1// <shared_mutex> -*- C++ -*-
2
3// Copyright (C) 2013-2015 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/shared_mutex
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_SHARED_MUTEX
30#define _GLIBCXX_SHARED_MUTEX 1
31
32#pragma GCC system_header
33
34#if __cplusplus <= 201103L
35# include <bits/c++14_warning.h>
36#else
37
38#include <bits/c++config.h>
39#include <mutex>
40#include <condition_variable>
41#include <bits/functexcept.h>
42
43namespace std _GLIBCXX_VISIBILITY(default)
44{
45_GLIBCXX_BEGIN_NAMESPACE_VERSION
46
47  /**
48   * @ingroup mutexes
49   * @{
50   */
51
52#ifdef _GLIBCXX_USE_C99_STDINT_TR1
53#ifdef _GLIBCXX_HAS_GTHREADS
54
55#define __cpp_lib_shared_timed_mutex 201402
56
57  /// shared_timed_mutex
58  class shared_timed_mutex
59  {
60#if _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
61    typedef chrono::system_clock	__clock_t;
62
63#ifdef PTHREAD_RWLOCK_INITIALIZER
64    pthread_rwlock_t	_M_rwlock = PTHREAD_RWLOCK_INITIALIZER;
65
66  public:
67    shared_timed_mutex() = default;
68    ~shared_timed_mutex() = default;
69#else
70    pthread_rwlock_t	_M_rwlock;
71
72  public:
73    shared_timed_mutex()
74    {
75      int __ret = pthread_rwlock_init(&_M_rwlock, NULL);
76      if (__ret == ENOMEM)
77	__throw_bad_alloc();
78      else if (__ret == EAGAIN)
79	__throw_system_error(int(errc::resource_unavailable_try_again));
80      else if (__ret == EPERM)
81	__throw_system_error(int(errc::operation_not_permitted));
82      // Errors not handled: EBUSY, EINVAL
83      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
84    }
85
86    ~shared_timed_mutex()
87    {
88      int __ret __attribute((__unused__)) = pthread_rwlock_destroy(&_M_rwlock);
89      // Errors not handled: EBUSY, EINVAL
90      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
91    }
92#endif
93
94    shared_timed_mutex(const shared_timed_mutex&) = delete;
95    shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
96
97    // Exclusive ownership
98
99    void
100    lock()
101    {
102      int __ret = pthread_rwlock_wrlock(&_M_rwlock);
103      if (__ret == EDEADLK)
104	__throw_system_error(int(errc::resource_deadlock_would_occur));
105      // Errors not handled: EINVAL
106      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
107    }
108
109    bool
110    try_lock()
111    {
112      int __ret = pthread_rwlock_trywrlock(&_M_rwlock);
113      if (__ret == EBUSY) return false;
114      // Errors not handled: EINVAL
115      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
116      return true;
117    }
118
119    template<typename _Rep, typename _Period>
120      bool
121      try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
122      {
123	return try_lock_until(__clock_t::now() + __rel_time);
124      }
125
126    template<typename _Duration>
127      bool
128      try_lock_until(const chrono::time_point<__clock_t, _Duration>& __atime)
129      {
130	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
131	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
132
133	__gthread_time_t __ts =
134	  {
135	    static_cast<std::time_t>(__s.time_since_epoch().count()),
136	    static_cast<long>(__ns.count())
137	  };
138
139	int __ret = pthread_rwlock_timedwrlock(&_M_rwlock, &__ts);
140	// On self-deadlock, we just fail to acquire the lock.  Technically,
141	// the program violated the precondition.
142	if (__ret == ETIMEDOUT || __ret == EDEADLK)
143	  return false;
144	// Errors not handled: EINVAL
145	_GLIBCXX_DEBUG_ASSERT(__ret == 0);
146	return true;
147      }
148
149    template<typename _Clock, typename _Duration>
150      bool
151      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
152      {
153	// DR 887 - Sync unknown clock to known clock.
154	const typename _Clock::time_point __c_entry = _Clock::now();
155	const __clock_t::time_point __s_entry = __clock_t::now();
156	const auto __delta = __abs_time - __c_entry;
157	const auto __s_atime = __s_entry + __delta;
158	return try_lock_until(__s_atime);
159      }
160
161    void
162    unlock()
163    {
164      int __ret __attribute((__unused__)) = pthread_rwlock_unlock(&_M_rwlock);
165      // Errors not handled: EPERM, EBUSY, EINVAL
166      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
167    }
168
169    // Shared ownership
170
171    void
172    lock_shared()
173    {
174      int __ret;
175      // We retry if we exceeded the maximum number of read locks supported by
176      // the POSIX implementation; this can result in busy-waiting, but this
177      // is okay based on the current specification of forward progress
178      // guarantees by the standard.
179      do
180	__ret = pthread_rwlock_rdlock(&_M_rwlock);
181      while (__ret == EAGAIN);
182      if (__ret == EDEADLK)
183	__throw_system_error(int(errc::resource_deadlock_would_occur));
184      // Errors not handled: EINVAL
185      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
186    }
187
188    bool
189    try_lock_shared()
190    {
191      int __ret = pthread_rwlock_tryrdlock(&_M_rwlock);
192      // If the maximum number of read locks has been exceeded, we just fail
193      // to acquire the lock.  Unlike for lock(), we are not allowed to throw
194      // an exception.
195      if (__ret == EBUSY || __ret == EAGAIN) return false;
196      // Errors not handled: EINVAL
197      _GLIBCXX_DEBUG_ASSERT(__ret == 0);
198      return true;
199    }
200
201    template<typename _Rep, typename _Period>
202      bool
203      try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rel_time)
204      {
205	return try_lock_shared_until(__clock_t::now() + __rel_time);
206      }
207
208    template<typename _Duration>
209      bool
210      try_lock_shared_until(const chrono::time_point<__clock_t,
211			    _Duration>& __atime)
212      {
213	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
214	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
215
216	__gthread_time_t __ts =
217	  {
218	    static_cast<std::time_t>(__s.time_since_epoch().count()),
219	    static_cast<long>(__ns.count())
220	  };
221
222	int __ret;
223	// Unlike for lock(), we are not allowed to throw an exception so if
224	// the maximum number of read locks has been exceeded, or we would
225	// deadlock, we just try to acquire the lock again (and will time out
226	// eventually).
227	// In cases where we would exceed the maximum number of read locks
228	// throughout the whole time until the timeout, we will fail to
229	// acquire the lock even if it would be logically free; however, this
230	// is allowed by the standard, and we made a "strong effort"
231	// (see C++14 30.4.1.4p26).
232	// For cases where the implementation detects a deadlock we
233	// intentionally block and timeout so that an early return isn't
234	// mistaken for a spurious failure, which might help users realise
235	// there is a deadlock.
236	do
237	  __ret = pthread_rwlock_timedrdlock(&_M_rwlock, &__ts);
238	while (__ret == EAGAIN || __ret == EDEADLK);
239	if (__ret == ETIMEDOUT)
240	  return false;
241	// Errors not handled: EINVAL
242	_GLIBCXX_DEBUG_ASSERT(__ret == 0);
243	return true;
244      }
245
246    template<typename _Clock, typename _Duration>
247      bool
248      try_lock_shared_until(const chrono::time_point<_Clock,
249			    _Duration>& __abs_time)
250      {
251	// DR 887 - Sync unknown clock to known clock.
252	const typename _Clock::time_point __c_entry = _Clock::now();
253	const __clock_t::time_point __s_entry = __clock_t::now();
254	const auto __delta = __abs_time - __c_entry;
255	const auto __s_atime = __s_entry + __delta;
256	return try_lock_shared_until(__s_atime);
257      }
258
259    void
260    unlock_shared()
261    {
262      unlock();
263    }
264
265#else // ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)
266
267    // Must use the same clock as condition_variable
268    typedef chrono::system_clock	__clock_t;
269
270    // Based on Howard Hinnant's reference implementation from N2406.
271
272    // The high bit of _M_state is the write-entered flag which is set to
273    // indicate a writer has taken the lock or is queuing to take the lock.
274    // The remaining bits are the count of reader locks.
275    //
276    // To take a reader lock, block on gate1 while the write-entered flag is
277    // set or the maximum number of reader locks is held, then increment the
278    // reader lock count.
279    // To release, decrement the count, then if the write-entered flag is set
280    // and the count is zero then signal gate2 to wake a queued writer,
281    // otherwise if the maximum number of reader locks was held signal gate1
282    // to wake a reader.
283    //
284    // To take a writer lock, block on gate1 while the write-entered flag is
285    // set, then set the write-entered flag to start queueing, then block on
286    // gate2 while the number of reader locks is non-zero.
287    // To release, unset the write-entered flag and signal gate1 to wake all
288    // blocked readers and writers.
289    //
290    // This means that when no reader locks are held readers and writers get
291    // equal priority. When one or more reader locks is held a writer gets
292    // priority and no more reader locks can be taken while the writer is
293    // queued.
294
295    // Only locked when accessing _M_state or waiting on condition variables.
296    mutex		_M_mut;
297    // Used to block while write-entered is set or reader count at maximum.
298    condition_variable	_M_gate1;
299    // Used to block queued writers while reader count is non-zero.
300    condition_variable	_M_gate2;
301    // The write-entered flag and reader count.
302    unsigned		_M_state;
303
304    static constexpr unsigned _S_write_entered
305      = 1U << (sizeof(unsigned)*__CHAR_BIT__ - 1);
306    static constexpr unsigned _S_max_readers = ~_S_write_entered;
307
308    // Test whether the write-entered flag is set. _M_mut must be locked.
309    bool _M_write_entered() const { return _M_state & _S_write_entered; }
310
311    // The number of reader locks currently held. _M_mut must be locked.
312    unsigned _M_readers() const { return _M_state & _S_max_readers; }
313
314  public:
315    shared_timed_mutex() : _M_state(0) {}
316
317    ~shared_timed_mutex()
318    {
319      _GLIBCXX_DEBUG_ASSERT( _M_state == 0 );
320    }
321
322    shared_timed_mutex(const shared_timed_mutex&) = delete;
323    shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
324
325    // Exclusive ownership
326
327    void
328    lock()
329    {
330      unique_lock<mutex> __lk(_M_mut);
331      // Wait until we can set the write-entered flag.
332      _M_gate1.wait(__lk, [=]{ return !_M_write_entered(); });
333      _M_state |= _S_write_entered;
334      // Then wait until there are no more readers.
335      _M_gate2.wait(__lk, [=]{ return _M_readers() == 0; });
336    }
337
338    bool
339    try_lock()
340    {
341      unique_lock<mutex> __lk(_M_mut, try_to_lock);
342      if (__lk.owns_lock() && _M_state == 0)
343	{
344	  _M_state = _S_write_entered;
345	  return true;
346	}
347      return false;
348    }
349
350    template<typename _Rep, typename _Period>
351      bool
352      try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
353      {
354	return try_lock_until(__clock_t::now() + __rel_time);
355      }
356
357    template<typename _Clock, typename _Duration>
358      bool
359      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
360      {
361	unique_lock<mutex> __lk(_M_mut);
362	if (!_M_gate1.wait_until(__lk, __abs_time,
363				 [=]{ return !_M_write_entered(); }))
364	  {
365	    return false;
366	  }
367	_M_state |= _S_write_entered;
368	if (!_M_gate2.wait_until(__lk, __abs_time,
369				 [=]{ return _M_readers() == 0; }))
370	  {
371	    _M_state ^= _S_write_entered;
372	    // Wake all threads blocked while the write-entered flag was set.
373	    _M_gate1.notify_all();
374	    return false;
375	  }
376	return true;
377      }
378
379    void
380    unlock()
381    {
382      lock_guard<mutex> __lk(_M_mut);
383      _GLIBCXX_DEBUG_ASSERT( _M_write_entered() );
384      _M_state = 0;
385      // call notify_all() while mutex is held so that another thread can't
386      // lock and unlock the mutex then destroy *this before we make the call.
387      _M_gate1.notify_all();
388    }
389
390    // Shared ownership
391
392    void
393    lock_shared()
394    {
395      unique_lock<mutex> __lk(_M_mut);
396      _M_gate1.wait(__lk, [=]{ return _M_state < _S_max_readers; });
397      ++_M_state;
398    }
399
400    bool
401    try_lock_shared()
402    {
403      unique_lock<mutex> __lk(_M_mut, try_to_lock);
404      if (!__lk.owns_lock())
405	return false;
406      if (_M_state < _S_max_readers)
407	{
408	  ++_M_state;
409	  return true;
410	}
411      return false;
412    }
413
414    template<typename _Rep, typename _Period>
415      bool
416      try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rel_time)
417      {
418	return try_lock_shared_until(__clock_t::now() + __rel_time);
419      }
420
421    template <typename _Clock, typename _Duration>
422      bool
423      try_lock_shared_until(const chrono::time_point<_Clock,
424						     _Duration>& __abs_time)
425      {
426	unique_lock<mutex> __lk(_M_mut);
427	if (!_M_gate1.wait_until(__lk, __abs_time,
428				 [=]{ return _M_state < _S_max_readers; }))
429	  {
430	    return false;
431	  }
432	++_M_state;
433	return true;
434      }
435
436    void
437    unlock_shared()
438    {
439      lock_guard<mutex> __lk(_M_mut);
440      _GLIBCXX_DEBUG_ASSERT( _M_readers() > 0 );
441      auto __prev = _M_state--;
442      if (_M_write_entered())
443	{
444	  // Wake the queued writer if there are no more readers.
445	  if (_M_readers() == 0)
446	    _M_gate2.notify_one();
447	  // No need to notify gate1 because we give priority to the queued
448	  // writer, and that writer will eventually notify gate1 after it
449	  // clears the write-entered flag.
450	}
451      else
452	{
453	  // Wake any thread that was blocked on reader overflow.
454	  if (__prev == _S_max_readers)
455	    _M_gate1.notify_one();
456	}
457    }
458#endif // _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
459  };
460#endif // _GLIBCXX_HAS_GTHREADS
461
462  /// shared_lock
463  template<typename _Mutex>
464    class shared_lock
465    {
466    public:
467      typedef _Mutex mutex_type;
468
469      // Shared locking
470
471      shared_lock() noexcept : _M_pm(nullptr), _M_owns(false) { }
472
473      explicit
474      shared_lock(mutex_type& __m) : _M_pm(&__m), _M_owns(true)
475      { __m.lock_shared(); }
476
477      shared_lock(mutex_type& __m, defer_lock_t) noexcept
478      : _M_pm(&__m), _M_owns(false) { }
479
480      shared_lock(mutex_type& __m, try_to_lock_t)
481      : _M_pm(&__m), _M_owns(__m.try_lock_shared()) { }
482
483      shared_lock(mutex_type& __m, adopt_lock_t)
484      : _M_pm(&__m), _M_owns(true) { }
485
486      template<typename _Clock, typename _Duration>
487	shared_lock(mutex_type& __m,
488		    const chrono::time_point<_Clock, _Duration>& __abs_time)
489      : _M_pm(&__m), _M_owns(__m.try_lock_shared_until(__abs_time)) { }
490
491      template<typename _Rep, typename _Period>
492	shared_lock(mutex_type& __m,
493		    const chrono::duration<_Rep, _Period>& __rel_time)
494      : _M_pm(&__m), _M_owns(__m.try_lock_shared_for(__rel_time)) { }
495
496      ~shared_lock()
497      {
498	if (_M_owns)
499	  _M_pm->unlock_shared();
500      }
501
502      shared_lock(shared_lock const&) = delete;
503      shared_lock& operator=(shared_lock const&) = delete;
504
505      shared_lock(shared_lock&& __sl) noexcept : shared_lock()
506      { swap(__sl); }
507
508      shared_lock&
509      operator=(shared_lock&& __sl) noexcept
510      {
511	shared_lock(std::move(__sl)).swap(*this);
512	return *this;
513      }
514
515      void
516      lock()
517      {
518	_M_lockable();
519	_M_pm->lock_shared();
520	_M_owns = true;
521      }
522
523      bool
524      try_lock()
525      {
526	_M_lockable();
527	return _M_owns = _M_pm->try_lock_shared();
528      }
529
530      template<typename _Rep, typename _Period>
531	bool
532	try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
533	{
534	  _M_lockable();
535	  return _M_owns = _M_pm->try_lock_shared_for(__rel_time);
536	}
537
538      template<typename _Clock, typename _Duration>
539	bool
540	try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
541	{
542	  _M_lockable();
543	  return _M_owns = _M_pm->try_lock_shared_until(__abs_time);
544	}
545
546      void
547      unlock()
548      {
549	if (!_M_owns)
550	  __throw_system_error(int(errc::resource_deadlock_would_occur));
551	_M_pm->unlock_shared();
552	_M_owns = false;
553      }
554
555      // Setters
556
557      void
558      swap(shared_lock& __u) noexcept
559      {
560	std::swap(_M_pm, __u._M_pm);
561	std::swap(_M_owns, __u._M_owns);
562      }
563
564      mutex_type*
565      release() noexcept
566      {
567	_M_owns = false;
568	return std::exchange(_M_pm, nullptr);
569      }
570
571      // Getters
572
573      bool owns_lock() const noexcept { return _M_owns; }
574
575      explicit operator bool() const noexcept { return _M_owns; }
576
577      mutex_type* mutex() const noexcept { return _M_pm; }
578
579    private:
580      void
581      _M_lockable() const
582      {
583	if (_M_pm == nullptr)
584	  __throw_system_error(int(errc::operation_not_permitted));
585	if (_M_owns)
586	  __throw_system_error(int(errc::resource_deadlock_would_occur));
587      }
588
589      mutex_type*	_M_pm;
590      bool		_M_owns;
591    };
592
593  /// Swap specialization for shared_lock
594  template<typename _Mutex>
595    void
596    swap(shared_lock<_Mutex>& __x, shared_lock<_Mutex>& __y) noexcept
597    { __x.swap(__y); }
598
599#endif // _GLIBCXX_USE_C99_STDINT_TR1
600
601  // @} group mutexes
602_GLIBCXX_END_NAMESPACE_VERSION
603} // namespace
604
605#endif // C++14
606
607#endif // _GLIBCXX_SHARED_MUTEX
608