1 // Special functions -*- C++ -*- 2 3 // Copyright (C) 2006-2016 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 // 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 // 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file tr1/poly_laguerre.tcc 26 * This is an internal header file, included by other library headers. 27 * Do not attempt to use it directly. @headername{tr1/cmath} 28 */ 29 30 // 31 // ISO C++ 14882 TR1: 5.2 Special functions 32 // 33 34 // Written by Edward Smith-Rowland based on: 35 // (1) Handbook of Mathematical Functions, 36 // Ed. Milton Abramowitz and Irene A. Stegun, 37 // Dover Publications, 38 // Section 13, pp. 509-510, Section 22 pp. 773-802 39 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 40 41 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC 42 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 43 44 namespace std _GLIBCXX_VISIBILITY(default) 45 { 46 #if __STDCPP_WANT_MATH_SPEC_FUNCS__ 47 # define _GLIBCXX_MATH_NS ::std 48 #elif defined(_GLIBCXX_TR1_CMATH) 49 namespace tr1 50 { 51 # define _GLIBCXX_MATH_NS ::std::tr1 52 #else 53 # error do not include this header directly, use <cmath> or <tr1/cmath> 54 #endif 55 // [5.2] Special functions 56 57 // Implementation-space details. 58 namespace __detail 59 { 60 _GLIBCXX_BEGIN_NAMESPACE_VERSION 61 62 /** 63 * @brief This routine returns the associated Laguerre polynomial 64 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n. 65 * Abramowitz & Stegun, 13.5.21 66 * 67 * @param __n The order of the Laguerre function. 68 * @param __alpha The degree of the Laguerre function. 69 * @param __x The argument of the Laguerre function. 70 * @return The value of the Laguerre function of order n, 71 * degree @f$ \alpha @f$, and argument x. 72 * 73 * This is from the GNU Scientific Library. 74 */ 75 template<typename _Tpa, typename _Tp> 76 _Tp __poly_laguerre_large_n(unsigned __n,_Tpa __alpha1,_Tp __x)77 __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) 78 { 79 const _Tp __a = -_Tp(__n); 80 const _Tp __b = _Tp(__alpha1) + _Tp(1); 81 const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; 82 const _Tp __cos2th = __x / __eta; 83 const _Tp __sin2th = _Tp(1) - __cos2th; 84 const _Tp __th = std::acos(std::sqrt(__cos2th)); 85 const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() 86 * __numeric_constants<_Tp>::__pi_2() 87 * __eta * __eta * __cos2th * __sin2th; 88 89 #if _GLIBCXX_USE_C99_MATH_TR1 90 const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b); 91 const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); 92 #else 93 const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); 94 const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); 95 #endif 96 97 _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) 98 * std::log(_Tp(0.25L) * __x * __eta); 99 _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); 100 _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x 101 + __pre_term1 - __pre_term2; 102 _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); 103 _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta 104 * (_Tp(2) * __th 105 - std::sin(_Tp(2) * __th)) 106 + __numeric_constants<_Tp>::__pi_4()); 107 _Tp __ser = __ser_term1 + __ser_term2; 108 109 return std::exp(__lnpre) * __ser; 110 } 111 112 113 /** 114 * @brief Evaluate the polynomial based on the confluent hypergeometric 115 * function in a safe way, with no restriction on the arguments. 116 * 117 * The associated Laguerre function is defined by 118 * @f[ 119 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 120 * _1F_1(-n; \alpha + 1; x) 121 * @f] 122 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 123 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 124 * 125 * This function assumes x != 0. 126 * 127 * This is from the GNU Scientific Library. 128 */ 129 template<typename _Tpa, typename _Tp> 130 _Tp __poly_laguerre_hyperg(unsigned int __n,_Tpa __alpha1,_Tp __x)131 __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) 132 { 133 const _Tp __b = _Tp(__alpha1) + _Tp(1); 134 const _Tp __mx = -__x; 135 const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) 136 : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); 137 // Get |x|^n/n! 138 _Tp __tc = _Tp(1); 139 const _Tp __ax = std::abs(__x); 140 for (unsigned int __k = 1; __k <= __n; ++__k) 141 __tc *= (__ax / __k); 142 143 _Tp __term = __tc * __tc_sgn; 144 _Tp __sum = __term; 145 for (int __k = int(__n) - 1; __k >= 0; --__k) 146 { 147 __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) 148 * _Tp(__k + 1) / __mx; 149 __sum += __term; 150 } 151 152 return __sum; 153 } 154 155 156 /** 157 * @brief This routine returns the associated Laguerre polynomial 158 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ 159 * by recursion. 160 * 161 * The associated Laguerre function is defined by 162 * @f[ 163 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 164 * _1F_1(-n; \alpha + 1; x) 165 * @f] 166 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 167 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 168 * 169 * The associated Laguerre polynomial is defined for integral 170 * @f$ \alpha = m @f$ by: 171 * @f[ 172 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 173 * @f] 174 * where the Laguerre polynomial is defined by: 175 * @f[ 176 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 177 * @f] 178 * 179 * @param __n The order of the Laguerre function. 180 * @param __alpha The degree of the Laguerre function. 181 * @param __x The argument of the Laguerre function. 182 * @return The value of the Laguerre function of order n, 183 * degree @f$ \alpha @f$, and argument x. 184 */ 185 template<typename _Tpa, typename _Tp> 186 _Tp __poly_laguerre_recursion(unsigned int __n,_Tpa __alpha1,_Tp __x)187 __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) 188 { 189 // Compute l_0. 190 _Tp __l_0 = _Tp(1); 191 if (__n == 0) 192 return __l_0; 193 194 // Compute l_1^alpha. 195 _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); 196 if (__n == 1) 197 return __l_1; 198 199 // Compute l_n^alpha by recursion on n. 200 _Tp __l_n2 = __l_0; 201 _Tp __l_n1 = __l_1; 202 _Tp __l_n = _Tp(0); 203 for (unsigned int __nn = 2; __nn <= __n; ++__nn) 204 { 205 __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) 206 * __l_n1 / _Tp(__nn) 207 - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); 208 __l_n2 = __l_n1; 209 __l_n1 = __l_n; 210 } 211 212 return __l_n; 213 } 214 215 216 /** 217 * @brief This routine returns the associated Laguerre polynomial 218 * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. 219 * 220 * The associated Laguerre function is defined by 221 * @f[ 222 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 223 * _1F_1(-n; \alpha + 1; x) 224 * @f] 225 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 226 * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 227 * 228 * The associated Laguerre polynomial is defined for integral 229 * @f$ \alpha = m @f$ by: 230 * @f[ 231 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 232 * @f] 233 * where the Laguerre polynomial is defined by: 234 * @f[ 235 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 236 * @f] 237 * 238 * @param __n The order of the Laguerre function. 239 * @param __alpha The degree of the Laguerre function. 240 * @param __x The argument of the Laguerre function. 241 * @return The value of the Laguerre function of order n, 242 * degree @f$ \alpha @f$, and argument x. 243 */ 244 template<typename _Tpa, typename _Tp> 245 _Tp __poly_laguerre(unsigned int __n,_Tpa __alpha1,_Tp __x)246 __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) 247 { 248 if (__x < _Tp(0)) 249 std::__throw_domain_error(__N("Negative argument " 250 "in __poly_laguerre.")); 251 // Return NaN on NaN input. 252 else if (__isnan(__x)) 253 return std::numeric_limits<_Tp>::quiet_NaN(); 254 else if (__n == 0) 255 return _Tp(1); 256 else if (__n == 1) 257 return _Tp(1) + _Tp(__alpha1) - __x; 258 else if (__x == _Tp(0)) 259 { 260 _Tp __prod = _Tp(__alpha1) + _Tp(1); 261 for (unsigned int __k = 2; __k <= __n; ++__k) 262 __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); 263 return __prod; 264 } 265 else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) 266 && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) 267 return __poly_laguerre_large_n(__n, __alpha1, __x); 268 else if (_Tp(__alpha1) >= _Tp(0) 269 || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) 270 return __poly_laguerre_recursion(__n, __alpha1, __x); 271 else 272 return __poly_laguerre_hyperg(__n, __alpha1, __x); 273 } 274 275 276 /** 277 * @brief This routine returns the associated Laguerre polynomial 278 * of order n, degree m: @f$ L_n^m(x) @f$. 279 * 280 * The associated Laguerre polynomial is defined for integral 281 * @f$ \alpha = m @f$ by: 282 * @f[ 283 * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 284 * @f] 285 * where the Laguerre polynomial is defined by: 286 * @f[ 287 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 288 * @f] 289 * 290 * @param __n The order of the Laguerre polynomial. 291 * @param __m The degree of the Laguerre polynomial. 292 * @param __x The argument of the Laguerre polynomial. 293 * @return The value of the associated Laguerre polynomial of order n, 294 * degree m, and argument x. 295 */ 296 template<typename _Tp> 297 inline _Tp __assoc_laguerre(unsigned int __n,unsigned int __m,_Tp __x)298 __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) 299 { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } 300 301 302 /** 303 * @brief This routine returns the Laguerre polynomial 304 * of order n: @f$ L_n(x) @f$. 305 * 306 * The Laguerre polynomial is defined by: 307 * @f[ 308 * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 309 * @f] 310 * 311 * @param __n The order of the Laguerre polynomial. 312 * @param __x The argument of the Laguerre polynomial. 313 * @return The value of the Laguerre polynomial of order n 314 * and argument x. 315 */ 316 template<typename _Tp> 317 inline _Tp __laguerre(unsigned int __n,_Tp __x)318 __laguerre(unsigned int __n, _Tp __x) 319 { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } 320 321 _GLIBCXX_END_NAMESPACE_VERSION 322 } // namespace __detail 323 #undef _GLIBCXX_MATH_NS 324 #if ! __STDCPP_WANT_MATH_SPEC_FUNCS__ && defined(_GLIBCXX_TR1_CMATH) 325 } // namespace tr1 326 #endif 327 } 328 329 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC 330