1// <future> -*- C++ -*-
2
3// Copyright (C) 2009-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/future
26 *  This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_FUTURE
30#define _GLIBCXX_FUTURE 1
31
32#pragma GCC system_header
33
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <functional>
39#include <mutex>
40#include <thread>
41#include <condition_variable>
42#include <system_error>
43#include <atomic>
44#include <bits/atomic_futex.h>
45#include <bits/functexcept.h>
46#include <bits/unique_ptr.h>
47#include <bits/shared_ptr.h>
48#include <bits/uses_allocator.h>
49#include <bits/allocated_ptr.h>
50#include <ext/aligned_buffer.h>
51
52namespace std _GLIBCXX_VISIBILITY(default)
53{
54_GLIBCXX_BEGIN_NAMESPACE_VERSION
55
56  /**
57   * @defgroup futures Futures
58   * @ingroup concurrency
59   *
60   * Classes for futures support.
61   * @{
62   */
63
64  /// Error code for futures
65  enum class future_errc
66  {
67    future_already_retrieved = 1,
68    promise_already_satisfied,
69    no_state,
70    broken_promise
71  };
72
73  /// Specialization.
74  template<>
75    struct is_error_code_enum<future_errc> : public true_type { };
76
77  /// Points to a statically-allocated object derived from error_category.
78  const error_category&
79  future_category() noexcept;
80
81  /// Overload for make_error_code.
82  inline error_code
83  make_error_code(future_errc __errc) noexcept
84  { return error_code(static_cast<int>(__errc), future_category()); }
85
86  /// Overload for make_error_condition.
87  inline error_condition
88  make_error_condition(future_errc __errc) noexcept
89  { return error_condition(static_cast<int>(__errc), future_category()); }
90
91  /**
92   *  @brief Exception type thrown by futures.
93   *  @ingroup exceptions
94   */
95  class future_error : public logic_error
96  {
97    error_code 			_M_code;
98
99  public:
100    explicit future_error(error_code __ec)
101    : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
102    { }
103
104    virtual ~future_error() noexcept;
105
106    virtual const char*
107    what() const noexcept;
108
109    const error_code&
110    code() const noexcept { return _M_code; }
111  };
112
113  // Forward declarations.
114  template<typename _Res>
115    class future;
116
117  template<typename _Res>
118    class shared_future;
119
120  template<typename _Signature>
121    class packaged_task;
122
123  template<typename _Res>
124    class promise;
125
126  /// Launch code for futures
127  enum class launch
128  {
129    async = 1,
130    deferred = 2
131  };
132
133  constexpr launch operator&(launch __x, launch __y)
134  {
135    return static_cast<launch>(
136	static_cast<int>(__x) & static_cast<int>(__y));
137  }
138
139  constexpr launch operator|(launch __x, launch __y)
140  {
141    return static_cast<launch>(
142	static_cast<int>(__x) | static_cast<int>(__y));
143  }
144
145  constexpr launch operator^(launch __x, launch __y)
146  {
147    return static_cast<launch>(
148	static_cast<int>(__x) ^ static_cast<int>(__y));
149  }
150
151  constexpr launch operator~(launch __x)
152  { return static_cast<launch>(~static_cast<int>(__x)); }
153
154  inline launch& operator&=(launch& __x, launch __y)
155  { return __x = __x & __y; }
156
157  inline launch& operator|=(launch& __x, launch __y)
158  { return __x = __x | __y; }
159
160  inline launch& operator^=(launch& __x, launch __y)
161  { return __x = __x ^ __y; }
162
163  /// Status code for futures
164  enum class future_status
165  {
166    ready,
167    timeout,
168    deferred
169  };
170
171  // _GLIBCXX_RESOLVE_LIB_DEFECTS
172  // 2021. Further incorrect usages of result_of
173  template<typename _Fn, typename... _Args>
174    using __async_result_of = typename result_of<
175      typename decay<_Fn>::type(typename decay<_Args>::type...)>::type;
176
177  template<typename _Fn, typename... _Args>
178    future<__async_result_of<_Fn, _Args...>>
179    async(launch __policy, _Fn&& __fn, _Args&&... __args);
180
181  template<typename _Fn, typename... _Args>
182    future<__async_result_of<_Fn, _Args...>>
183    async(_Fn&& __fn, _Args&&... __args);
184
185#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
186  && (ATOMIC_INT_LOCK_FREE > 1)
187
188  /// Base class and enclosing scope.
189  struct __future_base
190  {
191    /// Base class for results.
192    struct _Result_base
193    {
194      exception_ptr		_M_error;
195
196      _Result_base(const _Result_base&) = delete;
197      _Result_base& operator=(const _Result_base&) = delete;
198
199      // _M_destroy() allows derived classes to control deallocation
200      virtual void _M_destroy() = 0;
201
202      struct _Deleter
203      {
204	void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
205      };
206
207    protected:
208      _Result_base();
209      virtual ~_Result_base();
210    };
211
212    /// A unique_ptr for result objects.
213    template<typename _Res>
214      using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
215
216    /// A result object that has storage for an object of type _Res.
217    template<typename _Res>
218      struct _Result : _Result_base
219      {
220      private:
221	__gnu_cxx::__aligned_buffer<_Res>	_M_storage;
222	bool 					_M_initialized;
223
224      public:
225	typedef _Res result_type;
226
227	_Result() noexcept : _M_initialized() { }
228
229	~_Result()
230	{
231	  if (_M_initialized)
232	    _M_value().~_Res();
233	}
234
235	// Return lvalue, future will add const or rvalue-reference
236	_Res&
237	_M_value() noexcept { return *_M_storage._M_ptr(); }
238
239	void
240	_M_set(const _Res& __res)
241	{
242	  ::new (_M_storage._M_addr()) _Res(__res);
243	  _M_initialized = true;
244	}
245
246	void
247	_M_set(_Res&& __res)
248	{
249	  ::new (_M_storage._M_addr()) _Res(std::move(__res));
250	  _M_initialized = true;
251	}
252
253      private:
254	void _M_destroy() { delete this; }
255    };
256
257    /// A result object that uses an allocator.
258    template<typename _Res, typename _Alloc>
259      struct _Result_alloc final : _Result<_Res>, _Alloc
260      {
261	using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
262
263        explicit
264	_Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
265	{ }
266
267      private:
268	void _M_destroy()
269	{
270	  __allocator_type __a(*this);
271	  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
272	  this->~_Result_alloc();
273	}
274      };
275
276    // Create a result object that uses an allocator.
277    template<typename _Res, typename _Allocator>
278      static _Ptr<_Result_alloc<_Res, _Allocator>>
279      _S_allocate_result(const _Allocator& __a)
280      {
281	using __result_type = _Result_alloc<_Res, _Allocator>;
282	typename __result_type::__allocator_type __a2(__a);
283	auto __guard = std::__allocate_guarded(__a2);
284	__result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
285	__guard = nullptr;
286	return _Ptr<__result_type>(__p);
287      }
288
289    // Keep it simple for std::allocator.
290    template<typename _Res, typename _Tp>
291      static _Ptr<_Result<_Res>>
292      _S_allocate_result(const std::allocator<_Tp>& __a)
293      {
294	return _Ptr<_Result<_Res>>(new _Result<_Res>);
295      }
296
297    // Base class for various types of shared state created by an
298    // asynchronous provider (such as a std::promise) and shared with one
299    // or more associated futures.
300    class _State_baseV2
301    {
302      typedef _Ptr<_Result_base> _Ptr_type;
303
304      enum _Status : unsigned {
305	__not_ready,
306	__ready
307      };
308
309      _Ptr_type			_M_result;
310      __atomic_futex_unsigned<>	_M_status;
311      atomic_flag         	_M_retrieved = ATOMIC_FLAG_INIT;
312      once_flag			_M_once;
313
314    public:
315      _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
316	{ }
317      _State_baseV2(const _State_baseV2&) = delete;
318      _State_baseV2& operator=(const _State_baseV2&) = delete;
319      virtual ~_State_baseV2() = default;
320
321      _Result_base&
322      wait()
323      {
324	// Run any deferred function or join any asynchronous thread:
325	_M_complete_async();
326	// Acquire MO makes sure this synchronizes with the thread that made
327	// the future ready.
328	_M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
329	return *_M_result;
330      }
331
332      template<typename _Rep, typename _Period>
333        future_status
334        wait_for(const chrono::duration<_Rep, _Period>& __rel)
335        {
336	  // First, check if the future has been made ready.  Use acquire MO
337	  // to synchronize with the thread that made it ready.
338	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
339	    return future_status::ready;
340	  if (_M_is_deferred_future())
341	    return future_status::deferred;
342	  if (_M_status._M_load_when_equal_for(_Status::__ready,
343	      memory_order_acquire, __rel))
344	    {
345	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
346	      // 2100.  timed waiting functions must also join
347	      // This call is a no-op by default except on an async future,
348	      // in which case the async thread is joined.  It's also not a
349	      // no-op for a deferred future, but such a future will never
350	      // reach this point because it returns future_status::deferred
351	      // instead of waiting for the future to become ready (see
352	      // above).  Async futures synchronize in this call, so we need
353	      // no further synchronization here.
354	      _M_complete_async();
355
356	      return future_status::ready;
357	    }
358	  return future_status::timeout;
359	}
360
361      template<typename _Clock, typename _Duration>
362        future_status
363        wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
364        {
365	  // First, check if the future has been made ready.  Use acquire MO
366	  // to synchronize with the thread that made it ready.
367	  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
368	    return future_status::ready;
369	  if (_M_is_deferred_future())
370	    return future_status::deferred;
371	  if (_M_status._M_load_when_equal_until(_Status::__ready,
372	      memory_order_acquire, __abs))
373	    {
374	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
375	      // 2100.  timed waiting functions must also join
376	      // See wait_for(...) above.
377	      _M_complete_async();
378
379	      return future_status::ready;
380	    }
381	  return future_status::timeout;
382	}
383
384      // Provide a result to the shared state and make it ready.
385      // Calls at most once: _M_result = __res();
386      void
387      _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
388      {
389	bool __did_set = false;
390        // all calls to this function are serialized,
391        // side-effects of invoking __res only happen once
392	call_once(_M_once, &_State_baseV2::_M_do_set, this,
393		  std::__addressof(__res), std::__addressof(__did_set));
394	if (__did_set)
395	  // Use release MO to synchronize with observers of the ready state.
396	  _M_status._M_store_notify_all(_Status::__ready,
397					memory_order_release);
398	else if (!__ignore_failure)
399          __throw_future_error(int(future_errc::promise_already_satisfied));
400      }
401
402      // Provide a result to the shared state but delay making it ready
403      // until the calling thread exits.
404      // Calls at most once: _M_result = __res();
405      void
406      _M_set_delayed_result(function<_Ptr_type()> __res,
407			    weak_ptr<_State_baseV2> __self)
408      {
409	bool __did_set = false;
410	unique_ptr<_Make_ready> __mr{new _Make_ready};
411        // all calls to this function are serialized,
412        // side-effects of invoking __res only happen once
413	call_once(_M_once, &_State_baseV2::_M_do_set, this,
414		  std::__addressof(__res), std::__addressof(__did_set));
415	if (!__did_set)
416          __throw_future_error(int(future_errc::promise_already_satisfied));
417	__mr->_M_shared_state = std::move(__self);
418	__mr->_M_set();
419	__mr.release();
420      }
421
422      // Abandon this shared state.
423      void
424      _M_break_promise(_Ptr_type __res)
425      {
426	if (static_cast<bool>(__res))
427	  {
428	    error_code __ec(make_error_code(future_errc::broken_promise));
429	    __res->_M_error = make_exception_ptr(future_error(__ec));
430	    // This function is only called when the last asynchronous result
431	    // provider is abandoning this shared state, so noone can be
432	    // trying to make the shared state ready at the same time, and
433	    // we can access _M_result directly instead of through call_once.
434	    _M_result.swap(__res);
435	    // Use release MO to synchronize with observers of the ready state.
436	    _M_status._M_store_notify_all(_Status::__ready,
437					  memory_order_release);
438	  }
439      }
440
441      // Called when this object is first passed to a future.
442      void
443      _M_set_retrieved_flag()
444      {
445	if (_M_retrieved.test_and_set())
446	  __throw_future_error(int(future_errc::future_already_retrieved));
447      }
448
449      template<typename _Res, typename _Arg>
450        struct _Setter;
451
452      // set lvalues
453      template<typename _Res, typename _Arg>
454        struct _Setter<_Res, _Arg&>
455        {
456          // check this is only used by promise<R>::set_value(const R&)
457          // or promise<R&>::set_value(R&)
458          static_assert(is_same<_Res, _Arg&>::value  // promise<R&>
459              || is_same<const _Res, _Arg>::value,   // promise<R>
460              "Invalid specialisation");
461
462	  // Used by std::promise to copy construct the result.
463          typename promise<_Res>::_Ptr_type operator()() const
464          {
465            _M_promise->_M_storage->_M_set(*_M_arg);
466            return std::move(_M_promise->_M_storage);
467          }
468          promise<_Res>*    _M_promise;
469          _Arg*             _M_arg;
470        };
471
472      // set rvalues
473      template<typename _Res>
474        struct _Setter<_Res, _Res&&>
475        {
476	  // Used by std::promise to move construct the result.
477          typename promise<_Res>::_Ptr_type operator()() const
478          {
479            _M_promise->_M_storage->_M_set(std::move(*_M_arg));
480            return std::move(_M_promise->_M_storage);
481          }
482          promise<_Res>*    _M_promise;
483          _Res*             _M_arg;
484        };
485
486      // set void
487      template<typename _Res>
488	struct _Setter<_Res, void>
489	{
490	  static_assert(is_void<_Res>::value, "Only used for promise<void>");
491
492	  typename promise<_Res>::_Ptr_type operator()() const
493	  { return std::move(_M_promise->_M_storage); }
494
495	  promise<_Res>*    _M_promise;
496	};
497
498      struct __exception_ptr_tag { };
499
500      // set exceptions
501      template<typename _Res>
502        struct _Setter<_Res, __exception_ptr_tag>
503        {
504	  // Used by std::promise to store an exception as the result.
505          typename promise<_Res>::_Ptr_type operator()() const
506          {
507            _M_promise->_M_storage->_M_error = *_M_ex;
508            return std::move(_M_promise->_M_storage);
509          }
510
511          promise<_Res>*   _M_promise;
512          exception_ptr*    _M_ex;
513        };
514
515      template<typename _Res, typename _Arg>
516        static _Setter<_Res, _Arg&&>
517        __setter(promise<_Res>* __prom, _Arg&& __arg)
518        {
519	  _S_check(__prom->_M_future);
520          return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
521        }
522
523      template<typename _Res>
524        static _Setter<_Res, __exception_ptr_tag>
525        __setter(exception_ptr& __ex, promise<_Res>* __prom)
526        {
527	  _S_check(__prom->_M_future);
528          return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
529        }
530
531      template<typename _Res>
532	static _Setter<_Res, void>
533	__setter(promise<_Res>* __prom)
534	{
535	  _S_check(__prom->_M_future);
536	  return _Setter<_Res, void>{ __prom };
537	}
538
539      template<typename _Tp>
540        static void
541        _S_check(const shared_ptr<_Tp>& __p)
542        {
543          if (!static_cast<bool>(__p))
544            __throw_future_error((int)future_errc::no_state);
545        }
546
547    private:
548      // The function invoked with std::call_once(_M_once, ...).
549      void
550      _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
551      {
552        _Ptr_type __res = (*__f)();
553        // Notify the caller that we did try to set; if we do not throw an
554        // exception, the caller will be aware that it did set (e.g., see
555        // _M_set_result).
556	*__did_set = true;
557        _M_result.swap(__res); // nothrow
558      }
559
560      // Wait for completion of async function.
561      virtual void _M_complete_async() { }
562
563      // Return true if state corresponds to a deferred function.
564      virtual bool _M_is_deferred_future() const { return false; }
565
566      struct _Make_ready final : __at_thread_exit_elt
567      {
568	weak_ptr<_State_baseV2> _M_shared_state;
569	static void _S_run(void*);
570	void _M_set();
571      };
572    };
573
574#ifdef _GLIBCXX_ASYNC_ABI_COMPAT
575    class _State_base;
576    class _Async_state_common;
577#else
578    using _State_base = _State_baseV2;
579    class _Async_state_commonV2;
580#endif
581
582    template<typename _BoundFn, typename = typename _BoundFn::result_type>
583      class _Deferred_state;
584
585    template<typename _BoundFn, typename = typename _BoundFn::result_type>
586      class _Async_state_impl;
587
588    template<typename _Signature>
589      class _Task_state_base;
590
591    template<typename _Fn, typename _Alloc, typename _Signature>
592      class _Task_state;
593
594    template<typename _BoundFn>
595      static std::shared_ptr<_State_base>
596      _S_make_deferred_state(_BoundFn&& __fn);
597
598    template<typename _BoundFn>
599      static std::shared_ptr<_State_base>
600      _S_make_async_state(_BoundFn&& __fn);
601
602    template<typename _Res_ptr, typename _Fn,
603	     typename _Res = typename _Res_ptr::element_type::result_type>
604      struct _Task_setter;
605
606    template<typename _Res_ptr, typename _BoundFn>
607      static _Task_setter<_Res_ptr, _BoundFn>
608      _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
609      {
610	return { std::__addressof(__ptr), std::__addressof(__call) };
611      }
612  };
613
614  /// Partial specialization for reference types.
615  template<typename _Res>
616    struct __future_base::_Result<_Res&> : __future_base::_Result_base
617    {
618      typedef _Res& result_type;
619
620      _Result() noexcept : _M_value_ptr() { }
621
622      void
623      _M_set(_Res& __res) noexcept
624      { _M_value_ptr = std::addressof(__res); }
625
626      _Res& _M_get() noexcept { return *_M_value_ptr; }
627
628    private:
629      _Res* 			_M_value_ptr;
630
631      void _M_destroy() { delete this; }
632    };
633
634  /// Explicit specialization for void.
635  template<>
636    struct __future_base::_Result<void> : __future_base::_Result_base
637    {
638      typedef void result_type;
639
640    private:
641      void _M_destroy() { delete this; }
642    };
643
644#ifndef _GLIBCXX_ASYNC_ABI_COMPAT
645
646  // Allow _Setter objects to be stored locally in std::function
647  template<typename _Res, typename _Arg>
648    struct __is_location_invariant
649    <__future_base::_State_base::_Setter<_Res, _Arg>>
650    : true_type { };
651
652  // Allow _Task_setter objects to be stored locally in std::function
653  template<typename _Res_ptr, typename _Fn, typename _Res>
654    struct __is_location_invariant
655    <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
656    : true_type { };
657
658  /// Common implementation for future and shared_future.
659  template<typename _Res>
660    class __basic_future : public __future_base
661    {
662    protected:
663      typedef shared_ptr<_State_base>		__state_type;
664      typedef __future_base::_Result<_Res>&	__result_type;
665
666    private:
667      __state_type 		_M_state;
668
669    public:
670      // Disable copying.
671      __basic_future(const __basic_future&) = delete;
672      __basic_future& operator=(const __basic_future&) = delete;
673
674      bool
675      valid() const noexcept { return static_cast<bool>(_M_state); }
676
677      void
678      wait() const
679      {
680        _State_base::_S_check(_M_state);
681        _M_state->wait();
682      }
683
684      template<typename _Rep, typename _Period>
685        future_status
686        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
687        {
688          _State_base::_S_check(_M_state);
689          return _M_state->wait_for(__rel);
690        }
691
692      template<typename _Clock, typename _Duration>
693        future_status
694        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
695        {
696          _State_base::_S_check(_M_state);
697          return _M_state->wait_until(__abs);
698        }
699
700    protected:
701      /// Wait for the state to be ready and rethrow any stored exception
702      __result_type
703      _M_get_result() const
704      {
705        _State_base::_S_check(_M_state);
706        _Result_base& __res = _M_state->wait();
707        if (!(__res._M_error == 0))
708          rethrow_exception(__res._M_error);
709        return static_cast<__result_type>(__res);
710      }
711
712      void _M_swap(__basic_future& __that) noexcept
713      {
714        _M_state.swap(__that._M_state);
715      }
716
717      // Construction of a future by promise::get_future()
718      explicit
719      __basic_future(const __state_type& __state) : _M_state(__state)
720      {
721        _State_base::_S_check(_M_state);
722        _M_state->_M_set_retrieved_flag();
723      }
724
725      // Copy construction from a shared_future
726      explicit
727      __basic_future(const shared_future<_Res>&) noexcept;
728
729      // Move construction from a shared_future
730      explicit
731      __basic_future(shared_future<_Res>&&) noexcept;
732
733      // Move construction from a future
734      explicit
735      __basic_future(future<_Res>&&) noexcept;
736
737      constexpr __basic_future() noexcept : _M_state() { }
738
739      struct _Reset
740      {
741        explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
742        ~_Reset() { _M_fut._M_state.reset(); }
743        __basic_future& _M_fut;
744      };
745    };
746
747
748  /// Primary template for future.
749  template<typename _Res>
750    class future : public __basic_future<_Res>
751    {
752      friend class promise<_Res>;
753      template<typename> friend class packaged_task;
754      template<typename _Fn, typename... _Args>
755        friend future<__async_result_of<_Fn, _Args...>>
756        async(launch, _Fn&&, _Args&&...);
757
758      typedef __basic_future<_Res> _Base_type;
759      typedef typename _Base_type::__state_type __state_type;
760
761      explicit
762      future(const __state_type& __state) : _Base_type(__state) { }
763
764    public:
765      constexpr future() noexcept : _Base_type() { }
766
767      /// Move constructor
768      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
769
770      // Disable copying
771      future(const future&) = delete;
772      future& operator=(const future&) = delete;
773
774      future& operator=(future&& __fut) noexcept
775      {
776        future(std::move(__fut))._M_swap(*this);
777        return *this;
778      }
779
780      /// Retrieving the value
781      _Res
782      get()
783      {
784        typename _Base_type::_Reset __reset(*this);
785        return std::move(this->_M_get_result()._M_value());
786      }
787
788      shared_future<_Res> share();
789    };
790
791  /// Partial specialization for future<R&>
792  template<typename _Res>
793    class future<_Res&> : public __basic_future<_Res&>
794    {
795      friend class promise<_Res&>;
796      template<typename> friend class packaged_task;
797      template<typename _Fn, typename... _Args>
798        friend future<__async_result_of<_Fn, _Args...>>
799        async(launch, _Fn&&, _Args&&...);
800
801      typedef __basic_future<_Res&> _Base_type;
802      typedef typename _Base_type::__state_type __state_type;
803
804      explicit
805      future(const __state_type& __state) : _Base_type(__state) { }
806
807    public:
808      constexpr future() noexcept : _Base_type() { }
809
810      /// Move constructor
811      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
812
813      // Disable copying
814      future(const future&) = delete;
815      future& operator=(const future&) = delete;
816
817      future& operator=(future&& __fut) noexcept
818      {
819        future(std::move(__fut))._M_swap(*this);
820        return *this;
821      }
822
823      /// Retrieving the value
824      _Res&
825      get()
826      {
827        typename _Base_type::_Reset __reset(*this);
828        return this->_M_get_result()._M_get();
829      }
830
831      shared_future<_Res&> share();
832    };
833
834  /// Explicit specialization for future<void>
835  template<>
836    class future<void> : public __basic_future<void>
837    {
838      friend class promise<void>;
839      template<typename> friend class packaged_task;
840      template<typename _Fn, typename... _Args>
841        friend future<__async_result_of<_Fn, _Args...>>
842        async(launch, _Fn&&, _Args&&...);
843
844      typedef __basic_future<void> _Base_type;
845      typedef typename _Base_type::__state_type __state_type;
846
847      explicit
848      future(const __state_type& __state) : _Base_type(__state) { }
849
850    public:
851      constexpr future() noexcept : _Base_type() { }
852
853      /// Move constructor
854      future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
855
856      // Disable copying
857      future(const future&) = delete;
858      future& operator=(const future&) = delete;
859
860      future& operator=(future&& __fut) noexcept
861      {
862        future(std::move(__fut))._M_swap(*this);
863        return *this;
864      }
865
866      /// Retrieving the value
867      void
868      get()
869      {
870        typename _Base_type::_Reset __reset(*this);
871        this->_M_get_result();
872      }
873
874      shared_future<void> share();
875    };
876
877
878  /// Primary template for shared_future.
879  template<typename _Res>
880    class shared_future : public __basic_future<_Res>
881    {
882      typedef __basic_future<_Res> _Base_type;
883
884    public:
885      constexpr shared_future() noexcept : _Base_type() { }
886
887      /// Copy constructor
888      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
889
890      /// Construct from a future rvalue
891      shared_future(future<_Res>&& __uf) noexcept
892      : _Base_type(std::move(__uf))
893      { }
894
895      /// Construct from a shared_future rvalue
896      shared_future(shared_future&& __sf) noexcept
897      : _Base_type(std::move(__sf))
898      { }
899
900      shared_future& operator=(const shared_future& __sf)
901      {
902        shared_future(__sf)._M_swap(*this);
903        return *this;
904      }
905
906      shared_future& operator=(shared_future&& __sf) noexcept
907      {
908        shared_future(std::move(__sf))._M_swap(*this);
909        return *this;
910      }
911
912      /// Retrieving the value
913      const _Res&
914      get() const { return this->_M_get_result()._M_value(); }
915    };
916
917  /// Partial specialization for shared_future<R&>
918  template<typename _Res>
919    class shared_future<_Res&> : public __basic_future<_Res&>
920    {
921      typedef __basic_future<_Res&>           _Base_type;
922
923    public:
924      constexpr shared_future() noexcept : _Base_type() { }
925
926      /// Copy constructor
927      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
928
929      /// Construct from a future rvalue
930      shared_future(future<_Res&>&& __uf) noexcept
931      : _Base_type(std::move(__uf))
932      { }
933
934      /// Construct from a shared_future rvalue
935      shared_future(shared_future&& __sf) noexcept
936      : _Base_type(std::move(__sf))
937      { }
938
939      shared_future& operator=(const shared_future& __sf)
940      {
941        shared_future(__sf)._M_swap(*this);
942        return *this;
943      }
944
945      shared_future& operator=(shared_future&& __sf) noexcept
946      {
947        shared_future(std::move(__sf))._M_swap(*this);
948        return *this;
949      }
950
951      /// Retrieving the value
952      _Res&
953      get() const { return this->_M_get_result()._M_get(); }
954    };
955
956  /// Explicit specialization for shared_future<void>
957  template<>
958    class shared_future<void> : public __basic_future<void>
959    {
960      typedef __basic_future<void> _Base_type;
961
962    public:
963      constexpr shared_future() noexcept : _Base_type() { }
964
965      /// Copy constructor
966      shared_future(const shared_future& __sf) : _Base_type(__sf) { }
967
968      /// Construct from a future rvalue
969      shared_future(future<void>&& __uf) noexcept
970      : _Base_type(std::move(__uf))
971      { }
972
973      /// Construct from a shared_future rvalue
974      shared_future(shared_future&& __sf) noexcept
975      : _Base_type(std::move(__sf))
976      { }
977
978      shared_future& operator=(const shared_future& __sf)
979      {
980        shared_future(__sf)._M_swap(*this);
981        return *this;
982      }
983
984      shared_future& operator=(shared_future&& __sf) noexcept
985      {
986        shared_future(std::move(__sf))._M_swap(*this);
987        return *this;
988      }
989
990      // Retrieving the value
991      void
992      get() const { this->_M_get_result(); }
993    };
994
995  // Now we can define the protected __basic_future constructors.
996  template<typename _Res>
997    inline __basic_future<_Res>::
998    __basic_future(const shared_future<_Res>& __sf) noexcept
999    : _M_state(__sf._M_state)
1000    { }
1001
1002  template<typename _Res>
1003    inline __basic_future<_Res>::
1004    __basic_future(shared_future<_Res>&& __sf) noexcept
1005    : _M_state(std::move(__sf._M_state))
1006    { }
1007
1008  template<typename _Res>
1009    inline __basic_future<_Res>::
1010    __basic_future(future<_Res>&& __uf) noexcept
1011    : _M_state(std::move(__uf._M_state))
1012    { }
1013
1014  template<typename _Res>
1015    inline shared_future<_Res>
1016    future<_Res>::share()
1017    { return shared_future<_Res>(std::move(*this)); }
1018
1019  template<typename _Res>
1020    inline shared_future<_Res&>
1021    future<_Res&>::share()
1022    { return shared_future<_Res&>(std::move(*this)); }
1023
1024  inline shared_future<void>
1025  future<void>::share()
1026  { return shared_future<void>(std::move(*this)); }
1027
1028  /// Primary template for promise
1029  template<typename _Res>
1030    class promise
1031    {
1032      typedef __future_base::_State_base 	_State;
1033      typedef __future_base::_Result<_Res>	_Res_type;
1034      typedef __future_base::_Ptr<_Res_type>	_Ptr_type;
1035      template<typename, typename> friend class _State::_Setter;
1036      friend _State;
1037
1038      shared_ptr<_State>                        _M_future;
1039      _Ptr_type                                 _M_storage;
1040
1041    public:
1042      promise()
1043      : _M_future(std::make_shared<_State>()),
1044	_M_storage(new _Res_type())
1045      { }
1046
1047      promise(promise&& __rhs) noexcept
1048      : _M_future(std::move(__rhs._M_future)),
1049	_M_storage(std::move(__rhs._M_storage))
1050      { }
1051
1052      template<typename _Allocator>
1053        promise(allocator_arg_t, const _Allocator& __a)
1054        : _M_future(std::allocate_shared<_State>(__a)),
1055	  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1056        { }
1057
1058      template<typename _Allocator>
1059        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1060        : _M_future(std::move(__rhs._M_future)),
1061	  _M_storage(std::move(__rhs._M_storage))
1062        { }
1063
1064      promise(const promise&) = delete;
1065
1066      ~promise()
1067      {
1068        if (static_cast<bool>(_M_future) && !_M_future.unique())
1069          _M_future->_M_break_promise(std::move(_M_storage));
1070      }
1071
1072      // Assignment
1073      promise&
1074      operator=(promise&& __rhs) noexcept
1075      {
1076        promise(std::move(__rhs)).swap(*this);
1077        return *this;
1078      }
1079
1080      promise& operator=(const promise&) = delete;
1081
1082      void
1083      swap(promise& __rhs) noexcept
1084      {
1085        _M_future.swap(__rhs._M_future);
1086        _M_storage.swap(__rhs._M_storage);
1087      }
1088
1089      // Retrieving the result
1090      future<_Res>
1091      get_future()
1092      { return future<_Res>(_M_future); }
1093
1094      // Setting the result
1095      void
1096      set_value(const _Res& __r)
1097      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1098
1099      void
1100      set_value(_Res&& __r)
1101      { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1102
1103      void
1104      set_exception(exception_ptr __p)
1105      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1106
1107      void
1108      set_value_at_thread_exit(const _Res& __r)
1109      {
1110	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1111					 _M_future);
1112      }
1113
1114      void
1115      set_value_at_thread_exit(_Res&& __r)
1116      {
1117	_M_future->_M_set_delayed_result(
1118	    _State::__setter(this, std::move(__r)), _M_future);
1119      }
1120
1121      void
1122      set_exception_at_thread_exit(exception_ptr __p)
1123      {
1124	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1125					 _M_future);
1126      }
1127    };
1128
1129  template<typename _Res>
1130    inline void
1131    swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1132    { __x.swap(__y); }
1133
1134  template<typename _Res, typename _Alloc>
1135    struct uses_allocator<promise<_Res>, _Alloc>
1136    : public true_type { };
1137
1138
1139  /// Partial specialization for promise<R&>
1140  template<typename _Res>
1141    class promise<_Res&>
1142    {
1143      typedef __future_base::_State_base	_State;
1144      typedef __future_base::_Result<_Res&>	_Res_type;
1145      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1146      template<typename, typename> friend class _State::_Setter;
1147      friend _State;
1148
1149      shared_ptr<_State>                        _M_future;
1150      _Ptr_type                                 _M_storage;
1151
1152    public:
1153      promise()
1154      : _M_future(std::make_shared<_State>()),
1155	_M_storage(new _Res_type())
1156      { }
1157
1158      promise(promise&& __rhs) noexcept
1159      : _M_future(std::move(__rhs._M_future)),
1160	_M_storage(std::move(__rhs._M_storage))
1161      { }
1162
1163      template<typename _Allocator>
1164        promise(allocator_arg_t, const _Allocator& __a)
1165        : _M_future(std::allocate_shared<_State>(__a)),
1166	  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1167        { }
1168
1169      template<typename _Allocator>
1170        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1171        : _M_future(std::move(__rhs._M_future)),
1172	  _M_storage(std::move(__rhs._M_storage))
1173        { }
1174
1175      promise(const promise&) = delete;
1176
1177      ~promise()
1178      {
1179        if (static_cast<bool>(_M_future) && !_M_future.unique())
1180          _M_future->_M_break_promise(std::move(_M_storage));
1181      }
1182
1183      // Assignment
1184      promise&
1185      operator=(promise&& __rhs) noexcept
1186      {
1187        promise(std::move(__rhs)).swap(*this);
1188        return *this;
1189      }
1190
1191      promise& operator=(const promise&) = delete;
1192
1193      void
1194      swap(promise& __rhs) noexcept
1195      {
1196        _M_future.swap(__rhs._M_future);
1197        _M_storage.swap(__rhs._M_storage);
1198      }
1199
1200      // Retrieving the result
1201      future<_Res&>
1202      get_future()
1203      { return future<_Res&>(_M_future); }
1204
1205      // Setting the result
1206      void
1207      set_value(_Res& __r)
1208      { _M_future->_M_set_result(_State::__setter(this, __r)); }
1209
1210      void
1211      set_exception(exception_ptr __p)
1212      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1213
1214      void
1215      set_value_at_thread_exit(_Res& __r)
1216      {
1217	_M_future->_M_set_delayed_result(_State::__setter(this, __r),
1218					 _M_future);
1219      }
1220
1221      void
1222      set_exception_at_thread_exit(exception_ptr __p)
1223      {
1224	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1225					 _M_future);
1226      }
1227    };
1228
1229  /// Explicit specialization for promise<void>
1230  template<>
1231    class promise<void>
1232    {
1233      typedef __future_base::_State_base	_State;
1234      typedef __future_base::_Result<void>	_Res_type;
1235      typedef __future_base::_Ptr<_Res_type> 	_Ptr_type;
1236      template<typename, typename> friend class _State::_Setter;
1237      friend _State;
1238
1239      shared_ptr<_State>                        _M_future;
1240      _Ptr_type                                 _M_storage;
1241
1242    public:
1243      promise()
1244      : _M_future(std::make_shared<_State>()),
1245	_M_storage(new _Res_type())
1246      { }
1247
1248      promise(promise&& __rhs) noexcept
1249      : _M_future(std::move(__rhs._M_future)),
1250	_M_storage(std::move(__rhs._M_storage))
1251      { }
1252
1253      template<typename _Allocator>
1254        promise(allocator_arg_t, const _Allocator& __a)
1255        : _M_future(std::allocate_shared<_State>(__a)),
1256	  _M_storage(__future_base::_S_allocate_result<void>(__a))
1257        { }
1258
1259      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1260      // 2095.  missing constructors needed for uses-allocator construction
1261      template<typename _Allocator>
1262        promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1263        : _M_future(std::move(__rhs._M_future)),
1264	  _M_storage(std::move(__rhs._M_storage))
1265        { }
1266
1267      promise(const promise&) = delete;
1268
1269      ~promise()
1270      {
1271        if (static_cast<bool>(_M_future) && !_M_future.unique())
1272          _M_future->_M_break_promise(std::move(_M_storage));
1273      }
1274
1275      // Assignment
1276      promise&
1277      operator=(promise&& __rhs) noexcept
1278      {
1279        promise(std::move(__rhs)).swap(*this);
1280        return *this;
1281      }
1282
1283      promise& operator=(const promise&) = delete;
1284
1285      void
1286      swap(promise& __rhs) noexcept
1287      {
1288        _M_future.swap(__rhs._M_future);
1289        _M_storage.swap(__rhs._M_storage);
1290      }
1291
1292      // Retrieving the result
1293      future<void>
1294      get_future()
1295      { return future<void>(_M_future); }
1296
1297      // Setting the result
1298      void
1299      set_value()
1300      { _M_future->_M_set_result(_State::__setter(this)); }
1301
1302      void
1303      set_exception(exception_ptr __p)
1304      { _M_future->_M_set_result(_State::__setter(__p, this)); }
1305
1306      void
1307      set_value_at_thread_exit()
1308      { _M_future->_M_set_delayed_result(_State::__setter(this), _M_future); }
1309
1310      void
1311      set_exception_at_thread_exit(exception_ptr __p)
1312      {
1313	_M_future->_M_set_delayed_result(_State::__setter(__p, this),
1314					 _M_future);
1315      }
1316    };
1317
1318  template<typename _Ptr_type, typename _Fn, typename _Res>
1319    struct __future_base::_Task_setter
1320    {
1321      // Invoke the function and provide the result to the caller.
1322      _Ptr_type operator()() const
1323      {
1324	__try
1325	  {
1326	    (*_M_result)->_M_set((*_M_fn)());
1327	  }
1328	__catch(const __cxxabiv1::__forced_unwind&)
1329	  {
1330	    __throw_exception_again; // will cause broken_promise
1331	  }
1332	__catch(...)
1333	  {
1334	    (*_M_result)->_M_error = current_exception();
1335	  }
1336	return std::move(*_M_result);
1337      }
1338      _Ptr_type*	_M_result;
1339      _Fn*		_M_fn;
1340    };
1341
1342  template<typename _Ptr_type, typename _Fn>
1343    struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1344    {
1345      _Ptr_type operator()() const
1346      {
1347	__try
1348	  {
1349	    (*_M_fn)();
1350	  }
1351	__catch(const __cxxabiv1::__forced_unwind&)
1352	  {
1353	    __throw_exception_again; // will cause broken_promise
1354	  }
1355	__catch(...)
1356	  {
1357	    (*_M_result)->_M_error = current_exception();
1358	  }
1359	return std::move(*_M_result);
1360      }
1361      _Ptr_type*	_M_result;
1362      _Fn*		_M_fn;
1363    };
1364
1365  // Holds storage for a packaged_task's result.
1366  template<typename _Res, typename... _Args>
1367    struct __future_base::_Task_state_base<_Res(_Args...)>
1368    : __future_base::_State_base
1369    {
1370      typedef _Res _Res_type;
1371
1372      template<typename _Alloc>
1373	_Task_state_base(const _Alloc& __a)
1374	: _M_result(_S_allocate_result<_Res>(__a))
1375	{ }
1376
1377      // Invoke the stored task and make the state ready.
1378      virtual void
1379      _M_run(_Args&&... __args) = 0;
1380
1381      // Invoke the stored task and make the state ready at thread exit.
1382      virtual void
1383      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1384
1385      virtual shared_ptr<_Task_state_base>
1386      _M_reset() = 0;
1387
1388      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1389      _Ptr_type _M_result;
1390    };
1391
1392  // Holds a packaged_task's stored task.
1393  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1394    struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1395    : __future_base::_Task_state_base<_Res(_Args...)>
1396    {
1397      template<typename _Fn2>
1398	_Task_state(_Fn2&& __fn, const _Alloc& __a)
1399	: _Task_state_base<_Res(_Args...)>(__a),
1400	  _M_impl(std::forward<_Fn2>(__fn), __a)
1401	{ }
1402
1403    private:
1404      virtual void
1405      _M_run(_Args&&... __args)
1406      {
1407	// bound arguments decay so wrap lvalue references
1408	auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1409	    _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1410	this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1411      }
1412
1413      virtual void
1414      _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1415      {
1416	// bound arguments decay so wrap lvalue references
1417	auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1418	    _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1419	this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1420				    std::move(__self));
1421      }
1422
1423      virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1424      _M_reset();
1425
1426      template<typename _Tp>
1427	static reference_wrapper<_Tp>
1428	_S_maybe_wrap_ref(_Tp& __t)
1429	{ return std::ref(__t); }
1430
1431      template<typename _Tp>
1432	static
1433	typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp>::type&&
1434	_S_maybe_wrap_ref(_Tp&& __t)
1435	{ return std::forward<_Tp>(__t); }
1436
1437      struct _Impl : _Alloc
1438      {
1439	template<typename _Fn2>
1440	  _Impl(_Fn2&& __fn, const _Alloc& __a)
1441	  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1442	_Fn _M_fn;
1443      } _M_impl;
1444    };
1445
1446  template<typename _Signature, typename _Fn, typename _Alloc>
1447    static shared_ptr<__future_base::_Task_state_base<_Signature>>
1448    __create_task_state(_Fn&& __fn, const _Alloc& __a)
1449    {
1450      typedef typename decay<_Fn>::type _Fn2;
1451      typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1452      return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1453    }
1454
1455  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1456    shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1457    __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1458    {
1459      return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1460						 static_cast<_Alloc&>(_M_impl));
1461    }
1462
1463  template<typename _Task, typename _Fn, bool
1464	   = is_same<_Task, typename decay<_Fn>::type>::value>
1465    struct __constrain_pkgdtask
1466    { typedef void __type; };
1467
1468  template<typename _Task, typename _Fn>
1469    struct __constrain_pkgdtask<_Task, _Fn, true>
1470    { };
1471
1472  /// packaged_task
1473  template<typename _Res, typename... _ArgTypes>
1474    class packaged_task<_Res(_ArgTypes...)>
1475    {
1476      typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1477      shared_ptr<_State_type>                   _M_state;
1478
1479    public:
1480      // Construction and destruction
1481      packaged_task() noexcept { }
1482
1483      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1484      // 2095.  missing constructors needed for uses-allocator construction
1485      template<typename _Allocator>
1486	packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1487	{ }
1488
1489      template<typename _Fn, typename = typename
1490	       __constrain_pkgdtask<packaged_task, _Fn>::__type>
1491	explicit
1492	packaged_task(_Fn&& __fn)
1493	: packaged_task(allocator_arg, std::allocator<int>(),
1494			std::forward<_Fn>(__fn))
1495	{ }
1496
1497      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1498      // 2097.  packaged_task constructors should be constrained
1499      // 2407. [this constructor should not be] explicit
1500      template<typename _Fn, typename _Alloc, typename = typename
1501	       __constrain_pkgdtask<packaged_task, _Fn>::__type>
1502	packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1503	: _M_state(__create_task_state<_Res(_ArgTypes...)>(
1504		    std::forward<_Fn>(__fn), __a))
1505	{ }
1506
1507      ~packaged_task()
1508      {
1509        if (static_cast<bool>(_M_state) && !_M_state.unique())
1510	  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1511      }
1512
1513      // No copy
1514      packaged_task(const packaged_task&) = delete;
1515      packaged_task& operator=(const packaged_task&) = delete;
1516
1517      template<typename _Allocator>
1518	packaged_task(allocator_arg_t, const _Allocator&,
1519		      const packaged_task&) = delete;
1520
1521      // Move support
1522      packaged_task(packaged_task&& __other) noexcept
1523      { this->swap(__other); }
1524
1525      template<typename _Allocator>
1526	packaged_task(allocator_arg_t, const _Allocator&,
1527		      packaged_task&& __other) noexcept
1528	{ this->swap(__other); }
1529
1530      packaged_task& operator=(packaged_task&& __other) noexcept
1531      {
1532	packaged_task(std::move(__other)).swap(*this);
1533	return *this;
1534      }
1535
1536      void
1537      swap(packaged_task& __other) noexcept
1538      { _M_state.swap(__other._M_state); }
1539
1540      bool
1541      valid() const noexcept
1542      { return static_cast<bool>(_M_state); }
1543
1544      // Result retrieval
1545      future<_Res>
1546      get_future()
1547      { return future<_Res>(_M_state); }
1548
1549      // Execution
1550      void
1551      operator()(_ArgTypes... __args)
1552      {
1553	__future_base::_State_base::_S_check(_M_state);
1554	_M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1555      }
1556
1557      void
1558      make_ready_at_thread_exit(_ArgTypes... __args)
1559      {
1560	__future_base::_State_base::_S_check(_M_state);
1561	_M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1562      }
1563
1564      void
1565      reset()
1566      {
1567	__future_base::_State_base::_S_check(_M_state);
1568	packaged_task __tmp;
1569	__tmp._M_state = _M_state;
1570	_M_state = _M_state->_M_reset();
1571      }
1572    };
1573
1574  /// swap
1575  template<typename _Res, typename... _ArgTypes>
1576    inline void
1577    swap(packaged_task<_Res(_ArgTypes...)>& __x,
1578	 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1579    { __x.swap(__y); }
1580
1581  template<typename _Res, typename _Alloc>
1582    struct uses_allocator<packaged_task<_Res>, _Alloc>
1583    : public true_type { };
1584
1585
1586  // Shared state created by std::async().
1587  // Holds a deferred function and storage for its result.
1588  template<typename _BoundFn, typename _Res>
1589    class __future_base::_Deferred_state final
1590    : public __future_base::_State_base
1591    {
1592    public:
1593      explicit
1594      _Deferred_state(_BoundFn&& __fn)
1595      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1596      { }
1597
1598    private:
1599      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1600      _Ptr_type _M_result;
1601      _BoundFn _M_fn;
1602
1603      // Run the deferred function.
1604      virtual void
1605      _M_complete_async()
1606      {
1607	// Multiple threads can call a waiting function on the future and
1608	// reach this point at the same time. The call_once in _M_set_result
1609	// ensures only the first one run the deferred function, stores the
1610	// result in _M_result, swaps that with the base _M_result and makes
1611	// the state ready. Tell _M_set_result to ignore failure so all later
1612	// calls do nothing.
1613        _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1614      }
1615
1616      // Caller should check whether the state is ready first, because this
1617      // function will return true even after the deferred function has run.
1618      virtual bool _M_is_deferred_future() const { return true; }
1619    };
1620
1621  // Common functionality hoisted out of the _Async_state_impl template.
1622  class __future_base::_Async_state_commonV2
1623    : public __future_base::_State_base
1624  {
1625  protected:
1626    ~_Async_state_commonV2() = default;
1627
1628    // Make waiting functions block until the thread completes, as if joined.
1629    //
1630    // This function is used by wait() to satisfy the first requirement below
1631    // and by wait_for() / wait_until() to satisfy the second.
1632    //
1633    // [futures.async]:
1634    //
1635    // — a call to a waiting function on an asynchronous return object that
1636    // shares the shared state created by this async call shall block until
1637    // the associated thread has completed, as if joined, or else time out.
1638    //
1639    // — the associated thread completion synchronizes with the return from
1640    // the first function that successfully detects the ready status of the
1641    // shared state or with the return from the last function that releases
1642    // the shared state, whichever happens first.
1643    virtual void _M_complete_async() { _M_join(); }
1644
1645    void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1646
1647    thread _M_thread;
1648    once_flag _M_once;
1649  };
1650
1651  // Shared state created by std::async().
1652  // Starts a new thread that runs a function and makes the shared state ready.
1653  template<typename _BoundFn, typename _Res>
1654    class __future_base::_Async_state_impl final
1655    : public __future_base::_Async_state_commonV2
1656    {
1657    public:
1658      explicit
1659      _Async_state_impl(_BoundFn&& __fn)
1660      : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1661      {
1662	_M_thread = std::thread{ [this] {
1663	    __try
1664	      {
1665		_M_set_result(_S_task_setter(_M_result, _M_fn));
1666	      }
1667	    __catch (const __cxxabiv1::__forced_unwind&)
1668	      {
1669		// make the shared state ready on thread cancellation
1670		if (static_cast<bool>(_M_result))
1671		  this->_M_break_promise(std::move(_M_result));
1672		__throw_exception_again;
1673	      }
1674        } };
1675      }
1676
1677      // Must not destroy _M_result and _M_fn until the thread finishes.
1678      // Call join() directly rather than through _M_join() because no other
1679      // thread can be referring to this state if it is being destroyed.
1680      ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1681
1682    private:
1683      typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1684      _Ptr_type _M_result;
1685      _BoundFn _M_fn;
1686    };
1687
1688  template<typename _BoundFn>
1689    inline std::shared_ptr<__future_base::_State_base>
1690    __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1691    {
1692      typedef typename remove_reference<_BoundFn>::type __fn_type;
1693      typedef _Deferred_state<__fn_type> __state_type;
1694      return std::make_shared<__state_type>(std::move(__fn));
1695    }
1696
1697  template<typename _BoundFn>
1698    inline std::shared_ptr<__future_base::_State_base>
1699    __future_base::_S_make_async_state(_BoundFn&& __fn)
1700    {
1701      typedef typename remove_reference<_BoundFn>::type __fn_type;
1702      typedef _Async_state_impl<__fn_type> __state_type;
1703      return std::make_shared<__state_type>(std::move(__fn));
1704    }
1705
1706
1707  /// async
1708  template<typename _Fn, typename... _Args>
1709    future<__async_result_of<_Fn, _Args...>>
1710    async(launch __policy, _Fn&& __fn, _Args&&... __args)
1711    {
1712      std::shared_ptr<__future_base::_State_base> __state;
1713      if ((__policy & launch::async) == launch::async)
1714	{
1715	  __try
1716	    {
1717	      __state = __future_base::_S_make_async_state(std::__bind_simple(
1718		  std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1719	    }
1720#if __cpp_exceptions
1721	  catch(const system_error& __e)
1722	    {
1723	      if (__e.code() != errc::resource_unavailable_try_again
1724		  || (__policy & launch::deferred) != launch::deferred)
1725		throw;
1726	    }
1727#endif
1728	}
1729      if (!__state)
1730	{
1731	  __state = __future_base::_S_make_deferred_state(std::__bind_simple(
1732              std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1733	}
1734      return future<__async_result_of<_Fn, _Args...>>(__state);
1735    }
1736
1737  /// async, potential overload
1738  template<typename _Fn, typename... _Args>
1739    inline future<__async_result_of<_Fn, _Args...>>
1740    async(_Fn&& __fn, _Args&&... __args)
1741    {
1742      return std::async(launch::async|launch::deferred,
1743			std::forward<_Fn>(__fn),
1744			std::forward<_Args>(__args)...);
1745    }
1746
1747#endif // _GLIBCXX_ASYNC_ABI_COMPAT
1748#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
1749       // && ATOMIC_INT_LOCK_FREE
1750
1751  // @} group futures
1752_GLIBCXX_END_NAMESPACE_VERSION
1753} // namespace
1754
1755#endif // C++11
1756
1757#endif // _GLIBCXX_FUTURE
1758