1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  *  @file bits/regex_executor.tcc
27  *  This is an internal header file, included by other library headers.
28  *  Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37   template<typename _BiIter, typename _Alloc, typename _TraitsT,
38 	   bool __dfs_mode>
39     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_search()40     _M_search()
41     {
42       if (_M_search_from_first())
43 	return true;
44       if (_M_flags & regex_constants::match_continuous)
45 	return false;
46       _M_flags |= regex_constants::match_prev_avail;
47       while (_M_begin != _M_end)
48 	{
49 	  ++_M_begin;
50 	  if (_M_search_from_first())
51 	    return true;
52 	}
53       return false;
54     }
55 
56   // The _M_main function operates in different modes, DFS mode or BFS mode,
57   // indicated by template parameter __dfs_mode, and dispatches to one of the
58   // _M_main_dispatch overloads.
59   //
60   // ------------------------------------------------------------
61   //
62   // DFS mode:
63   //
64   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65   // string.
66   // At the very beginning the executor stands in the start state, then it
67   // tries every possible state transition in current state recursively. Some
68   // state transitions consume input string, say, a single-char-matcher or a
69   // back-reference matcher; some don't, like assertion or other anchor nodes.
70   // When the input is exhausted and/or the current state is an accepting
71   // state, the whole executor returns true.
72   //
73   // TODO: This approach is exponentially slow for certain input.
74   //       Try to compile the NFA to a DFA.
75   //
76   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77   // Space complexity: \theta(match_results.size() + match_length)
78   //
79   template<typename _BiIter, typename _Alloc, typename _TraitsT,
80 	   bool __dfs_mode>
81     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_main_dispatch(_Match_mode __match_mode,__dfs)82     _M_main_dispatch(_Match_mode __match_mode, __dfs)
83     {
84       _M_has_sol = false;
85       *_M_states._M_get_sol_pos() = _BiIter();
86       _M_cur_results = _M_results;
87       _M_dfs(__match_mode, _M_states._M_start);
88       return _M_has_sol;
89     }
90 
91   // ------------------------------------------------------------
92   //
93   // BFS mode:
94   //
95   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96   // explained this algorithm clearly.
97   //
98   // It first computes epsilon closure (states that can be achieved without
99   // consuming characters) for every state that's still matching,
100   // using the same DFS algorithm, but doesn't re-enter states (using
101   // _M_states._M_visited to check), nor follow _S_opcode_match.
102   //
103   // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104   // as the start state.
105   //
106   // It significantly reduces potential duplicate states, so has a better
107   // upper bound; but it requires more overhead.
108   //
109   // Time complexity: \Omega(match_length * match_results.size())
110   //                  O(match_length * _M_nfa.size() * match_results.size())
111   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112   //                   O(_M_nfa.size() * match_results.size())
113   template<typename _BiIter, typename _Alloc, typename _TraitsT,
114 	   bool __dfs_mode>
115     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_main_dispatch(_Match_mode __match_mode,__bfs)116     _M_main_dispatch(_Match_mode __match_mode, __bfs)
117     {
118       _M_states._M_queue(_M_states._M_start, _M_results);
119       bool __ret = false;
120       while (1)
121 	{
122 	  _M_has_sol = false;
123 	  if (_M_states._M_match_queue.empty())
124 	    break;
125 	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
126 	  auto __old_queue = std::move(_M_states._M_match_queue);
127 	  for (auto& __task : __old_queue)
128 	    {
129 	      _M_cur_results = std::move(__task.second);
130 	      _M_dfs(__match_mode, __task.first);
131 	    }
132 	  if (__match_mode == _Match_mode::_Prefix)
133 	    __ret |= _M_has_sol;
134 	  if (_M_current == _M_end)
135 	    break;
136 	  ++_M_current;
137 	}
138       if (__match_mode == _Match_mode::_Exact)
139 	__ret = _M_has_sol;
140       _M_states._M_match_queue.clear();
141       return __ret;
142     }
143 
144   // Return whether now match the given sub-NFA.
145   template<typename _BiIter, typename _Alloc, typename _TraitsT,
146 	   bool __dfs_mode>
147     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_lookahead(_StateIdT __next)148     _M_lookahead(_StateIdT __next)
149     {
150       // Backreferences may refer to captured content.
151       // We may want to make this faster by not copying,
152       // but let's not be clever prematurely.
153       _ResultsVec __what(_M_cur_results);
154       _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
155       __sub._M_states._M_start = __next;
156       if (__sub._M_search_from_first())
157 	{
158 	  for (size_t __i = 0; __i < __what.size(); __i++)
159 	    if (__what[__i].matched)
160 	      _M_cur_results[__i] = __what[__i];
161 	  return true;
162 	}
163       return false;
164     }
165 
166   // __rep_count records how many times (__rep_count.second)
167   // this node is visited under certain input iterator
168   // (__rep_count.first). This prevent the executor from entering
169   // infinite loop by refusing to continue when it's already been
170   // visited more than twice. It's `twice` instead of `once` because
171   // we need to spare one more time for potential group capture.
172   template<typename _BiIter, typename _Alloc, typename _TraitsT,
173     bool __dfs_mode>
174     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_rep_once_more(_Match_mode __match_mode,_StateIdT __i)175     _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
176     {
177       const auto& __state = _M_nfa[__i];
178       auto& __rep_count = _M_rep_count[__i];
179       if (__rep_count.second == 0 || __rep_count.first != _M_current)
180 	{
181 	  auto __back = __rep_count;
182 	  __rep_count.first = _M_current;
183 	  __rep_count.second = 1;
184 	  _M_dfs(__match_mode, __state._M_alt);
185 	  __rep_count = __back;
186 	}
187       else
188 	{
189 	  if (__rep_count.second < 2)
190 	    {
191 	      __rep_count.second++;
192 	      _M_dfs(__match_mode, __state._M_alt);
193 	      __rep_count.second--;
194 	    }
195 	}
196     };
197 
198   // _M_alt branch is "match once more", while _M_next is "get me out
199   // of this quantifier". Executing _M_next first or _M_alt first don't
200   // mean the same thing, and we need to choose the correct order under
201   // given greedy mode.
202   template<typename _BiIter, typename _Alloc, typename _TraitsT,
203 	   bool __dfs_mode>
204     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_repeat(_Match_mode __match_mode,_StateIdT __i)205     _M_handle_repeat(_Match_mode __match_mode, _StateIdT __i)
206     {
207       const auto& __state = _M_nfa[__i];
208 
209       // Greedy.
210       if (!__state._M_neg)
211 	{
212 	  _M_rep_once_more(__match_mode, __i);
213 	  // If it's DFS executor and already accepted, we're done.
214 	  if (!__dfs_mode || !_M_has_sol)
215 	    _M_dfs(__match_mode, __state._M_next);
216 	}
217       else // Non-greedy mode
218 	{
219 	  if (__dfs_mode)
220 	    {
221 	      // vice-versa.
222 	      _M_dfs(__match_mode, __state._M_next);
223 	      if (!_M_has_sol)
224 		_M_rep_once_more(__match_mode, __i);
225 	    }
226 	  else
227 	    {
228 	      // DON'T attempt anything, because there's already another
229 	      // state with higher priority accepted. This state cannot
230 	      // be better by attempting its next node.
231 	      if (!_M_has_sol)
232 		{
233 		  _M_dfs(__match_mode, __state._M_next);
234 		  // DON'T attempt anything if it's already accepted. An
235 		  // accepted state *must* be better than a solution that
236 		  // matches a non-greedy quantifier one more time.
237 		  if (!_M_has_sol)
238 		    _M_rep_once_more(__match_mode, __i);
239 		}
240 	    }
241 	}
242     }
243 
244   template<typename _BiIter, typename _Alloc, typename _TraitsT,
245 	   bool __dfs_mode>
246     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_subexpr_begin(_Match_mode __match_mode,_StateIdT __i)247     _M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i)
248     {
249       const auto& __state = _M_nfa[__i];
250 
251       auto& __res = _M_cur_results[__state._M_subexpr];
252       auto __back = __res.first;
253       __res.first = _M_current;
254       _M_dfs(__match_mode, __state._M_next);
255       __res.first = __back;
256     }
257 
258   template<typename _BiIter, typename _Alloc, typename _TraitsT,
259 	   bool __dfs_mode>
260     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_subexpr_end(_Match_mode __match_mode,_StateIdT __i)261     _M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i)
262     {
263       const auto& __state = _M_nfa[__i];
264 
265       auto& __res = _M_cur_results[__state._M_subexpr];
266       auto __back = __res;
267       __res.second = _M_current;
268       __res.matched = true;
269       _M_dfs(__match_mode, __state._M_next);
270       __res = __back;
271     }
272 
273   template<typename _BiIter, typename _Alloc, typename _TraitsT,
274 	   bool __dfs_mode>
275     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_line_begin_assertion(_Match_mode __match_mode,_StateIdT __i)276     _M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i)
277     {
278       const auto& __state = _M_nfa[__i];
279       if (_M_at_begin())
280 	_M_dfs(__match_mode, __state._M_next);
281     }
282 
283   template<typename _BiIter, typename _Alloc, typename _TraitsT,
284 	   bool __dfs_mode>
285     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_line_end_assertion(_Match_mode __match_mode,_StateIdT __i)286     _M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i)
287     {
288       const auto& __state = _M_nfa[__i];
289       if (_M_at_end())
290 	_M_dfs(__match_mode, __state._M_next);
291     }
292 
293   template<typename _BiIter, typename _Alloc, typename _TraitsT,
294 	   bool __dfs_mode>
295     inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_word_boundary(_Match_mode __match_mode,_StateIdT __i)296     _M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i)
297     {
298       const auto& __state = _M_nfa[__i];
299       if (_M_word_boundary() == !__state._M_neg)
300 	_M_dfs(__match_mode, __state._M_next);
301     }
302 
303   // Here __state._M_alt offers a single start node for a sub-NFA.
304   // We recursively invoke our algorithm to match the sub-NFA.
305   template<typename _BiIter, typename _Alloc, typename _TraitsT,
306 	   bool __dfs_mode>
307     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_subexpr_lookahead(_Match_mode __match_mode,_StateIdT __i)308     _M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i)
309     {
310       const auto& __state = _M_nfa[__i];
311       if (_M_lookahead(__state._M_alt) == !__state._M_neg)
312 	_M_dfs(__match_mode, __state._M_next);
313     }
314 
315   template<typename _BiIter, typename _Alloc, typename _TraitsT,
316 	   bool __dfs_mode>
317     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_match(_Match_mode __match_mode,_StateIdT __i)318     _M_handle_match(_Match_mode __match_mode, _StateIdT __i)
319     {
320       const auto& __state = _M_nfa[__i];
321 
322       if (_M_current == _M_end)
323 	return;
324       if (__dfs_mode)
325 	{
326 	  if (__state._M_matches(*_M_current))
327 	    {
328 	      ++_M_current;
329 	      _M_dfs(__match_mode, __state._M_next);
330 	      --_M_current;
331 	    }
332 	}
333       else
334 	if (__state._M_matches(*_M_current))
335 	  _M_states._M_queue(__state._M_next, _M_cur_results);
336     }
337 
338   // First fetch the matched result from _M_cur_results as __submatch;
339   // then compare it with
340   // (_M_current, _M_current + (__submatch.second - __submatch.first)).
341   // If matched, keep going; else just return and try another state.
342   template<typename _BiIter, typename _Alloc, typename _TraitsT,
343 	   bool __dfs_mode>
344     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_backref(_Match_mode __match_mode,_StateIdT __i)345     _M_handle_backref(_Match_mode __match_mode, _StateIdT __i)
346     {
347       __glibcxx_assert(__dfs_mode);
348 
349       const auto& __state = _M_nfa[__i];
350       auto& __submatch = _M_cur_results[__state._M_backref_index];
351       if (!__submatch.matched)
352 	return;
353       auto __last = _M_current;
354       for (auto __tmp = __submatch.first;
355 	   __last != _M_end && __tmp != __submatch.second;
356 	   ++__tmp)
357 	++__last;
358       if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
359 						  __submatch.second)
360 	  == _M_re._M_automaton->_M_traits.transform(_M_current, __last))
361 	{
362 	  if (__last != _M_current)
363 	    {
364 	      auto __backup = _M_current;
365 	      _M_current = __last;
366 	      _M_dfs(__match_mode, __state._M_next);
367 	      _M_current = __backup;
368 	    }
369 	  else
370 	    _M_dfs(__match_mode, __state._M_next);
371 	}
372     }
373 
374   template<typename _BiIter, typename _Alloc, typename _TraitsT,
375 	   bool __dfs_mode>
376     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_accept(_Match_mode __match_mode,_StateIdT __i)377     _M_handle_accept(_Match_mode __match_mode, _StateIdT __i)
378     {
379       if (__dfs_mode)
380 	{
381 	  __glibcxx_assert(!_M_has_sol);
382 	  if (__match_mode == _Match_mode::_Exact)
383 	    _M_has_sol = _M_current == _M_end;
384 	  else
385 	    _M_has_sol = true;
386 	  if (_M_current == _M_begin
387 	      && (_M_flags & regex_constants::match_not_null))
388 	    _M_has_sol = false;
389 	  if (_M_has_sol)
390 	    {
391 	      if (_M_nfa._M_flags & regex_constants::ECMAScript)
392 		_M_results = _M_cur_results;
393 	      else // POSIX
394 		{
395 		  __glibcxx_assert(_M_states._M_get_sol_pos());
396 		  // Here's POSIX's logic: match the longest one. However
397 		  // we never know which one (lhs or rhs of "|") is longer
398 		  // unless we try both of them and compare the results.
399 		  // The member variable _M_sol_pos records the end
400 		  // position of the last successful match. It's better
401 		  // to be larger, because POSIX regex is always greedy.
402 		  // TODO: This could be slow.
403 		  if (*_M_states._M_get_sol_pos() == _BiIter()
404 		      || std::distance(_M_begin,
405 				       *_M_states._M_get_sol_pos())
406 			 < std::distance(_M_begin, _M_current))
407 		    {
408 		      *_M_states._M_get_sol_pos() = _M_current;
409 		      _M_results = _M_cur_results;
410 		    }
411 		}
412 	    }
413 	}
414       else
415 	{
416 	  if (_M_current == _M_begin
417 	      && (_M_flags & regex_constants::match_not_null))
418 	    return;
419 	  if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
420 	    if (!_M_has_sol)
421 	      {
422 		_M_has_sol = true;
423 		_M_results = _M_cur_results;
424 	      }
425 	}
426     }
427 
428   template<typename _BiIter, typename _Alloc, typename _TraitsT,
429 	   bool __dfs_mode>
430     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_handle_alternative(_Match_mode __match_mode,_StateIdT __i)431     _M_handle_alternative(_Match_mode __match_mode, _StateIdT __i)
432     {
433       const auto& __state = _M_nfa[__i];
434 
435       if (_M_nfa._M_flags & regex_constants::ECMAScript)
436 	{
437 	  // TODO: Fix BFS support. It is wrong.
438 	  _M_dfs(__match_mode, __state._M_alt);
439 	  // Pick lhs if it matches. Only try rhs if it doesn't.
440 	  if (!_M_has_sol)
441 	    _M_dfs(__match_mode, __state._M_next);
442 	}
443       else
444 	{
445 	  // Try both and compare the result.
446 	  // See "case _S_opcode_accept:" handling above.
447 	  _M_dfs(__match_mode, __state._M_alt);
448 	  auto __has_sol = _M_has_sol;
449 	  _M_has_sol = false;
450 	  _M_dfs(__match_mode, __state._M_next);
451 	  _M_has_sol |= __has_sol;
452 	}
453     }
454 
455   template<typename _BiIter, typename _Alloc, typename _TraitsT,
456 	   bool __dfs_mode>
457     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_dfs(_Match_mode __match_mode,_StateIdT __i)458     _M_dfs(_Match_mode __match_mode, _StateIdT __i)
459     {
460       if (_M_states._M_visited(__i))
461 	return;
462 
463       switch (_M_nfa[__i]._M_opcode())
464 	{
465 	case _S_opcode_repeat:
466 	  _M_handle_repeat(__match_mode, __i); break;
467 	case _S_opcode_subexpr_begin:
468 	  _M_handle_subexpr_begin(__match_mode, __i); break;
469 	case _S_opcode_subexpr_end:
470 	  _M_handle_subexpr_end(__match_mode, __i); break;
471 	case _S_opcode_line_begin_assertion:
472 	  _M_handle_line_begin_assertion(__match_mode, __i); break;
473 	case _S_opcode_line_end_assertion:
474 	  _M_handle_line_end_assertion(__match_mode, __i); break;
475 	case _S_opcode_word_boundary:
476 	  _M_handle_word_boundary(__match_mode, __i); break;
477 	case _S_opcode_subexpr_lookahead:
478 	  _M_handle_subexpr_lookahead(__match_mode, __i); break;
479 	case _S_opcode_match:
480 	  _M_handle_match(__match_mode, __i); break;
481 	case _S_opcode_backref:
482 	  _M_handle_backref(__match_mode, __i); break;
483 	case _S_opcode_accept:
484 	  _M_handle_accept(__match_mode, __i); break;
485 	case _S_opcode_alternative:
486 	  _M_handle_alternative(__match_mode, __i); break;
487 	default:
488 	  __glibcxx_assert(false);
489 	}
490     }
491 
492   // Return whether now is at some word boundary.
493   template<typename _BiIter, typename _Alloc, typename _TraitsT,
494 	   bool __dfs_mode>
495     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
_M_word_boundary() const496     _M_word_boundary() const
497     {
498       if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow))
499 	return false;
500       if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow))
501 	return false;
502 
503       bool __left_is_word = false;
504       if (_M_current != _M_begin
505 	  || (_M_flags & regex_constants::match_prev_avail))
506 	{
507 	  auto __prev = _M_current;
508 	  if (_M_is_word(*std::prev(__prev)))
509 	    __left_is_word = true;
510 	}
511       bool __right_is_word =
512         _M_current != _M_end && _M_is_word(*_M_current);
513 
514       return __left_is_word != __right_is_word;
515     }
516 
517 _GLIBCXX_END_NAMESPACE_VERSION
518 } // namespace __detail
519 } // namespace
520