1 // Special functions -*- C++ -*- 2 3 // Copyright (C) 2006-2015 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 // 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 // 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file tr1/poly_laguerre.tcc 26 * This is an internal header file, included by other library headers. 27 * Do not attempt to use it directly. @headername{tr1/cmath} 28 */ 29 30 // 31 // ISO C++ 14882 TR1: 5.2 Special functions 32 // 33 34 // Written by Edward Smith-Rowland based on: 35 // (1) Handbook of Mathematical Functions, 36 // Ed. Milton Abramowitz and Irene A. Stegun, 37 // Dover Publications, 38 // Section 13, pp. 509-510, Section 22 pp. 773-802 39 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 40 41 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC 42 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 43 44 namespace std _GLIBCXX_VISIBILITY(default) 45 { 46 namespace tr1 47 { 48 // [5.2] Special functions 49 50 // Implementation-space details. 51 namespace __detail 52 { 53 _GLIBCXX_BEGIN_NAMESPACE_VERSION 54 55 /** 56 * @brief This routine returns the associated Laguerre polynomial 57 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n. 58 * Abramowitz & Stegun, 13.5.21 59 * 60 * @param __n The order of the Laguerre function. 61 * @param __alpha The degree of the Laguerre function. 62 * @param __x The argument of the Laguerre function. 63 * @return The value of the Laguerre function of order n, 64 * degree @f$ \alpha @f$, and argument x. 65 * 66 * This is from the GNU Scientific Library. 67 */ 68 template<typename _Tpa, typename _Tp> 69 _Tp __poly_laguerre_large_n(unsigned __n,_Tpa __alpha1,_Tp __x)70 __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) 71 { 72 const _Tp __a = -_Tp(__n); 73 const _Tp __b = _Tp(__alpha1) + _Tp(1); 74 const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; 75 const _Tp __cos2th = __x / __eta; 76 const _Tp __sin2th = _Tp(1) - __cos2th; 77 const _Tp __th = std::acos(std::sqrt(__cos2th)); 78 const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() 79 * __numeric_constants<_Tp>::__pi_2() 80 * __eta * __eta * __cos2th * __sin2th; 81 82 #if _GLIBCXX_USE_C99_MATH_TR1 83 const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b); 84 const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1)); 85 #else 86 const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); 87 const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); 88 #endif 89 90 _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) 91 * std::log(_Tp(0.25L) * __x * __eta); 92 _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); 93 _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x 94 + __pre_term1 - __pre_term2; 95 _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); 96 _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta 97 * (_Tp(2) * __th 98 - std::sin(_Tp(2) * __th)) 99 + __numeric_constants<_Tp>::__pi_4()); 100 _Tp __ser = __ser_term1 + __ser_term2; 101 102 return std::exp(__lnpre) * __ser; 103 } 104 105 106 /** 107 * @brief Evaluate the polynomial based on the confluent hypergeometric 108 * function in a safe way, with no restriction on the arguments. 109 * 110 * The associated Laguerre function is defined by 111 * @f[ 112 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 113 * _1F_1(-n; \alpha + 1; x) 114 * @f] 115 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 116 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 117 * 118 * This function assumes x != 0. 119 * 120 * This is from the GNU Scientific Library. 121 */ 122 template<typename _Tpa, typename _Tp> 123 _Tp __poly_laguerre_hyperg(unsigned int __n,_Tpa __alpha1,_Tp __x)124 __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) 125 { 126 const _Tp __b = _Tp(__alpha1) + _Tp(1); 127 const _Tp __mx = -__x; 128 const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) 129 : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); 130 // Get |x|^n/n! 131 _Tp __tc = _Tp(1); 132 const _Tp __ax = std::abs(__x); 133 for (unsigned int __k = 1; __k <= __n; ++__k) 134 __tc *= (__ax / __k); 135 136 _Tp __term = __tc * __tc_sgn; 137 _Tp __sum = __term; 138 for (int __k = int(__n) - 1; __k >= 0; --__k) 139 { 140 __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) 141 * _Tp(__k + 1) / __mx; 142 __sum += __term; 143 } 144 145 return __sum; 146 } 147 148 149 /** 150 * @brief This routine returns the associated Laguerre polynomial 151 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ 152 * by recursion. 153 * 154 * The associated Laguerre function is defined by 155 * @f[ 156 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 157 * _1F_1(-n; \alpha + 1; x) 158 * @f] 159 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 160 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 161 * 162 * The associated Laguerre polynomial is defined for integral 163 * @f$ \alpha = m @f$ by: 164 * @f[ 165 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 166 * @f] 167 * where the Laguerre polynomial is defined by: 168 * @f[ 169 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 170 * @f] 171 * 172 * @param __n The order of the Laguerre function. 173 * @param __alpha The degree of the Laguerre function. 174 * @param __x The argument of the Laguerre function. 175 * @return The value of the Laguerre function of order n, 176 * degree @f$ \alpha @f$, and argument x. 177 */ 178 template<typename _Tpa, typename _Tp> 179 _Tp __poly_laguerre_recursion(unsigned int __n,_Tpa __alpha1,_Tp __x)180 __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) 181 { 182 // Compute l_0. 183 _Tp __l_0 = _Tp(1); 184 if (__n == 0) 185 return __l_0; 186 187 // Compute l_1^alpha. 188 _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); 189 if (__n == 1) 190 return __l_1; 191 192 // Compute l_n^alpha by recursion on n. 193 _Tp __l_n2 = __l_0; 194 _Tp __l_n1 = __l_1; 195 _Tp __l_n = _Tp(0); 196 for (unsigned int __nn = 2; __nn <= __n; ++__nn) 197 { 198 __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) 199 * __l_n1 / _Tp(__nn) 200 - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); 201 __l_n2 = __l_n1; 202 __l_n1 = __l_n; 203 } 204 205 return __l_n; 206 } 207 208 209 /** 210 * @brief This routine returns the associated Laguerre polynomial 211 * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. 212 * 213 * The associated Laguerre function is defined by 214 * @f[ 215 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 216 * _1F_1(-n; \alpha + 1; x) 217 * @f] 218 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 219 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 220 * 221 * The associated Laguerre polynomial is defined for integral 222 * @f$ \alpha = m @f$ by: 223 * @f[ 224 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 225 * @f] 226 * where the Laguerre polynomial is defined by: 227 * @f[ 228 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 229 * @f] 230 * 231 * @param __n The order of the Laguerre function. 232 * @param __alpha The degree of the Laguerre function. 233 * @param __x The argument of the Laguerre function. 234 * @return The value of the Laguerre function of order n, 235 * degree @f$ \alpha @f$, and argument x. 236 */ 237 template<typename _Tpa, typename _Tp> 238 _Tp __poly_laguerre(unsigned int __n,_Tpa __alpha1,_Tp __x)239 __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) 240 { 241 if (__x < _Tp(0)) 242 std::__throw_domain_error(__N("Negative argument " 243 "in __poly_laguerre.")); 244 // Return NaN on NaN input. 245 else if (__isnan(__x)) 246 return std::numeric_limits<_Tp>::quiet_NaN(); 247 else if (__n == 0) 248 return _Tp(1); 249 else if (__n == 1) 250 return _Tp(1) + _Tp(__alpha1) - __x; 251 else if (__x == _Tp(0)) 252 { 253 _Tp __prod = _Tp(__alpha1) + _Tp(1); 254 for (unsigned int __k = 2; __k <= __n; ++__k) 255 __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); 256 return __prod; 257 } 258 else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) 259 && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) 260 return __poly_laguerre_large_n(__n, __alpha1, __x); 261 else if (_Tp(__alpha1) >= _Tp(0) 262 || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) 263 return __poly_laguerre_recursion(__n, __alpha1, __x); 264 else 265 return __poly_laguerre_hyperg(__n, __alpha1, __x); 266 } 267 268 269 /** 270 * @brief This routine returns the associated Laguerre polynomial 271 * of order n, degree m: @f$ L_n^m(x) @f$. 272 * 273 * The associated Laguerre polynomial is defined for integral 274 * @f$ \alpha = m @f$ by: 275 * @f[ 276 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 277 * @f] 278 * where the Laguerre polynomial is defined by: 279 * @f[ 280 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 281 * @f] 282 * 283 * @param __n The order of the Laguerre polynomial. 284 * @param __m The degree of the Laguerre polynomial. 285 * @param __x The argument of the Laguerre polynomial. 286 * @return The value of the associated Laguerre polynomial of order n, 287 * degree m, and argument x. 288 */ 289 template<typename _Tp> 290 inline _Tp __assoc_laguerre(unsigned int __n,unsigned int __m,_Tp __x)291 __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) 292 { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } 293 294 295 /** 296 * @brief This routine returns the Laguerre polynomial 297 * of order n: @f$ L_n(x) @f$. 298 * 299 * The Laguerre polynomial is defined by: 300 * @f[ 301 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 302 * @f] 303 * 304 * @param __n The order of the Laguerre polynomial. 305 * @param __x The argument of the Laguerre polynomial. 306 * @return The value of the Laguerre polynomial of order n 307 * and argument x. 308 */ 309 template<typename _Tp> 310 inline _Tp __laguerre(unsigned int __n,_Tp __x)311 __laguerre(unsigned int __n, _Tp __x) 312 { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } 313 314 _GLIBCXX_END_NAMESPACE_VERSION 315 } // namespace std::tr1::__detail 316 } 317 } 318 319 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC 320