1// <functional> -*- C++ -*-
2
3// Copyright (C) 2001-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 * Copyright (c) 1997
27 * Silicon Graphics Computer Systems, Inc.
28 *
29 * Permission to use, copy, modify, distribute and sell this software
30 * and its documentation for any purpose is hereby granted without fee,
31 * provided that the above copyright notice appear in all copies and
32 * that both that copyright notice and this permission notice appear
33 * in supporting documentation.  Silicon Graphics makes no
34 * representations about the suitability of this software for any
35 * purpose.  It is provided "as is" without express or implied warranty.
36 *
37 */
38
39/** @file include/functional
40 *  This is a Standard C++ Library header.
41 */
42
43#ifndef _GLIBCXX_FUNCTIONAL
44#define _GLIBCXX_FUNCTIONAL 1
45
46#pragma GCC system_header
47
48#include <bits/c++config.h>
49#include <bits/stl_function.h>
50
51#if __cplusplus >= 201103L
52
53#include <typeinfo>
54#include <new>
55#include <tuple>
56#include <type_traits>
57#include <bits/functexcept.h>
58#include <bits/functional_hash.h>
59
60namespace std _GLIBCXX_VISIBILITY(default)
61{
62_GLIBCXX_BEGIN_NAMESPACE_VERSION
63
64  template<typename _MemberPointer>
65    class _Mem_fn;
66  template<typename _Tp, typename _Class>
67    _Mem_fn<_Tp _Class::*>
68    mem_fn(_Tp _Class::*) noexcept;
69
70  /// If we have found a result_type, extract it.
71  template<typename _Functor, typename = __void_t<>>
72    struct _Maybe_get_result_type
73    { };
74
75  template<typename _Functor>
76    struct _Maybe_get_result_type<_Functor,
77				  __void_t<typename _Functor::result_type>>
78    { typedef typename _Functor::result_type result_type; };
79
80  /**
81   *  Base class for any function object that has a weak result type, as
82   *  defined in 20.8.2 [func.require] of C++11.
83  */
84  template<typename _Functor>
85    struct _Weak_result_type_impl
86    : _Maybe_get_result_type<_Functor>
87    { };
88
89  /// Retrieve the result type for a function type.
90  template<typename _Res, typename... _ArgTypes>
91    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
92    { typedef _Res result_type; };
93
94  template<typename _Res, typename... _ArgTypes>
95    struct _Weak_result_type_impl<_Res(_ArgTypes......)>
96    { typedef _Res result_type; };
97
98  template<typename _Res, typename... _ArgTypes>
99    struct _Weak_result_type_impl<_Res(_ArgTypes...) const>
100    { typedef _Res result_type; };
101
102  template<typename _Res, typename... _ArgTypes>
103    struct _Weak_result_type_impl<_Res(_ArgTypes......) const>
104    { typedef _Res result_type; };
105
106  template<typename _Res, typename... _ArgTypes>
107    struct _Weak_result_type_impl<_Res(_ArgTypes...) volatile>
108    { typedef _Res result_type; };
109
110  template<typename _Res, typename... _ArgTypes>
111    struct _Weak_result_type_impl<_Res(_ArgTypes......) volatile>
112    { typedef _Res result_type; };
113
114  template<typename _Res, typename... _ArgTypes>
115    struct _Weak_result_type_impl<_Res(_ArgTypes...) const volatile>
116    { typedef _Res result_type; };
117
118  template<typename _Res, typename... _ArgTypes>
119    struct _Weak_result_type_impl<_Res(_ArgTypes......) const volatile>
120    { typedef _Res result_type; };
121
122  /// Retrieve the result type for a function reference.
123  template<typename _Res, typename... _ArgTypes>
124    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
125    { typedef _Res result_type; };
126
127  template<typename _Res, typename... _ArgTypes>
128    struct _Weak_result_type_impl<_Res(&)(_ArgTypes......)>
129    { typedef _Res result_type; };
130
131  /// Retrieve the result type for a function pointer.
132  template<typename _Res, typename... _ArgTypes>
133    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
134    { typedef _Res result_type; };
135
136  template<typename _Res, typename... _ArgTypes>
137    struct _Weak_result_type_impl<_Res(*)(_ArgTypes......)>
138    { typedef _Res result_type; };
139
140  /// Retrieve result type for a member function pointer.
141  template<typename _Res, typename _Class, typename... _ArgTypes>
142    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
143    { typedef _Res result_type; };
144
145  template<typename _Res, typename _Class, typename... _ArgTypes>
146    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)>
147    { typedef _Res result_type; };
148
149  /// Retrieve result type for a const member function pointer.
150  template<typename _Res, typename _Class, typename... _ArgTypes>
151    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
152    { typedef _Res result_type; };
153
154  template<typename _Res, typename _Class, typename... _ArgTypes>
155    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) const>
156    { typedef _Res result_type; };
157
158  /// Retrieve result type for a volatile member function pointer.
159  template<typename _Res, typename _Class, typename... _ArgTypes>
160    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
161    { typedef _Res result_type; };
162
163  template<typename _Res, typename _Class, typename... _ArgTypes>
164    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) volatile>
165    { typedef _Res result_type; };
166
167  /// Retrieve result type for a const volatile member function pointer.
168  template<typename _Res, typename _Class, typename... _ArgTypes>
169    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)
170				  const volatile>
171    { typedef _Res result_type; };
172
173  template<typename _Res, typename _Class, typename... _ArgTypes>
174    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)
175				  const volatile>
176    { typedef _Res result_type; };
177
178  /**
179   *  Strip top-level cv-qualifiers from the function object and let
180   *  _Weak_result_type_impl perform the real work.
181  */
182  template<typename _Functor>
183    struct _Weak_result_type
184    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
185    { };
186
187  template<typename _Tp, typename _Up = typename decay<_Tp>::type>
188    struct __inv_unwrap
189    {
190      using type = _Tp;
191    };
192
193  template<typename _Tp, typename _Up>
194    struct __inv_unwrap<_Tp, reference_wrapper<_Up>>
195    {
196      using type = _Up&;
197    };
198
199  // Used by __invoke_impl instead of std::forward<_Tp> so that a
200  // reference_wrapper is converted to an lvalue-reference.
201  template<typename _Tp, typename _Up = typename __inv_unwrap<_Tp>::type>
202    inline _Up&&
203    __invfwd(typename remove_reference<_Tp>::type& __t) noexcept
204    { return static_cast<_Up&&>(__t); }
205
206  template<typename _Res, typename _Fn, typename... _Args>
207    inline _Res
208    __invoke_impl(__invoke_other, _Fn&& __f, _Args&&... __args)
209    noexcept(noexcept(std::forward<_Fn>(__f)(std::forward<_Args>(__args)...)))
210    { return std::forward<_Fn>(__f)(std::forward<_Args>(__args)...); }
211
212  template<typename _Res, typename _MemFun, typename _Tp, typename... _Args>
213    inline _Res
214    __invoke_impl(__invoke_memfun_ref, _MemFun&& __f, _Tp&& __t,
215		  _Args&&... __args)
216    noexcept(noexcept(
217	  (__invfwd<_Tp>(__t).*__f)(std::forward<_Args>(__args)...)))
218    { return (__invfwd<_Tp>(__t).*__f)(std::forward<_Args>(__args)...); }
219
220  template<typename _Res, typename _MemFun, typename _Tp, typename... _Args>
221    inline _Res
222    __invoke_impl(__invoke_memfun_deref, _MemFun&& __f, _Tp&& __t,
223		  _Args&&... __args)
224    noexcept(noexcept(
225	  ((*std::forward<_Tp>(__t)).*__f)(std::forward<_Args>(__args)...)))
226    {
227      return ((*std::forward<_Tp>(__t)).*__f)(std::forward<_Args>(__args)...);
228    }
229
230  template<typename _Res, typename _MemPtr, typename _Tp>
231    inline _Res
232    __invoke_impl(__invoke_memobj_ref, _MemPtr&& __f, _Tp&& __t)
233    noexcept(noexcept(__invfwd<_Tp>(__t).*__f))
234    { return __invfwd<_Tp>(__t).*__f; }
235
236  template<typename _Res, typename _MemPtr, typename _Tp>
237    inline _Res
238    __invoke_impl(__invoke_memobj_deref, _MemPtr&& __f, _Tp&& __t)
239    noexcept(noexcept((*std::forward<_Tp>(__t)).*__f))
240    { return (*std::forward<_Tp>(__t)).*__f; }
241
242  /// Invoke a callable object.
243  template<typename _Callable, typename... _Args>
244    inline typename result_of<_Callable&&(_Args&&...)>::type
245    __invoke(_Callable&& __fn, _Args&&... __args)
246    {
247      using __result_of = result_of<_Callable&&(_Args&&...)>;
248      using __type = typename __result_of::type;
249      using __tag = typename __result_of::__invoke_type;
250      return std::__invoke_impl<__type>(__tag{}, std::forward<_Callable>(__fn),
251					std::forward<_Args>(__args)...);
252    }
253
254#if __cplusplus > 201402L
255# define __cpp_lib_invoke 201411
256
257  /// Invoke a callable object.
258  template<typename _Callable, typename... _Args>
259    inline result_of_t<_Callable&&(_Args&&...)>
260    invoke(_Callable&& __fn, _Args&&... __args)
261    {
262      return std::__invoke(std::forward<_Callable>(__fn),
263			   std::forward<_Args>(__args)...);
264    }
265#endif
266
267  /**
268   *  Knowing which of unary_function and binary_function _Tp derives
269   *  from, derives from the same and ensures that reference_wrapper
270   *  will have a weak result type. See cases below.
271   */
272  template<bool _Unary, bool _Binary, typename _Tp>
273    struct _Reference_wrapper_base_impl;
274
275  // None of the nested argument types.
276  template<typename _Tp>
277    struct _Reference_wrapper_base_impl<false, false, _Tp>
278    : _Weak_result_type<_Tp>
279    { };
280
281  // Nested argument_type only.
282  template<typename _Tp>
283    struct _Reference_wrapper_base_impl<true, false, _Tp>
284    : _Weak_result_type<_Tp>
285    {
286      typedef typename _Tp::argument_type argument_type;
287    };
288
289  // Nested first_argument_type and second_argument_type only.
290  template<typename _Tp>
291    struct _Reference_wrapper_base_impl<false, true, _Tp>
292    : _Weak_result_type<_Tp>
293    {
294      typedef typename _Tp::first_argument_type first_argument_type;
295      typedef typename _Tp::second_argument_type second_argument_type;
296    };
297
298  // All the nested argument types.
299   template<typename _Tp>
300    struct _Reference_wrapper_base_impl<true, true, _Tp>
301    : _Weak_result_type<_Tp>
302    {
303      typedef typename _Tp::argument_type argument_type;
304      typedef typename _Tp::first_argument_type first_argument_type;
305      typedef typename _Tp::second_argument_type second_argument_type;
306    };
307
308  _GLIBCXX_HAS_NESTED_TYPE(argument_type)
309  _GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
310  _GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
311
312  /**
313   *  Derives from unary_function or binary_function when it
314   *  can. Specializations handle all of the easy cases. The primary
315   *  template determines what to do with a class type, which may
316   *  derive from both unary_function and binary_function.
317  */
318  template<typename _Tp>
319    struct _Reference_wrapper_base
320    : _Reference_wrapper_base_impl<
321      __has_argument_type<_Tp>::value,
322      __has_first_argument_type<_Tp>::value
323      && __has_second_argument_type<_Tp>::value,
324      _Tp>
325    { };
326
327  // - a function type (unary)
328  template<typename _Res, typename _T1>
329    struct _Reference_wrapper_base<_Res(_T1)>
330    : unary_function<_T1, _Res>
331    { };
332
333  template<typename _Res, typename _T1>
334    struct _Reference_wrapper_base<_Res(_T1) const>
335    : unary_function<_T1, _Res>
336    { };
337
338  template<typename _Res, typename _T1>
339    struct _Reference_wrapper_base<_Res(_T1) volatile>
340    : unary_function<_T1, _Res>
341    { };
342
343  template<typename _Res, typename _T1>
344    struct _Reference_wrapper_base<_Res(_T1) const volatile>
345    : unary_function<_T1, _Res>
346    { };
347
348  // - a function type (binary)
349  template<typename _Res, typename _T1, typename _T2>
350    struct _Reference_wrapper_base<_Res(_T1, _T2)>
351    : binary_function<_T1, _T2, _Res>
352    { };
353
354  template<typename _Res, typename _T1, typename _T2>
355    struct _Reference_wrapper_base<_Res(_T1, _T2) const>
356    : binary_function<_T1, _T2, _Res>
357    { };
358
359  template<typename _Res, typename _T1, typename _T2>
360    struct _Reference_wrapper_base<_Res(_T1, _T2) volatile>
361    : binary_function<_T1, _T2, _Res>
362    { };
363
364  template<typename _Res, typename _T1, typename _T2>
365    struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile>
366    : binary_function<_T1, _T2, _Res>
367    { };
368
369  // - a function pointer type (unary)
370  template<typename _Res, typename _T1>
371    struct _Reference_wrapper_base<_Res(*)(_T1)>
372    : unary_function<_T1, _Res>
373    { };
374
375  // - a function pointer type (binary)
376  template<typename _Res, typename _T1, typename _T2>
377    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
378    : binary_function<_T1, _T2, _Res>
379    { };
380
381  // - a pointer to member function type (unary, no qualifiers)
382  template<typename _Res, typename _T1>
383    struct _Reference_wrapper_base<_Res (_T1::*)()>
384    : unary_function<_T1*, _Res>
385    { };
386
387  // - a pointer to member function type (binary, no qualifiers)
388  template<typename _Res, typename _T1, typename _T2>
389    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
390    : binary_function<_T1*, _T2, _Res>
391    { };
392
393  // - a pointer to member function type (unary, const)
394  template<typename _Res, typename _T1>
395    struct _Reference_wrapper_base<_Res (_T1::*)() const>
396    : unary_function<const _T1*, _Res>
397    { };
398
399  // - a pointer to member function type (binary, const)
400  template<typename _Res, typename _T1, typename _T2>
401    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
402    : binary_function<const _T1*, _T2, _Res>
403    { };
404
405  // - a pointer to member function type (unary, volatile)
406  template<typename _Res, typename _T1>
407    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
408    : unary_function<volatile _T1*, _Res>
409    { };
410
411  // - a pointer to member function type (binary, volatile)
412  template<typename _Res, typename _T1, typename _T2>
413    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
414    : binary_function<volatile _T1*, _T2, _Res>
415    { };
416
417  // - a pointer to member function type (unary, const volatile)
418  template<typename _Res, typename _T1>
419    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
420    : unary_function<const volatile _T1*, _Res>
421    { };
422
423  // - a pointer to member function type (binary, const volatile)
424  template<typename _Res, typename _T1, typename _T2>
425    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
426    : binary_function<const volatile _T1*, _T2, _Res>
427    { };
428
429  /**
430   *  @brief Primary class template for reference_wrapper.
431   *  @ingroup functors
432   *  @{
433   */
434  template<typename _Tp>
435    class reference_wrapper
436    : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
437    {
438      _Tp* _M_data;
439
440    public:
441      typedef _Tp type;
442
443      reference_wrapper(_Tp& __indata) noexcept
444      : _M_data(std::__addressof(__indata))
445      { }
446
447      reference_wrapper(_Tp&&) = delete;
448
449      reference_wrapper(const reference_wrapper&) = default;
450
451      reference_wrapper&
452      operator=(const reference_wrapper&) = default;
453
454      operator _Tp&() const noexcept
455      { return this->get(); }
456
457      _Tp&
458      get() const noexcept
459      { return *_M_data; }
460
461      template<typename... _Args>
462	typename result_of<_Tp&(_Args&&...)>::type
463	operator()(_Args&&... __args) const
464	{
465	  return std::__invoke(get(), std::forward<_Args>(__args)...);
466	}
467    };
468
469
470  /// Denotes a reference should be taken to a variable.
471  template<typename _Tp>
472    inline reference_wrapper<_Tp>
473    ref(_Tp& __t) noexcept
474    { return reference_wrapper<_Tp>(__t); }
475
476  /// Denotes a const reference should be taken to a variable.
477  template<typename _Tp>
478    inline reference_wrapper<const _Tp>
479    cref(const _Tp& __t) noexcept
480    { return reference_wrapper<const _Tp>(__t); }
481
482  template<typename _Tp>
483    void ref(const _Tp&&) = delete;
484
485  template<typename _Tp>
486    void cref(const _Tp&&) = delete;
487
488  /// std::ref overload to prevent wrapping a reference_wrapper
489  template<typename _Tp>
490    inline reference_wrapper<_Tp>
491    ref(reference_wrapper<_Tp> __t) noexcept
492    { return std::ref(__t.get()); }
493
494  /// std::cref overload to prevent wrapping a reference_wrapper
495  template<typename _Tp>
496    inline reference_wrapper<const _Tp>
497    cref(reference_wrapper<_Tp> __t) noexcept
498    { return std::cref(__t.get()); }
499
500  // @} group functors
501
502  template<typename... _Types>
503    struct _Pack : integral_constant<size_t, sizeof...(_Types)>
504    { };
505
506  template<typename _From, typename _To, bool = _From::value == _To::value>
507    struct _AllConvertible : false_type
508    { };
509
510  template<typename... _From, typename... _To>
511    struct _AllConvertible<_Pack<_From...>, _Pack<_To...>, true>
512    : __and_<is_convertible<_From, _To>...>
513    { };
514
515  template<typename _Tp1, typename _Tp2>
516    using _NotSame = __not_<is_same<typename std::decay<_Tp1>::type,
517				    typename std::decay<_Tp2>::type>>;
518
519  /**
520   * Derives from @c unary_function or @c binary_function, or perhaps
521   * nothing, depending on the number of arguments provided. The
522   * primary template is the basis case, which derives nothing.
523   */
524  template<typename _Res, typename... _ArgTypes>
525    struct _Maybe_unary_or_binary_function { };
526
527  /// Derives from @c unary_function, as appropriate.
528  template<typename _Res, typename _T1>
529    struct _Maybe_unary_or_binary_function<_Res, _T1>
530    : std::unary_function<_T1, _Res> { };
531
532  /// Derives from @c binary_function, as appropriate.
533  template<typename _Res, typename _T1, typename _T2>
534    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
535    : std::binary_function<_T1, _T2, _Res> { };
536
537  template<typename _Signature>
538    struct _Mem_fn_traits;
539
540  template<typename _Res, typename _Class, typename... _ArgTypes>
541    struct _Mem_fn_traits_base
542    {
543      using __result_type = _Res;
544      using __maybe_type
545	= _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>;
546      using __arity = integral_constant<size_t, sizeof...(_ArgTypes)>;
547    };
548
549#define _GLIBCXX_MEM_FN_TRAITS2(_CV, _REF, _LVAL, _RVAL)		\
550  template<typename _Res, typename _Class, typename... _ArgTypes>	\
551    struct _Mem_fn_traits<_Res (_Class::*)(_ArgTypes...) _CV _REF>	\
552    : _Mem_fn_traits_base<_Res, _CV _Class, _ArgTypes...>		\
553    {									\
554      using __vararg = false_type;					\
555    };									\
556  template<typename _Res, typename _Class, typename... _ArgTypes>	\
557    struct _Mem_fn_traits<_Res (_Class::*)(_ArgTypes... ...) _CV _REF>	\
558    : _Mem_fn_traits_base<_Res, _CV _Class, _ArgTypes...>		\
559    {									\
560      using __vararg = true_type;					\
561    };
562
563#define _GLIBCXX_MEM_FN_TRAITS(_REF, _LVAL, _RVAL)		\
564  _GLIBCXX_MEM_FN_TRAITS2(		, _REF, _LVAL, _RVAL)	\
565  _GLIBCXX_MEM_FN_TRAITS2(const		, _REF, _LVAL, _RVAL)	\
566  _GLIBCXX_MEM_FN_TRAITS2(volatile	, _REF, _LVAL, _RVAL)	\
567  _GLIBCXX_MEM_FN_TRAITS2(const volatile, _REF, _LVAL, _RVAL)
568
569_GLIBCXX_MEM_FN_TRAITS( , true_type, true_type)
570_GLIBCXX_MEM_FN_TRAITS(&, true_type, false_type)
571_GLIBCXX_MEM_FN_TRAITS(&&, false_type, true_type)
572
573#undef _GLIBCXX_MEM_FN_TRAITS
574#undef _GLIBCXX_MEM_FN_TRAITS2
575
576  template<typename _MemFunPtr,
577	   bool __is_mem_fn = is_member_function_pointer<_MemFunPtr>::value>
578    class _Mem_fn_base
579    : public _Mem_fn_traits<_MemFunPtr>::__maybe_type
580    {
581      using _Traits = _Mem_fn_traits<_MemFunPtr>;
582
583      using _Arity = typename _Traits::__arity;
584      using _Varargs = typename _Traits::__vararg;
585
586      template<typename _Func, typename... _BoundArgs>
587	friend struct _Bind_check_arity;
588
589      _MemFunPtr _M_pmf;
590
591    public:
592
593      using result_type = typename _Traits::__result_type;
594
595      explicit constexpr
596      _Mem_fn_base(_MemFunPtr __pmf) noexcept : _M_pmf(__pmf) { }
597
598      template<typename... _Args>
599	auto
600	operator()(_Args&&... __args) const
601	noexcept(noexcept(
602	      std::__invoke(_M_pmf, std::forward<_Args>(__args)...)))
603	-> decltype(std::__invoke(_M_pmf, std::forward<_Args>(__args)...))
604	{ return std::__invoke(_M_pmf, std::forward<_Args>(__args)...); }
605    };
606
607  // Partial specialization for member object pointers.
608  template<typename _MemObjPtr>
609    class _Mem_fn_base<_MemObjPtr, false>
610    {
611      using _Arity = integral_constant<size_t, 0>;
612      using _Varargs = false_type;
613
614      template<typename _Func, typename... _BoundArgs>
615	friend struct _Bind_check_arity;
616
617      _MemObjPtr _M_pm;
618
619    public:
620      explicit constexpr
621      _Mem_fn_base(_MemObjPtr __pm) noexcept : _M_pm(__pm) { }
622
623      template<typename _Tp>
624	auto
625	operator()(_Tp&& __obj) const
626	noexcept(noexcept(std::__invoke(_M_pm, std::forward<_Tp>(__obj))))
627	-> decltype(std::__invoke(_M_pm, std::forward<_Tp>(__obj)))
628	{ return std::__invoke(_M_pm, std::forward<_Tp>(__obj)); }
629    };
630
631  template<typename _Res, typename _Class>
632    struct _Mem_fn<_Res _Class::*>
633    : _Mem_fn_base<_Res _Class::*>
634    {
635      using _Mem_fn_base<_Res _Class::*>::_Mem_fn_base;
636    };
637
638  // _GLIBCXX_RESOLVE_LIB_DEFECTS
639  // 2048.  Unnecessary mem_fn overloads
640  /**
641   *  @brief Returns a function object that forwards to the member
642   *  pointer @a pm.
643   *  @ingroup functors
644   */
645  template<typename _Tp, typename _Class>
646    inline _Mem_fn<_Tp _Class::*>
647    mem_fn(_Tp _Class::* __pm) noexcept
648    {
649      return _Mem_fn<_Tp _Class::*>(__pm);
650    }
651
652  /**
653   *  @brief Determines if the given type _Tp is a function object that
654   *  should be treated as a subexpression when evaluating calls to
655   *  function objects returned by bind().
656   *
657   *  C++11 [func.bind.isbind].
658   *  @ingroup binders
659   */
660  template<typename _Tp>
661    struct is_bind_expression
662    : public false_type { };
663
664  /**
665   *  @brief Determines if the given type _Tp is a placeholder in a
666   *  bind() expression and, if so, which placeholder it is.
667   *
668   *  C++11 [func.bind.isplace].
669   *  @ingroup binders
670   */
671  template<typename _Tp>
672    struct is_placeholder
673    : public integral_constant<int, 0>
674    { };
675
676  /** @brief The type of placeholder objects defined by libstdc++.
677   *  @ingroup binders
678   */
679  template<int _Num> struct _Placeholder { };
680
681  _GLIBCXX_END_NAMESPACE_VERSION
682
683  /** @namespace std::placeholders
684   *  @brief ISO C++11 entities sub-namespace for functional.
685   *  @ingroup binders
686   */
687  namespace placeholders
688  {
689  _GLIBCXX_BEGIN_NAMESPACE_VERSION
690  /* Define a large number of placeholders. There is no way to
691   * simplify this with variadic templates, because we're introducing
692   * unique names for each.
693   */
694    extern const _Placeholder<1> _1;
695    extern const _Placeholder<2> _2;
696    extern const _Placeholder<3> _3;
697    extern const _Placeholder<4> _4;
698    extern const _Placeholder<5> _5;
699    extern const _Placeholder<6> _6;
700    extern const _Placeholder<7> _7;
701    extern const _Placeholder<8> _8;
702    extern const _Placeholder<9> _9;
703    extern const _Placeholder<10> _10;
704    extern const _Placeholder<11> _11;
705    extern const _Placeholder<12> _12;
706    extern const _Placeholder<13> _13;
707    extern const _Placeholder<14> _14;
708    extern const _Placeholder<15> _15;
709    extern const _Placeholder<16> _16;
710    extern const _Placeholder<17> _17;
711    extern const _Placeholder<18> _18;
712    extern const _Placeholder<19> _19;
713    extern const _Placeholder<20> _20;
714    extern const _Placeholder<21> _21;
715    extern const _Placeholder<22> _22;
716    extern const _Placeholder<23> _23;
717    extern const _Placeholder<24> _24;
718    extern const _Placeholder<25> _25;
719    extern const _Placeholder<26> _26;
720    extern const _Placeholder<27> _27;
721    extern const _Placeholder<28> _28;
722    extern const _Placeholder<29> _29;
723  _GLIBCXX_END_NAMESPACE_VERSION
724  }
725
726  _GLIBCXX_BEGIN_NAMESPACE_VERSION
727
728  /**
729   *  Partial specialization of is_placeholder that provides the placeholder
730   *  number for the placeholder objects defined by libstdc++.
731   *  @ingroup binders
732   */
733  template<int _Num>
734    struct is_placeholder<_Placeholder<_Num> >
735    : public integral_constant<int, _Num>
736    { };
737
738  template<int _Num>
739    struct is_placeholder<const _Placeholder<_Num> >
740    : public integral_constant<int, _Num>
741    { };
742
743
744  // Like tuple_element_t but SFINAE-friendly.
745 template<std::size_t __i, typename _Tuple>
746   using _Safe_tuple_element_t
747     = typename enable_if<(__i < tuple_size<_Tuple>::value),
748			  tuple_element<__i, _Tuple>>::type::type;
749
750  /**
751   *  Maps an argument to bind() into an actual argument to the bound
752   *  function object [func.bind.bind]/10. Only the first parameter should
753   *  be specified: the rest are used to determine among the various
754   *  implementations. Note that, although this class is a function
755   *  object, it isn't entirely normal because it takes only two
756   *  parameters regardless of the number of parameters passed to the
757   *  bind expression. The first parameter is the bound argument and
758   *  the second parameter is a tuple containing references to the
759   *  rest of the arguments.
760   */
761  template<typename _Arg,
762	   bool _IsBindExp = is_bind_expression<_Arg>::value,
763	   bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
764    class _Mu;
765
766  /**
767   *  If the argument is reference_wrapper<_Tp>, returns the
768   *  underlying reference.
769   *  C++11 [func.bind.bind] p10 bullet 1.
770   */
771  template<typename _Tp>
772    class _Mu<reference_wrapper<_Tp>, false, false>
773    {
774    public:
775      /* Note: This won't actually work for const volatile
776       * reference_wrappers, because reference_wrapper::get() is const
777       * but not volatile-qualified. This might be a defect in the TR.
778       */
779      template<typename _CVRef, typename _Tuple>
780	_Tp&
781	operator()(_CVRef& __arg, _Tuple&) const volatile
782	{ return __arg.get(); }
783    };
784
785  /**
786   *  If the argument is a bind expression, we invoke the underlying
787   *  function object with the same cv-qualifiers as we are given and
788   *  pass along all of our arguments (unwrapped).
789   *  C++11 [func.bind.bind] p10 bullet 2.
790   */
791  template<typename _Arg>
792    class _Mu<_Arg, true, false>
793    {
794    public:
795      template<typename _CVArg, typename... _Args>
796	auto
797	operator()(_CVArg& __arg,
798		   tuple<_Args...>& __tuple) const volatile
799	-> decltype(__arg(declval<_Args>()...))
800	{
801	  // Construct an index tuple and forward to __call
802	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
803	    _Indexes;
804	  return this->__call(__arg, __tuple, _Indexes());
805	}
806
807    private:
808      // Invokes the underlying function object __arg by unpacking all
809      // of the arguments in the tuple.
810      template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
811	auto
812	__call(_CVArg& __arg, tuple<_Args...>& __tuple,
813	       const _Index_tuple<_Indexes...>&) const volatile
814	-> decltype(__arg(declval<_Args>()...))
815	{
816	  return __arg(std::forward<_Args>(std::get<_Indexes>(__tuple))...);
817	}
818    };
819
820  /**
821   *  If the argument is a placeholder for the Nth argument, returns
822   *  a reference to the Nth argument to the bind function object.
823   *  C++11 [func.bind.bind] p10 bullet 3.
824   */
825  template<typename _Arg>
826    class _Mu<_Arg, false, true>
827    {
828    public:
829      template<typename _Tuple>
830	_Safe_tuple_element_t<(is_placeholder<_Arg>::value - 1), _Tuple>&&
831	operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
832	{
833	  using __type
834	    = __tuple_element_t<(is_placeholder<_Arg>::value - 1), _Tuple>;
835	  return std::forward<__type>(
836	      ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple));
837	}
838    };
839
840  /**
841   *  If the argument is just a value, returns a reference to that
842   *  value. The cv-qualifiers on the reference are determined by the caller.
843   *  C++11 [func.bind.bind] p10 bullet 4.
844   */
845  template<typename _Arg>
846    class _Mu<_Arg, false, false>
847    {
848    public:
849      template<typename _CVArg, typename _Tuple>
850	_CVArg&&
851	operator()(_CVArg&& __arg, _Tuple&) const volatile
852	{ return std::forward<_CVArg>(__arg); }
853    };
854
855  /**
856   *  Maps member pointers into instances of _Mem_fn but leaves all
857   *  other function objects untouched. Used by std::bind(). The
858   *  primary template handles the non-member-pointer case.
859   */
860  template<typename _Tp>
861    struct _Maybe_wrap_member_pointer
862    {
863      typedef _Tp type;
864
865      static constexpr const _Tp&
866      __do_wrap(const _Tp& __x)
867      { return __x; }
868
869      static constexpr _Tp&&
870      __do_wrap(_Tp&& __x)
871      { return static_cast<_Tp&&>(__x); }
872    };
873
874  /**
875   *  Maps member pointers into instances of _Mem_fn but leaves all
876   *  other function objects untouched. Used by std::bind(). This
877   *  partial specialization handles the member pointer case.
878   */
879  template<typename _Tp, typename _Class>
880    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
881    {
882      typedef _Mem_fn<_Tp _Class::*> type;
883
884      static constexpr type
885      __do_wrap(_Tp _Class::* __pm)
886      { return type(__pm); }
887    };
888
889  // Specialization needed to prevent "forming reference to void" errors when
890  // bind<void>() is called, because argument deduction instantiates
891  // _Maybe_wrap_member_pointer<void> outside the immediate context where
892  // SFINAE applies.
893  template<>
894    struct _Maybe_wrap_member_pointer<void>
895    {
896      typedef void type;
897    };
898
899  // std::get<I> for volatile-qualified tuples
900  template<std::size_t _Ind, typename... _Tp>
901    inline auto
902    __volget(volatile tuple<_Tp...>& __tuple)
903    -> __tuple_element_t<_Ind, tuple<_Tp...>> volatile&
904    { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }
905
906  // std::get<I> for const-volatile-qualified tuples
907  template<std::size_t _Ind, typename... _Tp>
908    inline auto
909    __volget(const volatile tuple<_Tp...>& __tuple)
910    -> __tuple_element_t<_Ind, tuple<_Tp...>> const volatile&
911    { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }
912
913  /// Type of the function object returned from bind().
914  template<typename _Signature>
915    struct _Bind;
916
917   template<typename _Functor, typename... _Bound_args>
918    class _Bind<_Functor(_Bound_args...)>
919    : public _Weak_result_type<_Functor>
920    {
921      typedef _Bind __self_type;
922      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
923	_Bound_indexes;
924
925      _Functor _M_f;
926      tuple<_Bound_args...> _M_bound_args;
927
928      // Call unqualified
929      template<typename _Result, typename... _Args, std::size_t... _Indexes>
930	_Result
931	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
932	{
933	  return _M_f(_Mu<_Bound_args>()
934		      (std::get<_Indexes>(_M_bound_args), __args)...);
935	}
936
937      // Call as const
938      template<typename _Result, typename... _Args, std::size_t... _Indexes>
939	_Result
940	__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
941	{
942	  return _M_f(_Mu<_Bound_args>()
943		      (std::get<_Indexes>(_M_bound_args), __args)...);
944	}
945
946      // Call as volatile
947      template<typename _Result, typename... _Args, std::size_t... _Indexes>
948	_Result
949	__call_v(tuple<_Args...>&& __args,
950		 _Index_tuple<_Indexes...>) volatile
951	{
952	  return _M_f(_Mu<_Bound_args>()
953		      (__volget<_Indexes>(_M_bound_args), __args)...);
954	}
955
956      // Call as const volatile
957      template<typename _Result, typename... _Args, std::size_t... _Indexes>
958	_Result
959	__call_c_v(tuple<_Args...>&& __args,
960		   _Index_tuple<_Indexes...>) const volatile
961	{
962	  return _M_f(_Mu<_Bound_args>()
963		      (__volget<_Indexes>(_M_bound_args), __args)...);
964	}
965
966     public:
967      template<typename... _Args>
968	explicit _Bind(const _Functor& __f, _Args&&... __args)
969	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
970	{ }
971
972      template<typename... _Args>
973	explicit _Bind(_Functor&& __f, _Args&&... __args)
974	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
975	{ }
976
977      _Bind(const _Bind&) = default;
978
979      _Bind(_Bind&& __b)
980      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
981      { }
982
983      // Call unqualified
984      template<typename... _Args, typename _Result
985	= decltype( std::declval<_Functor&>()(
986	      _Mu<_Bound_args>()( std::declval<_Bound_args&>(),
987				  std::declval<tuple<_Args...>&>() )... ) )>
988	_Result
989	operator()(_Args&&... __args)
990	{
991	  return this->__call<_Result>(
992	      std::forward_as_tuple(std::forward<_Args>(__args)...),
993	      _Bound_indexes());
994	}
995
996      // Call as const
997      template<typename... _Args, typename _Result
998	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
999		       typename add_const<_Functor>::type&>::type>()(
1000	      _Mu<_Bound_args>()( std::declval<const _Bound_args&>(),
1001				  std::declval<tuple<_Args...>&>() )... ) )>
1002	_Result
1003	operator()(_Args&&... __args) const
1004	{
1005	  return this->__call_c<_Result>(
1006	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1007	      _Bound_indexes());
1008	}
1009
1010      // Call as volatile
1011      template<typename... _Args, typename _Result
1012	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1013                       typename add_volatile<_Functor>::type&>::type>()(
1014	      _Mu<_Bound_args>()( std::declval<volatile _Bound_args&>(),
1015				  std::declval<tuple<_Args...>&>() )... ) )>
1016	_Result
1017	operator()(_Args&&... __args) volatile
1018	{
1019	  return this->__call_v<_Result>(
1020	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1021	      _Bound_indexes());
1022	}
1023
1024      // Call as const volatile
1025      template<typename... _Args, typename _Result
1026	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1027                       typename add_cv<_Functor>::type&>::type>()(
1028	      _Mu<_Bound_args>()( std::declval<const volatile _Bound_args&>(),
1029				  std::declval<tuple<_Args...>&>() )... ) )>
1030	_Result
1031	operator()(_Args&&... __args) const volatile
1032	{
1033	  return this->__call_c_v<_Result>(
1034	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1035	      _Bound_indexes());
1036	}
1037    };
1038
1039  /// Type of the function object returned from bind<R>().
1040  template<typename _Result, typename _Signature>
1041    struct _Bind_result;
1042
1043  template<typename _Result, typename _Functor, typename... _Bound_args>
1044    class _Bind_result<_Result, _Functor(_Bound_args...)>
1045    {
1046      typedef _Bind_result __self_type;
1047      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1048	_Bound_indexes;
1049
1050      _Functor _M_f;
1051      tuple<_Bound_args...> _M_bound_args;
1052
1053      // sfinae types
1054      template<typename _Res>
1055	struct __enable_if_void : enable_if<is_void<_Res>::value, int> { };
1056      template<typename _Res>
1057	struct __disable_if_void : enable_if<!is_void<_Res>::value, int> { };
1058
1059      // Call unqualified
1060      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1061	_Result
1062	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1063	    typename __disable_if_void<_Res>::type = 0)
1064	{
1065	  return _M_f(_Mu<_Bound_args>()
1066		      (std::get<_Indexes>(_M_bound_args), __args)...);
1067	}
1068
1069      // Call unqualified, return void
1070      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1071	void
1072	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1073	    typename __enable_if_void<_Res>::type = 0)
1074	{
1075	  _M_f(_Mu<_Bound_args>()
1076	       (std::get<_Indexes>(_M_bound_args), __args)...);
1077	}
1078
1079      // Call as const
1080      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1081	_Result
1082	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1083	    typename __disable_if_void<_Res>::type = 0) const
1084	{
1085	  return _M_f(_Mu<_Bound_args>()
1086		      (std::get<_Indexes>(_M_bound_args), __args)...);
1087	}
1088
1089      // Call as const, return void
1090      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1091	void
1092	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1093	    typename __enable_if_void<_Res>::type = 0) const
1094	{
1095	  _M_f(_Mu<_Bound_args>()
1096	       (std::get<_Indexes>(_M_bound_args),  __args)...);
1097	}
1098
1099      // Call as volatile
1100      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1101	_Result
1102	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1103	    typename __disable_if_void<_Res>::type = 0) volatile
1104	{
1105	  return _M_f(_Mu<_Bound_args>()
1106		      (__volget<_Indexes>(_M_bound_args), __args)...);
1107	}
1108
1109      // Call as volatile, return void
1110      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1111	void
1112	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1113	    typename __enable_if_void<_Res>::type = 0) volatile
1114	{
1115	  _M_f(_Mu<_Bound_args>()
1116	       (__volget<_Indexes>(_M_bound_args), __args)...);
1117	}
1118
1119      // Call as const volatile
1120      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1121	_Result
1122	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1123	    typename __disable_if_void<_Res>::type = 0) const volatile
1124	{
1125	  return _M_f(_Mu<_Bound_args>()
1126		      (__volget<_Indexes>(_M_bound_args), __args)...);
1127	}
1128
1129      // Call as const volatile, return void
1130      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1131	void
1132	__call(tuple<_Args...>&& __args,
1133	       _Index_tuple<_Indexes...>,
1134	    typename __enable_if_void<_Res>::type = 0) const volatile
1135	{
1136	  _M_f(_Mu<_Bound_args>()
1137	       (__volget<_Indexes>(_M_bound_args), __args)...);
1138	}
1139
1140    public:
1141      typedef _Result result_type;
1142
1143      template<typename... _Args>
1144	explicit _Bind_result(const _Functor& __f, _Args&&... __args)
1145	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1146	{ }
1147
1148      template<typename... _Args>
1149	explicit _Bind_result(_Functor&& __f, _Args&&... __args)
1150	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1151	{ }
1152
1153      _Bind_result(const _Bind_result&) = default;
1154
1155      _Bind_result(_Bind_result&& __b)
1156      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1157      { }
1158
1159      // Call unqualified
1160      template<typename... _Args>
1161	result_type
1162	operator()(_Args&&... __args)
1163	{
1164	  return this->__call<_Result>(
1165	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1166	      _Bound_indexes());
1167	}
1168
1169      // Call as const
1170      template<typename... _Args>
1171	result_type
1172	operator()(_Args&&... __args) const
1173	{
1174	  return this->__call<_Result>(
1175	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1176	      _Bound_indexes());
1177	}
1178
1179      // Call as volatile
1180      template<typename... _Args>
1181	result_type
1182	operator()(_Args&&... __args) volatile
1183	{
1184	  return this->__call<_Result>(
1185	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1186	      _Bound_indexes());
1187	}
1188
1189      // Call as const volatile
1190      template<typename... _Args>
1191	result_type
1192	operator()(_Args&&... __args) const volatile
1193	{
1194	  return this->__call<_Result>(
1195	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1196	      _Bound_indexes());
1197	}
1198    };
1199
1200  /**
1201   *  @brief Class template _Bind is always a bind expression.
1202   *  @ingroup binders
1203   */
1204  template<typename _Signature>
1205    struct is_bind_expression<_Bind<_Signature> >
1206    : public true_type { };
1207
1208  /**
1209   *  @brief Class template _Bind is always a bind expression.
1210   *  @ingroup binders
1211   */
1212  template<typename _Signature>
1213    struct is_bind_expression<const _Bind<_Signature> >
1214    : public true_type { };
1215
1216  /**
1217   *  @brief Class template _Bind is always a bind expression.
1218   *  @ingroup binders
1219   */
1220  template<typename _Signature>
1221    struct is_bind_expression<volatile _Bind<_Signature> >
1222    : public true_type { };
1223
1224  /**
1225   *  @brief Class template _Bind is always a bind expression.
1226   *  @ingroup binders
1227   */
1228  template<typename _Signature>
1229    struct is_bind_expression<const volatile _Bind<_Signature>>
1230    : public true_type { };
1231
1232  /**
1233   *  @brief Class template _Bind_result is always a bind expression.
1234   *  @ingroup binders
1235   */
1236  template<typename _Result, typename _Signature>
1237    struct is_bind_expression<_Bind_result<_Result, _Signature>>
1238    : public true_type { };
1239
1240  /**
1241   *  @brief Class template _Bind_result is always a bind expression.
1242   *  @ingroup binders
1243   */
1244  template<typename _Result, typename _Signature>
1245    struct is_bind_expression<const _Bind_result<_Result, _Signature>>
1246    : public true_type { };
1247
1248  /**
1249   *  @brief Class template _Bind_result is always a bind expression.
1250   *  @ingroup binders
1251   */
1252  template<typename _Result, typename _Signature>
1253    struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
1254    : public true_type { };
1255
1256  /**
1257   *  @brief Class template _Bind_result is always a bind expression.
1258   *  @ingroup binders
1259   */
1260  template<typename _Result, typename _Signature>
1261    struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
1262    : public true_type { };
1263
1264  template<typename _Func, typename... _BoundArgs>
1265    struct _Bind_check_arity { };
1266
1267  template<typename _Ret, typename... _Args, typename... _BoundArgs>
1268    struct _Bind_check_arity<_Ret (*)(_Args...), _BoundArgs...>
1269    {
1270      static_assert(sizeof...(_BoundArgs) == sizeof...(_Args),
1271                   "Wrong number of arguments for function");
1272    };
1273
1274  template<typename _Ret, typename... _Args, typename... _BoundArgs>
1275    struct _Bind_check_arity<_Ret (*)(_Args......), _BoundArgs...>
1276    {
1277      static_assert(sizeof...(_BoundArgs) >= sizeof...(_Args),
1278                   "Wrong number of arguments for function");
1279    };
1280
1281  template<typename _Tp, typename _Class, typename... _BoundArgs>
1282    struct _Bind_check_arity<_Tp _Class::*, _BoundArgs...>
1283    {
1284      using _Arity = typename _Mem_fn<_Tp _Class::*>::_Arity;
1285      using _Varargs = typename _Mem_fn<_Tp _Class::*>::_Varargs;
1286      static_assert(_Varargs::value
1287		    ? sizeof...(_BoundArgs) >= _Arity::value + 1
1288		    : sizeof...(_BoundArgs) == _Arity::value + 1,
1289		    "Wrong number of arguments for pointer-to-member");
1290    };
1291
1292  // Trait type used to remove std::bind() from overload set via SFINAE
1293  // when first argument has integer type, so that std::bind() will
1294  // not be a better match than ::bind() from the BSD Sockets API.
1295  template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
1296    using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;
1297
1298  template<bool _SocketLike, typename _Func, typename... _BoundArgs>
1299    struct _Bind_helper
1300    : _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
1301    {
1302      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1303	__maybe_type;
1304      typedef typename __maybe_type::type __func_type;
1305      typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
1306    };
1307
1308  // Partial specialization for is_socketlike == true, does not define
1309  // nested type so std::bind() will not participate in overload resolution
1310  // when the first argument might be a socket file descriptor.
1311  template<typename _Func, typename... _BoundArgs>
1312    struct _Bind_helper<true, _Func, _BoundArgs...>
1313    { };
1314
1315  /**
1316   *  @brief Function template for std::bind.
1317   *  @ingroup binders
1318   */
1319  template<typename _Func, typename... _BoundArgs>
1320    inline typename
1321    _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
1322    bind(_Func&& __f, _BoundArgs&&... __args)
1323    {
1324      typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
1325      typedef typename __helper_type::__maybe_type __maybe_type;
1326      typedef typename __helper_type::type __result_type;
1327      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1328			   std::forward<_BoundArgs>(__args)...);
1329    }
1330
1331  template<typename _Result, typename _Func, typename... _BoundArgs>
1332    struct _Bindres_helper
1333    : _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
1334    {
1335      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1336	__maybe_type;
1337      typedef typename __maybe_type::type __functor_type;
1338      typedef _Bind_result<_Result,
1339			   __functor_type(typename decay<_BoundArgs>::type...)>
1340	type;
1341    };
1342
1343  /**
1344   *  @brief Function template for std::bind<R>.
1345   *  @ingroup binders
1346   */
1347  template<typename _Result, typename _Func, typename... _BoundArgs>
1348    inline
1349    typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
1350    bind(_Func&& __f, _BoundArgs&&... __args)
1351    {
1352      typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
1353      typedef typename __helper_type::__maybe_type __maybe_type;
1354      typedef typename __helper_type::type __result_type;
1355      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1356			   std::forward<_BoundArgs>(__args)...);
1357    }
1358
1359  template<typename _Signature>
1360    struct _Bind_simple;
1361
1362  template<typename _Callable, typename... _Args>
1363    struct _Bind_simple<_Callable(_Args...)>
1364    {
1365      typedef typename result_of<_Callable(_Args...)>::type result_type;
1366
1367      template<typename _Tp, typename... _Up>
1368        explicit
1369        _Bind_simple(_Tp&& __f, _Up&&... __args)
1370        : _M_bound(std::forward<_Tp>(__f), std::forward<_Up>(__args)...)
1371        { }
1372
1373      _Bind_simple(const _Bind_simple&) = default;
1374      _Bind_simple(_Bind_simple&&) = default;
1375
1376      result_type
1377      operator()()
1378      {
1379        typedef typename _Build_index_tuple<sizeof...(_Args)>::__type _Indices;
1380        return _M_invoke(_Indices());
1381      }
1382
1383    private:
1384      template<std::size_t... _Indices>
1385        typename result_of<_Callable(_Args...)>::type
1386        _M_invoke(_Index_tuple<_Indices...>)
1387        {
1388	  // std::bind always forwards bound arguments as lvalues,
1389	  // but this type can call functions which only accept rvalues.
1390          return std::forward<_Callable>(std::get<0>(_M_bound))(
1391              std::forward<_Args>(std::get<_Indices+1>(_M_bound))...);
1392        }
1393
1394      std::tuple<_Callable, _Args...> _M_bound;
1395    };
1396
1397  template<typename _Func, typename... _BoundArgs>
1398    struct _Bind_simple_helper
1399    : _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
1400    {
1401      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1402        __maybe_type;
1403      typedef typename __maybe_type::type __func_type;
1404      typedef _Bind_simple<__func_type(typename decay<_BoundArgs>::type...)>
1405       	__type;
1406    };
1407
1408  // Simplified version of std::bind for internal use, without support for
1409  // unbound arguments, placeholders or nested bind expressions.
1410  template<typename _Callable, typename... _Args>
1411    typename _Bind_simple_helper<_Callable, _Args...>::__type
1412    __bind_simple(_Callable&& __callable, _Args&&... __args)
1413    {
1414      typedef _Bind_simple_helper<_Callable, _Args...> __helper_type;
1415      typedef typename __helper_type::__maybe_type __maybe_type;
1416      typedef typename __helper_type::__type __result_type;
1417      return __result_type(
1418          __maybe_type::__do_wrap( std::forward<_Callable>(__callable)),
1419          std::forward<_Args>(__args)...);
1420    }
1421
1422  /**
1423   *  @brief Exception class thrown when class template function's
1424   *  operator() is called with an empty target.
1425   *  @ingroup exceptions
1426   */
1427  class bad_function_call : public std::exception
1428  {
1429  public:
1430    virtual ~bad_function_call() noexcept;
1431
1432    const char* what() const noexcept;
1433  };
1434
1435  /**
1436   *  Trait identifying "location-invariant" types, meaning that the
1437   *  address of the object (or any of its members) will not escape.
1438   *  Trivially copyable types are location-invariant and users can
1439   *  specialize this trait for other types.
1440   */
1441  template<typename _Tp>
1442    struct __is_location_invariant
1443    : is_trivially_copyable<_Tp>::type
1444    { };
1445
1446  class _Undefined_class;
1447
1448  union _Nocopy_types
1449  {
1450    void*       _M_object;
1451    const void* _M_const_object;
1452    void (*_M_function_pointer)();
1453    void (_Undefined_class::*_M_member_pointer)();
1454  };
1455
1456  union [[gnu::may_alias]] _Any_data
1457  {
1458    void*       _M_access()       { return &_M_pod_data[0]; }
1459    const void* _M_access() const { return &_M_pod_data[0]; }
1460
1461    template<typename _Tp>
1462      _Tp&
1463      _M_access()
1464      { return *static_cast<_Tp*>(_M_access()); }
1465
1466    template<typename _Tp>
1467      const _Tp&
1468      _M_access() const
1469      { return *static_cast<const _Tp*>(_M_access()); }
1470
1471    _Nocopy_types _M_unused;
1472    char _M_pod_data[sizeof(_Nocopy_types)];
1473  };
1474
1475  enum _Manager_operation
1476  {
1477    __get_type_info,
1478    __get_functor_ptr,
1479    __clone_functor,
1480    __destroy_functor
1481  };
1482
1483  // Simple type wrapper that helps avoid annoying const problems
1484  // when casting between void pointers and pointers-to-pointers.
1485  template<typename _Tp>
1486    struct _Simple_type_wrapper
1487    {
1488      _Simple_type_wrapper(_Tp __value) : __value(__value) { }
1489
1490      _Tp __value;
1491    };
1492
1493  template<typename _Tp>
1494    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
1495    : __is_location_invariant<_Tp>
1496    { };
1497
1498  // Converts a reference to a function object into a callable
1499  // function object.
1500  template<typename _Functor>
1501    inline _Functor&
1502    __callable_functor(_Functor& __f)
1503    { return __f; }
1504
1505  template<typename _Member, typename _Class>
1506    inline _Mem_fn<_Member _Class::*>
1507    __callable_functor(_Member _Class::* &__p)
1508    { return std::mem_fn(__p); }
1509
1510  template<typename _Member, typename _Class>
1511    inline _Mem_fn<_Member _Class::*>
1512    __callable_functor(_Member _Class::* const &__p)
1513    { return std::mem_fn(__p); }
1514
1515  template<typename _Member, typename _Class>
1516    inline _Mem_fn<_Member _Class::*>
1517    __callable_functor(_Member _Class::* volatile &__p)
1518    { return std::mem_fn(__p); }
1519
1520  template<typename _Member, typename _Class>
1521    inline _Mem_fn<_Member _Class::*>
1522    __callable_functor(_Member _Class::* const volatile &__p)
1523    { return std::mem_fn(__p); }
1524
1525  template<typename _Signature>
1526    class function;
1527
1528  /// Base class of all polymorphic function object wrappers.
1529  class _Function_base
1530  {
1531  public:
1532    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
1533    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
1534
1535    template<typename _Functor>
1536      class _Base_manager
1537      {
1538      protected:
1539	static const bool __stored_locally =
1540	(__is_location_invariant<_Functor>::value
1541	 && sizeof(_Functor) <= _M_max_size
1542	 && __alignof__(_Functor) <= _M_max_align
1543	 && (_M_max_align % __alignof__(_Functor) == 0));
1544
1545	typedef integral_constant<bool, __stored_locally> _Local_storage;
1546
1547	// Retrieve a pointer to the function object
1548	static _Functor*
1549	_M_get_pointer(const _Any_data& __source)
1550	{
1551	  const _Functor* __ptr =
1552	    __stored_locally? std::__addressof(__source._M_access<_Functor>())
1553	    /* have stored a pointer */ : __source._M_access<_Functor*>();
1554	  return const_cast<_Functor*>(__ptr);
1555	}
1556
1557	// Clone a location-invariant function object that fits within
1558	// an _Any_data structure.
1559	static void
1560	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
1561	{
1562	  ::new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
1563	}
1564
1565	// Clone a function object that is not location-invariant or
1566	// that cannot fit into an _Any_data structure.
1567	static void
1568	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
1569	{
1570	  __dest._M_access<_Functor*>() =
1571	    new _Functor(*__source._M_access<_Functor*>());
1572	}
1573
1574	// Destroying a location-invariant object may still require
1575	// destruction.
1576	static void
1577	_M_destroy(_Any_data& __victim, true_type)
1578	{
1579	  __victim._M_access<_Functor>().~_Functor();
1580	}
1581
1582	// Destroying an object located on the heap.
1583	static void
1584	_M_destroy(_Any_data& __victim, false_type)
1585	{
1586	  delete __victim._M_access<_Functor*>();
1587	}
1588
1589      public:
1590	static bool
1591	_M_manager(_Any_data& __dest, const _Any_data& __source,
1592		   _Manager_operation __op)
1593	{
1594	  switch (__op)
1595	    {
1596#if __cpp_rtti
1597	    case __get_type_info:
1598	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1599	      break;
1600#endif
1601	    case __get_functor_ptr:
1602	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
1603	      break;
1604
1605	    case __clone_functor:
1606	      _M_clone(__dest, __source, _Local_storage());
1607	      break;
1608
1609	    case __destroy_functor:
1610	      _M_destroy(__dest, _Local_storage());
1611	      break;
1612	    }
1613	  return false;
1614	}
1615
1616	static void
1617	_M_init_functor(_Any_data& __functor, _Functor&& __f)
1618	{ _M_init_functor(__functor, std::move(__f), _Local_storage()); }
1619
1620	template<typename _Signature>
1621	  static bool
1622	  _M_not_empty_function(const function<_Signature>& __f)
1623	  { return static_cast<bool>(__f); }
1624
1625	template<typename _Tp>
1626	  static bool
1627	  _M_not_empty_function(_Tp* __fp)
1628	  { return __fp != nullptr; }
1629
1630	template<typename _Class, typename _Tp>
1631	  static bool
1632	  _M_not_empty_function(_Tp _Class::* __mp)
1633	  { return __mp != nullptr; }
1634
1635	template<typename _Tp>
1636	  static bool
1637	  _M_not_empty_function(const _Tp&)
1638	  { return true; }
1639
1640      private:
1641	static void
1642	_M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
1643	{ ::new (__functor._M_access()) _Functor(std::move(__f)); }
1644
1645	static void
1646	_M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
1647	{ __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
1648      };
1649
1650    template<typename _Functor>
1651      class _Ref_manager : public _Base_manager<_Functor*>
1652      {
1653	typedef _Function_base::_Base_manager<_Functor*> _Base;
1654
1655      public:
1656	static bool
1657	_M_manager(_Any_data& __dest, const _Any_data& __source,
1658		   _Manager_operation __op)
1659	{
1660	  switch (__op)
1661	    {
1662#if __cpp_rtti
1663	    case __get_type_info:
1664	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1665	      break;
1666#endif
1667	    case __get_functor_ptr:
1668	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
1669	      return is_const<_Functor>::value;
1670	      break;
1671
1672	    default:
1673	      _Base::_M_manager(__dest, __source, __op);
1674	    }
1675	  return false;
1676	}
1677
1678	static void
1679	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
1680	{
1681	  _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
1682	}
1683      };
1684
1685    _Function_base() : _M_manager(nullptr) { }
1686
1687    ~_Function_base()
1688    {
1689      if (_M_manager)
1690	_M_manager(_M_functor, _M_functor, __destroy_functor);
1691    }
1692
1693
1694    bool _M_empty() const { return !_M_manager; }
1695
1696    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
1697				  _Manager_operation);
1698
1699    _Any_data     _M_functor;
1700    _Manager_type _M_manager;
1701  };
1702
1703  template<typename _Signature, typename _Functor>
1704    class _Function_handler;
1705
1706  template<typename _Res, typename _Functor, typename... _ArgTypes>
1707    class _Function_handler<_Res(_ArgTypes...), _Functor>
1708    : public _Function_base::_Base_manager<_Functor>
1709    {
1710      typedef _Function_base::_Base_manager<_Functor> _Base;
1711
1712    public:
1713      static _Res
1714      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1715      {
1716	return (*_Base::_M_get_pointer(__functor))(
1717	    std::forward<_ArgTypes>(__args)...);
1718      }
1719    };
1720
1721  template<typename _Functor, typename... _ArgTypes>
1722    class _Function_handler<void(_ArgTypes...), _Functor>
1723    : public _Function_base::_Base_manager<_Functor>
1724    {
1725      typedef _Function_base::_Base_manager<_Functor> _Base;
1726
1727     public:
1728      static void
1729      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1730      {
1731	(*_Base::_M_get_pointer(__functor))(
1732	    std::forward<_ArgTypes>(__args)...);
1733      }
1734    };
1735
1736  template<typename _Res, typename _Functor, typename... _ArgTypes>
1737    class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
1738    : public _Function_base::_Ref_manager<_Functor>
1739    {
1740      typedef _Function_base::_Ref_manager<_Functor> _Base;
1741
1742     public:
1743      static _Res
1744      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1745      {
1746	return std::__callable_functor(**_Base::_M_get_pointer(__functor))(
1747	      std::forward<_ArgTypes>(__args)...);
1748      }
1749    };
1750
1751  template<typename _Functor, typename... _ArgTypes>
1752    class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
1753    : public _Function_base::_Ref_manager<_Functor>
1754    {
1755      typedef _Function_base::_Ref_manager<_Functor> _Base;
1756
1757     public:
1758      static void
1759      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1760      {
1761	std::__callable_functor(**_Base::_M_get_pointer(__functor))(
1762	    std::forward<_ArgTypes>(__args)...);
1763      }
1764    };
1765
1766  template<typename _Class, typename _Member, typename _Res,
1767	   typename... _ArgTypes>
1768    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
1769    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
1770    {
1771      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
1772	_Base;
1773
1774     public:
1775      static _Res
1776      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1777      {
1778	return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
1779	    std::forward<_ArgTypes>(__args)...);
1780      }
1781    };
1782
1783  template<typename _Class, typename _Member, typename... _ArgTypes>
1784    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
1785    : public _Function_base::_Base_manager<
1786		 _Simple_type_wrapper< _Member _Class::* > >
1787    {
1788      typedef _Member _Class::* _Functor;
1789      typedef _Simple_type_wrapper<_Functor> _Wrapper;
1790      typedef _Function_base::_Base_manager<_Wrapper> _Base;
1791
1792    public:
1793      static bool
1794      _M_manager(_Any_data& __dest, const _Any_data& __source,
1795		 _Manager_operation __op)
1796      {
1797	switch (__op)
1798	  {
1799#if __cpp_rtti
1800	  case __get_type_info:
1801	    __dest._M_access<const type_info*>() = &typeid(_Functor);
1802	    break;
1803#endif
1804	  case __get_functor_ptr:
1805	    __dest._M_access<_Functor*>() =
1806	      &_Base::_M_get_pointer(__source)->__value;
1807	    break;
1808
1809	  default:
1810	    _Base::_M_manager(__dest, __source, __op);
1811	  }
1812	return false;
1813      }
1814
1815      static void
1816      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
1817      {
1818	std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
1819	    std::forward<_ArgTypes>(__args)...);
1820      }
1821    };
1822
1823  template<typename _From, typename _To>
1824    using __check_func_return_type
1825      = __or_<is_void<_To>, is_same<_From, _To>, is_convertible<_From, _To>>;
1826
1827  /**
1828   *  @brief Primary class template for std::function.
1829   *  @ingroup functors
1830   *
1831   *  Polymorphic function wrapper.
1832   */
1833  template<typename _Res, typename... _ArgTypes>
1834    class function<_Res(_ArgTypes...)>
1835    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
1836      private _Function_base
1837    {
1838      typedef _Res _Signature_type(_ArgTypes...);
1839
1840      template<typename _Func,
1841	       typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
1842	struct _Callable : __check_func_return_type<_Res2, _Res> { };
1843
1844      // Used so the return type convertibility checks aren't done when
1845      // performing overload resolution for copy construction/assignment.
1846      template<typename _Tp>
1847	struct _Callable<function, _Tp> : false_type { };
1848
1849      template<typename _Cond, typename _Tp>
1850	using _Requires = typename enable_if<_Cond::value, _Tp>::type;
1851
1852    public:
1853      typedef _Res result_type;
1854
1855      // [3.7.2.1] construct/copy/destroy
1856
1857      /**
1858       *  @brief Default construct creates an empty function call wrapper.
1859       *  @post @c !(bool)*this
1860       */
1861      function() noexcept
1862      : _Function_base() { }
1863
1864      /**
1865       *  @brief Creates an empty function call wrapper.
1866       *  @post @c !(bool)*this
1867       */
1868      function(nullptr_t) noexcept
1869      : _Function_base() { }
1870
1871      /**
1872       *  @brief %Function copy constructor.
1873       *  @param __x A %function object with identical call signature.
1874       *  @post @c bool(*this) == bool(__x)
1875       *
1876       *  The newly-created %function contains a copy of the target of @a
1877       *  __x (if it has one).
1878       */
1879      function(const function& __x);
1880
1881      /**
1882       *  @brief %Function move constructor.
1883       *  @param __x A %function object rvalue with identical call signature.
1884       *
1885       *  The newly-created %function contains the target of @a __x
1886       *  (if it has one).
1887       */
1888      function(function&& __x) noexcept : _Function_base()
1889      {
1890	__x.swap(*this);
1891      }
1892
1893      // TODO: needs allocator_arg_t
1894
1895      /**
1896       *  @brief Builds a %function that targets a copy of the incoming
1897       *  function object.
1898       *  @param __f A %function object that is callable with parameters of
1899       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
1900       *  to @c Res.
1901       *
1902       *  The newly-created %function object will target a copy of
1903       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
1904       *  object will contain a reference to the function object @c
1905       *  __f.get(). If @a __f is a NULL function pointer or NULL
1906       *  pointer-to-member, the newly-created object will be empty.
1907       *
1908       *  If @a __f is a non-NULL function pointer or an object of type @c
1909       *  reference_wrapper<F>, this function will not throw.
1910       */
1911      template<typename _Functor,
1912	       typename = _Requires<__not_<is_same<_Functor, function>>, void>,
1913	       typename = _Requires<_Callable<_Functor>, void>>
1914	function(_Functor);
1915
1916      /**
1917       *  @brief %Function assignment operator.
1918       *  @param __x A %function with identical call signature.
1919       *  @post @c (bool)*this == (bool)x
1920       *  @returns @c *this
1921       *
1922       *  The target of @a __x is copied to @c *this. If @a __x has no
1923       *  target, then @c *this will be empty.
1924       *
1925       *  If @a __x targets a function pointer or a reference to a function
1926       *  object, then this operation will not throw an %exception.
1927       */
1928      function&
1929      operator=(const function& __x)
1930      {
1931	function(__x).swap(*this);
1932	return *this;
1933      }
1934
1935      /**
1936       *  @brief %Function move-assignment operator.
1937       *  @param __x A %function rvalue with identical call signature.
1938       *  @returns @c *this
1939       *
1940       *  The target of @a __x is moved to @c *this. If @a __x has no
1941       *  target, then @c *this will be empty.
1942       *
1943       *  If @a __x targets a function pointer or a reference to a function
1944       *  object, then this operation will not throw an %exception.
1945       */
1946      function&
1947      operator=(function&& __x) noexcept
1948      {
1949	function(std::move(__x)).swap(*this);
1950	return *this;
1951      }
1952
1953      /**
1954       *  @brief %Function assignment to zero.
1955       *  @post @c !(bool)*this
1956       *  @returns @c *this
1957       *
1958       *  The target of @c *this is deallocated, leaving it empty.
1959       */
1960      function&
1961      operator=(nullptr_t) noexcept
1962      {
1963	if (_M_manager)
1964	  {
1965	    _M_manager(_M_functor, _M_functor, __destroy_functor);
1966	    _M_manager = nullptr;
1967	    _M_invoker = nullptr;
1968	  }
1969	return *this;
1970      }
1971
1972      /**
1973       *  @brief %Function assignment to a new target.
1974       *  @param __f A %function object that is callable with parameters of
1975       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
1976       *  to @c Res.
1977       *  @return @c *this
1978       *
1979       *  This  %function object wrapper will target a copy of @a
1980       *  __f. If @a __f is @c reference_wrapper<F>, then this function
1981       *  object will contain a reference to the function object @c
1982       *  __f.get(). If @a __f is a NULL function pointer or NULL
1983       *  pointer-to-member, @c this object will be empty.
1984       *
1985       *  If @a __f is a non-NULL function pointer or an object of type @c
1986       *  reference_wrapper<F>, this function will not throw.
1987       */
1988      template<typename _Functor>
1989	_Requires<_Callable<typename decay<_Functor>::type>, function&>
1990	operator=(_Functor&& __f)
1991	{
1992	  function(std::forward<_Functor>(__f)).swap(*this);
1993	  return *this;
1994	}
1995
1996      /// @overload
1997      template<typename _Functor>
1998	function&
1999	operator=(reference_wrapper<_Functor> __f) noexcept
2000	{
2001	  function(__f).swap(*this);
2002	  return *this;
2003	}
2004
2005      // [3.7.2.2] function modifiers
2006
2007      /**
2008       *  @brief Swap the targets of two %function objects.
2009       *  @param __x A %function with identical call signature.
2010       *
2011       *  Swap the targets of @c this function object and @a __f. This
2012       *  function will not throw an %exception.
2013       */
2014      void swap(function& __x) noexcept
2015      {
2016	std::swap(_M_functor, __x._M_functor);
2017	std::swap(_M_manager, __x._M_manager);
2018	std::swap(_M_invoker, __x._M_invoker);
2019      }
2020
2021      // TODO: needs allocator_arg_t
2022      /*
2023      template<typename _Functor, typename _Alloc>
2024	void
2025	assign(_Functor&& __f, const _Alloc& __a)
2026	{
2027	  function(allocator_arg, __a,
2028		   std::forward<_Functor>(__f)).swap(*this);
2029	}
2030      */
2031
2032      // [3.7.2.3] function capacity
2033
2034      /**
2035       *  @brief Determine if the %function wrapper has a target.
2036       *
2037       *  @return @c true when this %function object contains a target,
2038       *  or @c false when it is empty.
2039       *
2040       *  This function will not throw an %exception.
2041       */
2042      explicit operator bool() const noexcept
2043      { return !_M_empty(); }
2044
2045      // [3.7.2.4] function invocation
2046
2047      /**
2048       *  @brief Invokes the function targeted by @c *this.
2049       *  @returns the result of the target.
2050       *  @throws bad_function_call when @c !(bool)*this
2051       *
2052       *  The function call operator invokes the target function object
2053       *  stored by @c this.
2054       */
2055      _Res operator()(_ArgTypes... __args) const;
2056
2057#if __cpp_rtti
2058      // [3.7.2.5] function target access
2059      /**
2060       *  @brief Determine the type of the target of this function object
2061       *  wrapper.
2062       *
2063       *  @returns the type identifier of the target function object, or
2064       *  @c typeid(void) if @c !(bool)*this.
2065       *
2066       *  This function will not throw an %exception.
2067       */
2068      const type_info& target_type() const noexcept;
2069
2070      /**
2071       *  @brief Access the stored target function object.
2072       *
2073       *  @return Returns a pointer to the stored target function object,
2074       *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
2075       *  pointer.
2076       *
2077       * This function will not throw an %exception.
2078       */
2079      template<typename _Functor>       _Functor* target() noexcept;
2080
2081      /// @overload
2082      template<typename _Functor> const _Functor* target() const noexcept;
2083#endif
2084
2085    private:
2086      using _Invoker_type = _Res (*)(const _Any_data&, _ArgTypes&&...);
2087      _Invoker_type _M_invoker;
2088  };
2089
2090  // Out-of-line member definitions.
2091  template<typename _Res, typename... _ArgTypes>
2092    function<_Res(_ArgTypes...)>::
2093    function(const function& __x)
2094    : _Function_base()
2095    {
2096      if (static_cast<bool>(__x))
2097	{
2098	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
2099	  _M_invoker = __x._M_invoker;
2100	  _M_manager = __x._M_manager;
2101	}
2102    }
2103
2104  template<typename _Res, typename... _ArgTypes>
2105    template<typename _Functor, typename, typename>
2106      function<_Res(_ArgTypes...)>::
2107      function(_Functor __f)
2108      : _Function_base()
2109      {
2110	typedef _Function_handler<_Signature_type, _Functor> _My_handler;
2111
2112	if (_My_handler::_M_not_empty_function(__f))
2113	  {
2114	    _My_handler::_M_init_functor(_M_functor, std::move(__f));
2115	    _M_invoker = &_My_handler::_M_invoke;
2116	    _M_manager = &_My_handler::_M_manager;
2117	  }
2118      }
2119
2120  template<typename _Res, typename... _ArgTypes>
2121    _Res
2122    function<_Res(_ArgTypes...)>::
2123    operator()(_ArgTypes... __args) const
2124    {
2125      if (_M_empty())
2126	__throw_bad_function_call();
2127      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
2128    }
2129
2130#if __cpp_rtti
2131  template<typename _Res, typename... _ArgTypes>
2132    const type_info&
2133    function<_Res(_ArgTypes...)>::
2134    target_type() const noexcept
2135    {
2136      if (_M_manager)
2137	{
2138	  _Any_data __typeinfo_result;
2139	  _M_manager(__typeinfo_result, _M_functor, __get_type_info);
2140	  return *__typeinfo_result._M_access<const type_info*>();
2141	}
2142      else
2143	return typeid(void);
2144    }
2145
2146  template<typename _Res, typename... _ArgTypes>
2147    template<typename _Functor>
2148      _Functor*
2149      function<_Res(_ArgTypes...)>::
2150      target() noexcept
2151      {
2152	if (typeid(_Functor) == target_type() && _M_manager)
2153	  {
2154	    _Any_data __ptr;
2155	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
2156		&& !is_const<_Functor>::value)
2157	      return 0;
2158	    else
2159	      return __ptr._M_access<_Functor*>();
2160	  }
2161	else
2162	  return 0;
2163      }
2164
2165  template<typename _Res, typename... _ArgTypes>
2166    template<typename _Functor>
2167      const _Functor*
2168      function<_Res(_ArgTypes...)>::
2169      target() const noexcept
2170      {
2171	if (typeid(_Functor) == target_type() && _M_manager)
2172	  {
2173	    _Any_data __ptr;
2174	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
2175	    return __ptr._M_access<const _Functor*>();
2176	  }
2177	else
2178	  return 0;
2179      }
2180#endif
2181
2182  // [20.7.15.2.6] null pointer comparisons
2183
2184  /**
2185   *  @brief Compares a polymorphic function object wrapper against 0
2186   *  (the NULL pointer).
2187   *  @returns @c true if the wrapper has no target, @c false otherwise
2188   *
2189   *  This function will not throw an %exception.
2190   */
2191  template<typename _Res, typename... _Args>
2192    inline bool
2193    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2194    { return !static_cast<bool>(__f); }
2195
2196  /// @overload
2197  template<typename _Res, typename... _Args>
2198    inline bool
2199    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2200    { return !static_cast<bool>(__f); }
2201
2202  /**
2203   *  @brief Compares a polymorphic function object wrapper against 0
2204   *  (the NULL pointer).
2205   *  @returns @c false if the wrapper has no target, @c true otherwise
2206   *
2207   *  This function will not throw an %exception.
2208   */
2209  template<typename _Res, typename... _Args>
2210    inline bool
2211    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2212    { return static_cast<bool>(__f); }
2213
2214  /// @overload
2215  template<typename _Res, typename... _Args>
2216    inline bool
2217    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2218    { return static_cast<bool>(__f); }
2219
2220  // [20.7.15.2.7] specialized algorithms
2221
2222  /**
2223   *  @brief Swap the targets of two polymorphic function object wrappers.
2224   *
2225   *  This function will not throw an %exception.
2226   */
2227  // _GLIBCXX_RESOLVE_LIB_DEFECTS
2228  // 2062. Effect contradictions w/o no-throw guarantee of std::function swaps
2229  template<typename _Res, typename... _Args>
2230    inline void
2231    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y) noexcept
2232    { __x.swap(__y); }
2233
2234_GLIBCXX_END_NAMESPACE_VERSION
2235} // namespace std
2236
2237#endif // C++11
2238
2239#endif // _GLIBCXX_FUNCTIONAL
2240