1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  *  @file bits/regex_executor.tcc
27  *  This is an internal header file, included by other library headers.
28  *  Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37   template<typename _BiIter, typename _Alloc, typename _TraitsT,
38 	   bool __dfs_mode>
39     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_search()40     _M_search()
41     {
42       if (_M_search_from_first())
43 	return true;
44       if (_M_flags & regex_constants::match_continuous)
45 	return false;
46       _M_flags |= regex_constants::match_prev_avail;
47       while (_M_begin != _M_end)
48 	{
49 	  ++_M_begin;
50 	  if (_M_search_from_first())
51 	    return true;
52 	}
53       return false;
54     }
55 
56   // The _M_main function operates in different modes, DFS mode or BFS mode,
57   // indicated by template parameter __dfs_mode, and dispatches to one of the
58   // _M_main_dispatch overloads.
59   //
60   // ------------------------------------------------------------
61   //
62   // DFS mode:
63   //
64   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65   // string.
66   // At the very beginning the executor stands in the start state, then it
67   // tries every possible state transition in current state recursively. Some
68   // state transitions consume input string, say, a single-char-matcher or a
69   // back-reference matcher; some don't, like assertion or other anchor nodes.
70   // When the input is exhausted and/or the current state is an accepting
71   // state, the whole executor returns true.
72   //
73   // TODO: This approach is exponentially slow for certain input.
74   //       Try to compile the NFA to a DFA.
75   //
76   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77   // Space complexity: \theta(match_results.size() + match_length)
78   //
79   template<typename _BiIter, typename _Alloc, typename _TraitsT,
80 	   bool __dfs_mode>
81     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_main_dispatch(_Match_mode __match_mode,__dfs)82     _M_main_dispatch(_Match_mode __match_mode, __dfs)
83     {
84       _M_has_sol = false;
85       *_M_states._M_get_sol_pos() = _BiIter();
86       _M_cur_results = _M_results;
87       _M_dfs(__match_mode, _M_states._M_start);
88       return _M_has_sol;
89     }
90 
91   // ------------------------------------------------------------
92   //
93   // BFS mode:
94   //
95   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96   // explained this algorithm clearly.
97   //
98   // It first computes epsilon closure (states that can be achieved without
99   // consuming characters) for every state that's still matching,
100   // using the same DFS algorithm, but doesn't re-enter states (using
101   // _M_states._M_visited to check), nor follow _S_opcode_match.
102   //
103   // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104   // as the start state.
105   //
106   // It significantly reduces potential duplicate states, so has a better
107   // upper bound; but it requires more overhead.
108   //
109   // Time complexity: \Omega(match_length * match_results.size())
110   //                  O(match_length * _M_nfa.size() * match_results.size())
111   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112   //                   O(_M_nfa.size() * match_results.size())
113   template<typename _BiIter, typename _Alloc, typename _TraitsT,
114 	   bool __dfs_mode>
115     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_main_dispatch(_Match_mode __match_mode,__bfs)116     _M_main_dispatch(_Match_mode __match_mode, __bfs)
117     {
118       _M_states._M_queue(_M_states._M_start, _M_results);
119       bool __ret = false;
120       while (1)
121 	{
122 	  _M_has_sol = false;
123 	  if (_M_states._M_match_queue.empty())
124 	    break;
125 	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
126 	  auto __old_queue = std::move(_M_states._M_match_queue);
127 	  for (auto& __task : __old_queue)
128 	    {
129 	      _M_cur_results = std::move(__task.second);
130 	      _M_dfs(__match_mode, __task.first);
131 	    }
132 	  if (__match_mode == _Match_mode::_Prefix)
133 	    __ret |= _M_has_sol;
134 	  if (_M_current == _M_end)
135 	    break;
136 	  ++_M_current;
137 	}
138       if (__match_mode == _Match_mode::_Exact)
139 	__ret = _M_has_sol;
140       _M_states._M_match_queue.clear();
141       return __ret;
142     }
143 
144   // Return whether now match the given sub-NFA.
145   template<typename _BiIter, typename _Alloc, typename _TraitsT,
146 	   bool __dfs_mode>
147     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_lookahead(_State<_TraitsT> __state)148     _M_lookahead(_State<_TraitsT> __state)
149     {
150       // Backreferences may refer to captured content.
151       // We may want to make this faster by not copying,
152       // but let's not be clever prematurely.
153       _ResultsVec __what(_M_cur_results);
154       _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
155       __sub._M_states._M_start = __state._M_alt;
156       if (__sub._M_search_from_first())
157 	{
158 	  for (size_t __i = 0; __i < __what.size(); __i++)
159 	    if (__what[__i].matched)
160 	      _M_cur_results[__i] = __what[__i];
161 	  return true;
162 	}
163       return false;
164     }
165 
166   // __rep_count records how many times (__rep_count.second)
167   // this node is visited under certain input iterator
168   // (__rep_count.first). This prevent the executor from entering
169   // infinite loop by refusing to continue when it's already been
170   // visited more than twice. It's `twice` instead of `once` because
171   // we need to spare one more time for potential group capture.
172   template<typename _BiIter, typename _Alloc, typename _TraitsT,
173     bool __dfs_mode>
174     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_rep_once_more(_Match_mode __match_mode,_StateIdT __i)175     _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
176     {
177       const auto& __state = _M_nfa[__i];
178       auto& __rep_count = _M_rep_count[__i];
179       if (__rep_count.second == 0 || __rep_count.first != _M_current)
180 	{
181 	  auto __back = __rep_count;
182 	  __rep_count.first = _M_current;
183 	  __rep_count.second = 1;
184 	  _M_dfs(__match_mode, __state._M_alt);
185 	  __rep_count = __back;
186 	}
187       else
188 	{
189 	  if (__rep_count.second < 2)
190 	    {
191 	      __rep_count.second++;
192 	      _M_dfs(__match_mode, __state._M_alt);
193 	      __rep_count.second--;
194 	    }
195 	}
196     };
197 
198   template<typename _BiIter, typename _Alloc, typename _TraitsT,
199 	   bool __dfs_mode>
200     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_dfs(_Match_mode __match_mode,_StateIdT __i)201     _M_dfs(_Match_mode __match_mode, _StateIdT __i)
202     {
203       if (_M_states._M_visited(__i))
204 	return;
205 
206       const auto& __state = _M_nfa[__i];
207       // Every change on _M_cur_results and _M_current will be rolled back after
208       // finishing the recursion step.
209       switch (__state._M_opcode)
210 	{
211 	// _M_alt branch is "match once more", while _M_next is "get me out
212 	// of this quantifier". Executing _M_next first or _M_alt first don't
213 	// mean the same thing, and we need to choose the correct order under
214 	// given greedy mode.
215 	case _S_opcode_repeat:
216 	  {
217 	    // Greedy.
218 	    if (!__state._M_neg)
219 	      {
220 		_M_rep_once_more(__match_mode, __i);
221 		// If it's DFS executor and already accepted, we're done.
222 		if (!__dfs_mode || !_M_has_sol)
223 		  _M_dfs(__match_mode, __state._M_next);
224 	      }
225 	    else // Non-greedy mode
226 	      {
227 		if (__dfs_mode)
228 		  {
229 		    // vice-versa.
230 		    _M_dfs(__match_mode, __state._M_next);
231 		    if (!_M_has_sol)
232 		      _M_rep_once_more(__match_mode, __i);
233 		  }
234 		else
235 		  {
236 		    // DON'T attempt anything, because there's already another
237 		    // state with higher priority accepted. This state cannot
238 		    // be better by attempting its next node.
239 		    if (!_M_has_sol)
240 		      {
241 			_M_dfs(__match_mode, __state._M_next);
242 			// DON'T attempt anything if it's already accepted. An
243 			// accepted state *must* be better than a solution that
244 			// matches a non-greedy quantifier one more time.
245 			if (!_M_has_sol)
246 			  _M_rep_once_more(__match_mode, __i);
247 		      }
248 		  }
249 	      }
250 	    }
251 	  break;
252 	case _S_opcode_subexpr_begin:
253 	  {
254 	    auto& __res = _M_cur_results[__state._M_subexpr];
255 	    auto __back = __res.first;
256 	    __res.first = _M_current;
257 	    _M_dfs(__match_mode, __state._M_next);
258 	    __res.first = __back;
259 	  }
260 	  break;
261 	case _S_opcode_subexpr_end:
262 	  {
263 	    auto& __res = _M_cur_results[__state._M_subexpr];
264 	    auto __back = __res;
265 	    __res.second = _M_current;
266 	    __res.matched = true;
267 	    _M_dfs(__match_mode, __state._M_next);
268 	    __res = __back;
269 	  }
270 	  break;
271 	case _S_opcode_line_begin_assertion:
272 	  if (_M_at_begin())
273 	    _M_dfs(__match_mode, __state._M_next);
274 	  break;
275 	case _S_opcode_line_end_assertion:
276 	  if (_M_at_end())
277 	    _M_dfs(__match_mode, __state._M_next);
278 	  break;
279 	case _S_opcode_word_boundary:
280 	  if (_M_word_boundary() == !__state._M_neg)
281 	    _M_dfs(__match_mode, __state._M_next);
282 	  break;
283 	// Here __state._M_alt offers a single start node for a sub-NFA.
284 	// We recursively invoke our algorithm to match the sub-NFA.
285 	case _S_opcode_subexpr_lookahead:
286 	  if (_M_lookahead(__state) == !__state._M_neg)
287 	    _M_dfs(__match_mode, __state._M_next);
288 	  break;
289 	case _S_opcode_match:
290 	  if (_M_current == _M_end)
291 	    break;
292 	  if (__dfs_mode)
293 	    {
294 	      if (__state._M_matches(*_M_current))
295 		{
296 		  ++_M_current;
297 		  _M_dfs(__match_mode, __state._M_next);
298 		  --_M_current;
299 		}
300 	    }
301 	  else
302 	    if (__state._M_matches(*_M_current))
303 	      _M_states._M_queue(__state._M_next, _M_cur_results);
304 	  break;
305 	// First fetch the matched result from _M_cur_results as __submatch;
306 	// then compare it with
307 	// (_M_current, _M_current + (__submatch.second - __submatch.first)).
308 	// If matched, keep going; else just return and try another state.
309 	case _S_opcode_backref:
310 	  {
311 	    _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
312 	    auto& __submatch = _M_cur_results[__state._M_backref_index];
313 	    if (!__submatch.matched)
314 	      break;
315 	    auto __last = _M_current;
316 	    for (auto __tmp = __submatch.first;
317 		 __last != _M_end && __tmp != __submatch.second;
318 		 ++__tmp)
319 	      ++__last;
320 	    if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
321 							__submatch.second)
322 		== _M_re._M_automaton->_M_traits.transform(_M_current, __last))
323 	      {
324 		if (__last != _M_current)
325 		  {
326 		    auto __backup = _M_current;
327 		    _M_current = __last;
328 		    _M_dfs(__match_mode, __state._M_next);
329 		    _M_current = __backup;
330 		  }
331 		else
332 		  _M_dfs(__match_mode, __state._M_next);
333 	      }
334 	  }
335 	  break;
336 	case _S_opcode_accept:
337 	  if (__dfs_mode)
338 	    {
339 	      _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
340 	      if (__match_mode == _Match_mode::_Exact)
341 		_M_has_sol = _M_current == _M_end;
342 	      else
343 		_M_has_sol = true;
344 	      if (_M_current == _M_begin
345 		  && (_M_flags & regex_constants::match_not_null))
346 		_M_has_sol = false;
347 	      if (_M_has_sol)
348 		{
349 		  if (_M_nfa._M_flags & regex_constants::ECMAScript)
350 		    _M_results = _M_cur_results;
351 		  else // POSIX
352 		    {
353 		      _GLIBCXX_DEBUG_ASSERT(_M_states._M_get_sol_pos());
354 		      // Here's POSIX's logic: match the longest one. However
355 		      // we never know which one (lhs or rhs of "|") is longer
356 		      // unless we try both of them and compare the results.
357 		      // The member variable _M_sol_pos records the end
358 		      // position of the last successful match. It's better
359 		      // to be larger, because POSIX regex is always greedy.
360 		      // TODO: This could be slow.
361 		      if (*_M_states._M_get_sol_pos() == _BiIter()
362 			  || std::distance(_M_begin,
363 					   *_M_states._M_get_sol_pos())
364 			     < std::distance(_M_begin, _M_current))
365 			{
366 			  *_M_states._M_get_sol_pos() = _M_current;
367 			  _M_results = _M_cur_results;
368 			}
369 		    }
370 		}
371 	    }
372 	  else
373 	    {
374 	      if (_M_current == _M_begin
375 		  && (_M_flags & regex_constants::match_not_null))
376 		break;
377 	      if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
378 		if (!_M_has_sol)
379 		  {
380 		    _M_has_sol = true;
381 		    _M_results = _M_cur_results;
382 		  }
383 	    }
384 	  break;
385 	case _S_opcode_alternative:
386 	  if (_M_nfa._M_flags & regex_constants::ECMAScript)
387 	    {
388 	      // TODO: Let BFS support ECMAScript's alternative operation.
389 	      _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
390 	      _M_dfs(__match_mode, __state._M_alt);
391 	      // Pick lhs if it matches. Only try rhs if it doesn't.
392 	      if (!_M_has_sol)
393 		_M_dfs(__match_mode, __state._M_next);
394 	    }
395 	  else
396 	    {
397 	      // Try both and compare the result.
398 	      // See "case _S_opcode_accept:" handling above.
399 	      _M_dfs(__match_mode, __state._M_alt);
400 	      auto __has_sol = _M_has_sol;
401 	      _M_has_sol = false;
402 	      _M_dfs(__match_mode, __state._M_next);
403 	      _M_has_sol |= __has_sol;
404 	    }
405 	  break;
406 	default:
407 	  _GLIBCXX_DEBUG_ASSERT(false);
408 	}
409     }
410 
411   // Return whether now is at some word boundary.
412   template<typename _BiIter, typename _Alloc, typename _TraitsT,
413 	   bool __dfs_mode>
414     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_word_boundary() const415     _M_word_boundary() const
416     {
417       bool __left_is_word = false;
418       if (_M_current != _M_begin
419 	  || (_M_flags & regex_constants::match_prev_avail))
420 	{
421 	  auto __prev = _M_current;
422 	  if (_M_is_word(*std::prev(__prev)))
423 	    __left_is_word = true;
424 	}
425       bool __right_is_word =
426         _M_current != _M_end && _M_is_word(*_M_current);
427 
428       if (__left_is_word == __right_is_word)
429 	return false;
430       if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
431 	return true;
432       if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
433 	return true;
434       return false;
435     }
436 
437 _GLIBCXX_END_NAMESPACE_VERSION
438 } // namespace __detail
439 } // namespace
440