destroy(_Any_data& __victim, false_type)
1893	{
1894	  delete __victim._M_access<_Functor*>();
1895	}
1896
1897      public:
1898	static bool
1899	_M_manager(_Any_data& __dest, const _Any_data& __source,
1900		   _Manager_operation __op)
1901	{
1902	  switch (__op)
1903	    {
1904#ifdef __GXX_RTTI
1905	    case __get_type_info:
1906	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1907	      break;
1908#endif
1909	    case __get_functor_ptr:
1910	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
1911	      break;
1912
1913	    case __clone_functor:
1914	      _M_clone(__dest, __source, _Local_storage());
1915	      break;
1916
1917	    case __destroy_functor:
1918	      _M_destroy(__dest, _Local_storage());
1919	      break;
1920	    }
1921	  return false;
1922	}
1923
1924	static void
1925	_M_init_functor(_Any_data& __functor, _Functor&& __f)
1926	{ _M_init_functor(__functor, std::move(__f), _Local_storage()); }
1927
1928	template<typename _Signature>
1929	  static bool
1930	  _M_not_empty_function(const function<_Signature>& __f)
1931	  { return static_cast<bool>(__f); }
1932
1933	template<typename _Tp>
1934	  static bool
1935	  _M_not_empty_function(_Tp* const& __fp)
1936	  { return __fp; }
1937
1938	template<typename _Class, typename _Tp>
1939	  static bool
1940	  _M_not_empty_function(_Tp _Class::* const& __mp)
1941	  { return __mp; }
1942
1943	template<typename _Tp>
1944	  static bool
1945	  _M_not_empty_function(const _Tp&)
1946	  { return true; }
1947
1948      private:
1949	static void
1950	_M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
1951	{ new (__functor._M_access()) _Functor(std::move(__f)); }
1952
1953	static void
1954	_M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
1955	{ __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
1956      };
1957
1958    template<typename _Functor>
1959      class _Ref_manager : public _Base_manager<_Functor*>
1960      {
1961	typedef _Function_base::_Base_manager<_Functor*> _Base;
1962
1963      public:
1964	static bool
1965	_M_manager(_Any_data& __dest, const _Any_data& __source,
1966		   _Manager_operation __op)
1967	{
1968	  switch (__op)
1969	    {
1970#ifdef __GXX_RTTI
1971	    case __get_type_info:
1972	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1973	      break;
1974#endif
1975	    case __get_functor_ptr:
1976	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
1977	      return is_const<_Functor>::value;
1978	      break;
1979
1980	    default:
1981	      _Base::_M_manager(__dest, __source, __op);
1982	    }
1983	  return false;
1984	}
1985
1986	static void
1987	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
1988	{
1989	  _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
1990	}
1991      };
1992
1993    _Function_base() : _M_manager(0) { }
1994
1995    ~_Function_base()
1996    {
1997      if (_M_manager)
1998	_M_manager(_M_functor, _M_functor, __destroy_functor);
1999    }
2000
2001
2002    bool _M_empty() const { return !_M_manager; }
2003
2004    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
2005				  _Manager_operation);
2006
2007    _Any_data     _M_functor;
2008    _Manager_type _M_manager;
2009  };
2010
2011  template<typename _Signature, typename _Functor>
2012    class _Function_handler;
2013
2014  template<typename _Res, typename _Functor, typename... _ArgTypes>
2015    class _Function_handler<_Res(_ArgTypes...), _Functor>
2016    : public _Function_base::_Base_manager<_Functor>
2017    {
2018      typedef _Function_base::_Base_manager<_Functor> _Base;
2019
2020    public:
2021      static _Res
2022      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2023      {
2024	return (*_Base::_M_get_pointer(__functor))(
2025	    std::forward<_ArgTypes>(__args)...);
2026      }
2027    };
2028
2029  template<typename _Functor, typename... _ArgTypes>
2030    class _Function_handler<void(_ArgTypes...), _Functor>
2031    : public _Function_base::_Base_manager<_Functor>
2032    {
2033      typedef _Function_base::_Base_manager<_Functor> _Base;
2034
2035     public:
2036      static void
2037      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2038      {
2039	(*_Base::_M_get_pointer(__functor))(
2040	    std::forward<_ArgTypes>(__args)...);
2041      }
2042    };
2043
2044  template<typename _Res, typename _Functor, typename... _ArgTypes>
2045    class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
2046    : public _Function_base::_Ref_manager<_Functor>
2047    {
2048      typedef _Function_base::_Ref_manager<_Functor> _Base;
2049
2050     public:
2051      static _Res
2052      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2053      {
2054	return __callable_functor(**_Base::_M_get_pointer(__functor))(
2055	      std::forward<_ArgTypes>(__args)...);
2056      }
2057    };
2058
2059  template<typename _Functor, typename... _ArgTypes>
2060    class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
2061    : public _Function_base::_Ref_manager<_Functor>
2062    {
2063      typedef _Function_base::_Ref_manager<_Functor> _Base;
2064
2065     public:
2066      static void
2067      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2068      {
2069	__callable_functor(**_Base::_M_get_pointer(__functor))(
2070	    std::forward<_ArgTypes>(__args)...);
2071      }
2072    };
2073
2074  template<typename _Class, typename _Member, typename _Res,
2075	   typename... _ArgTypes>
2076    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
2077    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
2078    {
2079      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
2080	_Base;
2081
2082     public:
2083      static _Res
2084      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2085      {
2086	return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
2087	    std::forward<_ArgTypes>(__args)...);
2088      }
2089    };
2090
2091  template<typename _Class, typename _Member, typename... _ArgTypes>
2092    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
2093    : public _Function_base::_Base_manager<
2094		 _Simple_type_wrapper< _Member _Class::* > >
2095    {
2096      typedef _Member _Class::* _Functor;
2097      typedef _Simple_type_wrapper<_Functor> _Wrapper;
2098      typedef _Function_base::_Base_manager<_Wrapper> _Base;
2099
2100    public:
2101      static bool
2102      _M_manager(_Any_data& __dest, const _Any_data& __source,
2103		 _Manager_operation __op)
2104      {
2105	switch (__op)
2106	  {
2107#ifdef __GXX_RTTI
2108	  case __get_type_info:
2109	    __dest._M_access<const type_info*>() = &typeid(_Functor);
2110	    break;
2111#endif
2112	  case __get_functor_ptr:
2113	    __dest._M_access<_Functor*>() =
2114	      &_Base::_M_get_pointer(__source)->__value;
2115	    break;
2116
2117	  default:
2118	    _Base::_M_manager(__dest, __source, __op);
2119	  }
2120	return false;
2121      }
2122
2123      static void
2124      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2125      {
2126	std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
2127	    std::forward<_ArgTypes>(__args)...);
2128      }
2129    };
2130
2131  template<typename _From, typename _To>
2132    using __check_func_return_type
2133      = __or_<is_void<_To>, is_convertible<_From, _To>>;
2134
2135  /**
2136   *  @brief Primary class template for std::function.
2137   *  @ingroup functors
2138   *
2139   *  Polymorphic function wrapper.
2140   */
2141  template<typename _Res, typename... _ArgTypes>
2142    class function<_Res(_ArgTypes...)>
2143    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
2144      private _Function_base
2145    {
2146      typedef _Res _Signature_type(_ArgTypes...);
2147
2148      template<typename _Functor>
2149	using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())
2150				 (std::declval<_ArgTypes>()...) );
2151
2152      // Used so the return type convertibility checks aren't done when
2153      // performing overload resolution for copy construction/assignment.
2154      template<typename _Tp>
2155	using _NotSelf = __not_<is_same<_Tp, function>>;
2156
2157      template<typename _Functor>
2158	using _Callable
2159	  = __and_<_NotSelf<_Functor>,
2160		   __check_func_return_type<_Invoke<_Functor>, _Res>>;
2161
2162      template<typename _Cond, typename _Tp>
2163	using _Requires = typename enable_if<_Cond::value, _Tp>::type;
2164
2165    public:
2166      typedef _Res result_type;
2167
2168      // [3.7.2.1] construct/copy/destroy
2169
2170      /**
2171       *  @brief Default construct creates an empty function call wrapper.
2172       *  @post @c !(bool)*this
2173       */
2174      function() noexcept
2175      : _Function_base() { }
2176
2177      /**
2178       *  @brief Creates an empty function call wrapper.
2179       *  @post @c !(bool)*this
2180       */
2181      function(nullptr_t) noexcept
2182      : _Function_base() { }
2183
2184      /**
2185       *  @brief %Function copy constructor.
2186       *  @param __x A %function object with identical call signature.
2187       *  @post @c bool(*this) == bool(__x)
2188       *
2189       *  The newly-created %function contains a copy of the target of @a
2190       *  __x (if it has one).
2191       */
2192      function(const function& __x);
2193
2194      /**
2195       *  @brief %Function move constructor.
2196       *  @param __x A %function object rvalue with identical call signature.
2197       *
2198       *  The newly-created %function contains the target of @a __x
2199       *  (if it has one).
2200       */
2201      function(function&& __x) : _Function_base()
2202      {
2203	__x.swap(*this);
2204      }
2205
2206      // TODO: needs allocator_arg_t
2207
2208      /**
2209       *  @brief Builds a %function that targets a copy of the incoming
2210       *  function object.
2211       *  @param __f A %function object that is callable with parameters of
2212       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2213       *  to @c Res.
2214       *
2215       *  The newly-created %function object will target a copy of
2216       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
2217       *  object will contain a reference to the function object @c
2218       *  __f.get(). If @a __f is a NULL function pointer or NULL
2219       *  pointer-to-member, the newly-created object will be empty.
2220       *
2221       *  If @a __f is a non-NULL function pointer or an object of type @c
2222       *  reference_wrapper<F>, this function will not throw.
2223       */
2224      template<typename _Functor,
2225	       typename = _Requires<_Callable<_Functor>, void>>
2226	function(_Functor);
2227
2228      /**
2229       *  @brief %Function assignment operator.
2230       *  @param __x A %function with identical call signature.
2231       *  @post @c (bool)*this == (bool)x
2232       *  @returns @c *this
2233       *
2234       *  The target of @a __x is copied to @c *this. If @a __x has no
2235       *  target, then @c *this will be empty.
2236       *
2237       *  If @a __x targets a function pointer or a reference to a function
2238       *  object, then this operation will not throw an %exception.
2239       */
2240      function&
2241      operator=(const function& __x)
2242      {
2243	function(__x).swap(*this);
2244	return *this;
2245      }
2246
2247      /**
2248       *  @brief %Function move-assignment operator.
2249       *  @param __x A %function rvalue with identical call signature.
2250       *  @returns @c *this
2251       *
2252       *  The target of @a __x is moved to @c *this. If @a __x has no
2253       *  target, then @c *this will be empty.
2254       *
2255       *  If @a __x targets a function pointer or a reference to a function
2256       *  object, then this operation will not throw an %exception.
2257       */
2258      function&
2259      operator=(function&& __x)
2260      {
2261	function(std::move(__x)).swap(*this);
2262	return *this;
2263      }
2264
2265      /**
2266       *  @brief %Function assignment to zero.
2267       *  @post @c !(bool)*this
2268       *  @returns @c *this
2269       *
2270       *  The target of @c *this is deallocated, leaving it empty.
2271       */
2272      function&
2273      operator=(nullptr_t)
2274      {
2275	if (_M_manager)
2276	  {
2277	    _M_manager(_M_functor, _M_functor, __destroy_functor);
2278	    _M_manager = 0;
2279	    _M_invoker = 0;
2280	  }
2281	return *this;
2282      }
2283
2284      /**
2285       *  @brief %Function assignment to a new target.
2286       *  @param __f A %function object that is callable with parameters of
2287       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2288       *  to @c Res.
2289       *  @return @c *this
2290       *
2291       *  This  %function object wrapper will target a copy of @a
2292       *  __f. If @a __f is @c reference_wrapper<F>, then this function
2293       *  object will contain a reference to the function object @c
2294       *  __f.get(). If @a __f is a NULL function pointer or NULL
2295       *  pointer-to-member, @c this object will be empty.
2296       *
2297       *  If @a __f is a non-NULL function pointer or an object of type @c
2298       *  reference_wrapper<F>, this function will not throw.
2299       */
2300      template<typename _Functor>
2301	_Requires<_Callable<typename decay<_Functor>::type>, function&>
2302	operator=(_Functor&& __f)
2303	{
2304	  function(std::forward<_Functor>(__f)).swap(*this);
2305	  return *this;
2306	}
2307
2308      /// @overload
2309      template<typename _Functor>
2310	function&
2311	operator=(reference_wrapper<_Functor> __f) noexcept
2312	{
2313	  function(__f).swap(*this);
2314	  return *this;
2315	}
2316
2317      // [3.7.2.2] function modifiers
2318
2319      /**
2320       *  @brief Swap the targets of two %function objects.
2321       *  @param __x A %function with identical call signature.
2322       *
2323       *  Swap the targets of @c this function object and @a __f. This
2324       *  function will not throw an %exception.
2325       */
2326      void swap(function& __x)
2327      {
2328	std::swap(_M_functor, __x._M_functor);
2329	std::swap(_M_manager, __x._M_manager);
2330	std::swap(_M_invoker, __x._M_invoker);
2331      }
2332
2333      // TODO: needs allocator_arg_t
2334      /*
2335      template<typename _Functor, typename _Alloc>
2336	void
2337	assign(_Functor&& __f, const _Alloc& __a)
2338	{
2339	  function(allocator_arg, __a,
2340		   std::forward<_Functor>(__f)).swap(*this);
2341	}
2342      */
2343
2344      // [3.7.2.3] function capacity
2345
2346      /**
2347       *  @brief Determine if the %function wrapper has a target.
2348       *
2349       *  @return @c true when this %function object contains a target,
2350       *  or @c false when it is empty.
2351       *
2352       *  This function will not throw an %exception.
2353       */
2354      explicit operator bool() const noexcept
2355      { return !_M_empty(); }
2356
2357      // [3.7.2.4] function invocation
2358
2359      /**
2360       *  @brief Invokes the function targeted by @c *this.
2361       *  @returns the result of the target.
2362       *  @throws bad_function_call when @c !(bool)*this
2363       *
2364       *  The function call operator invokes the target function object
2365       *  stored by @c this.
2366       */
2367      _Res operator()(_ArgTypes... __args) const;
2368
2369#ifdef __GXX_RTTI
2370      // [3.7.2.5] function target access
2371      /**
2372       *  @brief Determine the type of the target of this function object
2373       *  wrapper.
2374       *
2375       *  @returns the type identifier of the target function object, or
2376       *  @c typeid(void) if @c !(bool)*this.
2377       *
2378       *  This function will not throw an %exception.
2379       */
2380      const type_info& target_type() const noexcept;
2381
2382      /**
2383       *  @brief Access the stored target function object.
2384       *
2385       *  @return Returns a pointer to the stored target function object,
2386       *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
2387       *  pointer.
2388       *
2389       * This function will not throw an %exception.
2390       */
2391      template<typename _Functor>       _Functor* target() noexcept;
2392
2393      /// @overload
2394      template<typename _Functor> const _Functor* target() const noexcept;
2395#endif
2396
2397    private:
2398      typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
2399      _Invoker_type _M_invoker;
2400  };
2401
2402  // Out-of-line member definitions.
2403  template<typename _Res, typename... _ArgTypes>
2404    function<_Res(_ArgTypes...)>::
2405    function(const function& __x)
2406    : _Function_base()
2407    {
2408      if (static_cast<bool>(__x))
2409	{
2410	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
2411	  _M_invoker = __x._M_invoker;
2412	  _M_manager = __x._M_manager;
2413	}
2414    }
2415
2416  template<typename _Res, typename... _ArgTypes>
2417    template<typename _Functor, typename>
2418      function<_Res(_ArgTypes...)>::
2419      function(_Functor __f)
2420      : _Function_base()
2421      {
2422	typedef _Function_handler<_Signature_type, _Functor> _My_handler;
2423
2424	if (_My_handler::_M_not_empty_function(__f))
2425	  {
2426	    _My_handler::_M_init_functor(_M_functor, std::move(__f));
2427	    _M_invoker = &_My_handler::_M_invoke;
2428	    _M_manager = &_My_handler::_M_manager;
2429	  }
2430      }
2431
2432  template<typename _Res, typename... _ArgTypes>
2433    _Res
2434    function<_Res(_ArgTypes...)>::
2435    operator()(_ArgTypes... __args) const
2436    {
2437      if (_M_empty())
2438	__throw_bad_function_call();
2439      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
2440    }
2441
2442#ifdef __GXX_RTTI
2443  template<typename _Res, typename... _ArgTypes>
2444    const type_info&
2445    function<_Res(_ArgTypes...)>::
2446    target_type() const noexcept
2447    {
2448      if (_M_manager)
2449	{
2450	  _Any_data __typeinfo_result;
2451	  _M_manager(__typeinfo_result, _M_functor, __get_type_info);
2452	  return *__typeinfo_result._M_access<const type_info*>();
2453	}
2454      else
2455	return typeid(void);
2456    }
2457
2458  template<typename _Res, typename... _ArgTypes>
2459    template<typename _Functor>
2460      _Functor*
2461      function<_Res(_ArgTypes...)>::
2462      target() noexcept
2463      {
2464	if (typeid(_Functor) == target_type() && _M_manager)
2465	  {
2466	    _Any_data __ptr;
2467	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
2468		&& !is_const<_Functor>::value)
2469	      return 0;
2470	    else
2471	      return __ptr._M_access<_Functor*>();
2472	  }
2473	else
2474	  return 0;
2475      }
2476
2477  template<typename _Res, typename... _ArgTypes>
2478    template<typename _Functor>
2479      const _Functor*
2480      function<_Res(_ArgTypes...)>::
2481      target() const noexcept
2482      {
2483	if (typeid(_Functor) == target_type() && _M_manager)
2484	  {
2485	    _Any_data __ptr;
2486	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
2487	    return __ptr._M_access<const _Functor*>();
2488	  }
2489	else
2490	  return 0;
2491      }
2492#endif
2493
2494  // [20.7.15.2.6] null pointer comparisons
2495
2496  /**
2497   *  @brief Compares a polymorphic function object wrapper against 0
2498   *  (the NULL pointer).
2499   *  @returns @c true if the wrapper has no target, @c false otherwise
2500   *
2501   *  This function will not throw an %exception.
2502   */
2503  template<typename _Res, typename... _Args>
2504    inline bool
2505    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2506    { return !static_cast<bool>(__f); }
2507
2508  /// @overload
2509  template<typename _Res, typename... _Args>
2510    inline bool
2511    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2512    { return !static_cast<bool>(__f); }
2513
2514  /**
2515   *  @brief Compares a polymorphic function object wrapper against 0
2516   *  (the NULL pointer).
2517   *  @returns @c false if the wrapper has no target, @c true otherwise
2518   *
2519   *  This function will not throw an %exception.
2520   */
2521  template<typename _Res, typename... _Args>
2522    inline bool
2523    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2524    { return static_cast<bool>(__f); }
2525
2526  /// @overload
2527  template<typename _Res, typename... _Args>
2528    inline bool
2529    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2530    { return static_cast<bool>(__f); }
2531
2532  // [20.7.15.2.7] specialized algorithms
2533
2534  /**
2535   *  @brief Swap the targets of two polymorphic function object wrappers.
2536   *
2537   *  This function will not throw an %exception.
2538   */
2539  template<typename _Res, typename... _Args>
2540    inline void
2541    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
2542    { __x.swap(__y); }
2543
2544_GLIBCXX_END_NAMESPACE_VERSION
2545} // namespace std
2546
2547#endif // C++11
2548
2549#endif // _GLIBCXX_FUNCTIONAL
2550