1 // Special functions -*- C++ -*-
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/poly_laguerre.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29 
30 //
31 // ISO C++ 14882 TR1: 5.2  Special functions
32 //
33 
34 // Written by Edward Smith-Rowland based on:
35 //   (1) Handbook of Mathematical Functions,
36 //       Ed. Milton Abramowitz and Irene A. Stegun,
37 //       Dover Publications,
38 //       Section 13, pp. 509-510, Section 22 pp. 773-802
39 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40 
41 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
42 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
43 
44 namespace std _GLIBCXX_VISIBILITY(default)
45 {
46 #if __STDCPP_WANT_MATH_SPEC_FUNCS__
47 # define _GLIBCXX_MATH_NS ::std
48 #elif defined(_GLIBCXX_TR1_CMATH)
49 namespace tr1
50 {
51 # define _GLIBCXX_MATH_NS ::std::tr1
52 #else
53 # error do not include this header directly, use <cmath> or <tr1/cmath>
54 #endif
55   // [5.2] Special functions
56 
57   // Implementation-space details.
58   namespace __detail
59   {
60   _GLIBCXX_BEGIN_NAMESPACE_VERSION
61 
62     /**
63      *   @brief This routine returns the associated Laguerre polynomial
64      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65      *   Abramowitz & Stegun, 13.5.21
66      *
67      *   @param __n The order of the Laguerre function.
68      *   @param __alpha The degree of the Laguerre function.
69      *   @param __x The argument of the Laguerre function.
70      *   @return The value of the Laguerre function of order n,
71      *           degree @f$ \alpha @f$, and argument x.
72      *
73      *  This is from the GNU Scientific Library.
74      */
75     template<typename _Tpa, typename _Tp>
76     _Tp
__poly_laguerre_large_n(unsigned __n,_Tpa __alpha1,_Tp __x)77     __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
78     {
79       const _Tp __a = -_Tp(__n);
80       const _Tp __b = _Tp(__alpha1) + _Tp(1);
81       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
82       const _Tp __cos2th = __x / __eta;
83       const _Tp __sin2th = _Tp(1) - __cos2th;
84       const _Tp __th = std::acos(std::sqrt(__cos2th));
85       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
86                         * __numeric_constants<_Tp>::__pi_2()
87                         * __eta * __eta * __cos2th * __sin2th;
88 
89 #if _GLIBCXX_USE_C99_MATH_TR1
90       const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b);
91       const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
92 #else
93       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
94       const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
95 #endif
96 
97       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
98                       * std::log(_Tp(0.25L) * __x * __eta);
99       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
100       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
101                       + __pre_term1 - __pre_term2;
102       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
103       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
104                               * (_Tp(2) * __th
105                                - std::sin(_Tp(2) * __th))
106                                + __numeric_constants<_Tp>::__pi_4());
107       _Tp __ser = __ser_term1 + __ser_term2;
108 
109       return std::exp(__lnpre) * __ser;
110     }
111 
112 
113     /**
114      *  @brief  Evaluate the polynomial based on the confluent hypergeometric
115      *          function in a safe way, with no restriction on the arguments.
116      *
117      *   The associated Laguerre function is defined by
118      *   @f[
119      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
120      *                       _1F_1(-n; \alpha + 1; x)
121      *   @f]
122      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
123      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
124      *
125      *  This function assumes x != 0.
126      *
127      *  This is from the GNU Scientific Library.
128      */
129     template<typename _Tpa, typename _Tp>
130     _Tp
__poly_laguerre_hyperg(unsigned int __n,_Tpa __alpha1,_Tp __x)131     __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
132     {
133       const _Tp __b = _Tp(__alpha1) + _Tp(1);
134       const _Tp __mx = -__x;
135       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
136                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
137       //  Get |x|^n/n!
138       _Tp __tc = _Tp(1);
139       const _Tp __ax = std::abs(__x);
140       for (unsigned int __k = 1; __k <= __n; ++__k)
141         __tc *= (__ax / __k);
142 
143       _Tp __term = __tc * __tc_sgn;
144       _Tp __sum = __term;
145       for (int __k = int(__n) - 1; __k >= 0; --__k)
146         {
147           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
148                   * _Tp(__k + 1) / __mx;
149           __sum += __term;
150         }
151 
152       return __sum;
153     }
154 
155 
156     /**
157      *   @brief This routine returns the associated Laguerre polynomial
158      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159      *          by recursion.
160      *
161      *   The associated Laguerre function is defined by
162      *   @f[
163      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
164      *                       _1F_1(-n; \alpha + 1; x)
165      *   @f]
166      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
167      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
168      *
169      *   The associated Laguerre polynomial is defined for integral
170      *   @f$ \alpha = m @f$ by:
171      *   @f[
172      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
173      *   @f]
174      *   where the Laguerre polynomial is defined by:
175      *   @f[
176      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
177      *   @f]
178      *
179      *   @param __n The order of the Laguerre function.
180      *   @param __alpha The degree of the Laguerre function.
181      *   @param __x The argument of the Laguerre function.
182      *   @return The value of the Laguerre function of order n,
183      *           degree @f$ \alpha @f$, and argument x.
184      */
185     template<typename _Tpa, typename _Tp>
186     _Tp
__poly_laguerre_recursion(unsigned int __n,_Tpa __alpha1,_Tp __x)187     __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
188     {
189       //   Compute l_0.
190       _Tp __l_0 = _Tp(1);
191       if  (__n == 0)
192         return __l_0;
193 
194       //  Compute l_1^alpha.
195       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
196       if  (__n == 1)
197         return __l_1;
198 
199       //  Compute l_n^alpha by recursion on n.
200       _Tp __l_n2 = __l_0;
201       _Tp __l_n1 = __l_1;
202       _Tp __l_n = _Tp(0);
203       for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
204         {
205             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
206                   * __l_n1 / _Tp(__nn)
207                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
208             __l_n2 = __l_n1;
209             __l_n1 = __l_n;
210         }
211 
212       return __l_n;
213     }
214 
215 
216     /**
217      *   @brief This routine returns the associated Laguerre polynomial
218      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
219      *
220      *   The associated Laguerre function is defined by
221      *   @f[
222      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
223      *                       _1F_1(-n; \alpha + 1; x)
224      *   @f]
225      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
226      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
227      *
228      *   The associated Laguerre polynomial is defined for integral
229      *   @f$ \alpha = m @f$ by:
230      *   @f[
231      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
232      *   @f]
233      *   where the Laguerre polynomial is defined by:
234      *   @f[
235      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
236      *   @f]
237      *
238      *   @param __n The order of the Laguerre function.
239      *   @param __alpha The degree of the Laguerre function.
240      *   @param __x The argument of the Laguerre function.
241      *   @return The value of the Laguerre function of order n,
242      *           degree @f$ \alpha @f$, and argument x.
243      */
244     template<typename _Tpa, typename _Tp>
245     _Tp
__poly_laguerre(unsigned int __n,_Tpa __alpha1,_Tp __x)246     __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
247     {
248       if (__x < _Tp(0))
249         std::__throw_domain_error(__N("Negative argument "
250                                       "in __poly_laguerre."));
251       //  Return NaN on NaN input.
252       else if (__isnan(__x))
253         return std::numeric_limits<_Tp>::quiet_NaN();
254       else if (__n == 0)
255         return _Tp(1);
256       else if (__n == 1)
257         return _Tp(1) + _Tp(__alpha1) - __x;
258       else if (__x == _Tp(0))
259         {
260           _Tp __prod = _Tp(__alpha1) + _Tp(1);
261           for (unsigned int __k = 2; __k <= __n; ++__k)
262             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
263           return __prod;
264         }
265       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
266             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
267         return __poly_laguerre_large_n(__n, __alpha1, __x);
268       else if (_Tp(__alpha1) >= _Tp(0)
269            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
270         return __poly_laguerre_recursion(__n, __alpha1, __x);
271       else
272         return __poly_laguerre_hyperg(__n, __alpha1, __x);
273     }
274 
275 
276     /**
277      *   @brief This routine returns the associated Laguerre polynomial
278      *          of order n, degree m: @f$ L_n^m(x) @f$.
279      *
280      *   The associated Laguerre polynomial is defined for integral
281      *   @f$ \alpha = m @f$ by:
282      *   @f[
283      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
284      *   @f]
285      *   where the Laguerre polynomial is defined by:
286      *   @f[
287      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
288      *   @f]
289      *
290      *   @param __n The order of the Laguerre polynomial.
291      *   @param __m The degree of the Laguerre polynomial.
292      *   @param __x The argument of the Laguerre polynomial.
293      *   @return The value of the associated Laguerre polynomial of order n,
294      *           degree m, and argument x.
295      */
296     template<typename _Tp>
297     inline _Tp
__assoc_laguerre(unsigned int __n,unsigned int __m,_Tp __x)298     __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
299     { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
300 
301 
302     /**
303      *   @brief This routine returns the Laguerre polynomial
304      *          of order n: @f$ L_n(x) @f$.
305      *
306      *   The Laguerre polynomial is defined by:
307      *   @f[
308      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
309      *   @f]
310      *
311      *   @param __n The order of the Laguerre polynomial.
312      *   @param __x The argument of the Laguerre polynomial.
313      *   @return The value of the Laguerre polynomial of order n
314      *           and argument x.
315      */
316     template<typename _Tp>
317     inline _Tp
__laguerre(unsigned int __n,_Tp __x)318     __laguerre(unsigned int __n, _Tp __x)
319     { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
320 
321   _GLIBCXX_END_NAMESPACE_VERSION
322   } // namespace __detail
323 #undef _GLIBCXX_MATH_NS
324 #if ! __STDCPP_WANT_MATH_SPEC_FUNCS__ && defined(_GLIBCXX_TR1_CMATH)
325 } // namespace tr1
326 #endif
327 }
328 
329 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
330