1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  *  This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <utility> // For std::pair.
33 #include <bits/functexcept.h> // For __throw_bad_alloc().
34 #include <functional> // For greater_equal, and less_equal.
35 #include <new> // For operator new.
36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37 #include <ext/concurrence.h>
38 #include <bits/move.h>
39 
40 /** @brief The constant in the expression below is the alignment
41  * required in bytes.
42  */
43 #define _BALLOC_ALIGN_BYTES 8
44 
_GLIBCXX_VISIBILITY(default)45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46 {
47   using std::size_t;
48   using std::ptrdiff_t;
49 
50   namespace __detail
51   {
52   _GLIBCXX_BEGIN_NAMESPACE_VERSION
53     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
54      *
55      *  @brief  __mini_vector<> is a stripped down version of the
56      *  full-fledged std::vector<>.
57      *
58      *  It is to be used only for built-in types or PODs. Notable
59      *  differences are:
60      *
61      *  1. Not all accessor functions are present.
62      *  2. Used ONLY for PODs.
63      *  3. No Allocator template argument. Uses ::operator new() to get
64      *  memory, and ::operator delete() to free it.
65      *  Caveat: The dtor does NOT free the memory allocated, so this a
66      *  memory-leaking vector!
67      */
68     template<typename _Tp>
69       class __mini_vector
70       {
71 	__mini_vector(const __mini_vector&);
72 	__mini_vector& operator=(const __mini_vector&);
73 
74       public:
75 	typedef _Tp value_type;
76 	typedef _Tp* pointer;
77 	typedef _Tp& reference;
78 	typedef const _Tp& const_reference;
79 	typedef size_t size_type;
80 	typedef ptrdiff_t difference_type;
81 	typedef pointer iterator;
82 
83       private:
84 	pointer _M_start;
85 	pointer _M_finish;
86 	pointer _M_end_of_storage;
87 
88 	size_type
89 	_M_space_left() const throw()
90 	{ return _M_end_of_storage - _M_finish; }
91 
92 	pointer
93 	allocate(size_type __n)
94 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
95 
96 	void
97 	deallocate(pointer __p, size_type)
98 	{ ::operator delete(__p); }
99 
100       public:
101 	// Members used: size(), push_back(), pop_back(),
102 	// insert(iterator, const_reference), erase(iterator),
103 	// begin(), end(), back(), operator[].
104 
105 	__mini_vector()
106         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
107 
108 	size_type
109 	size() const throw()
110 	{ return _M_finish - _M_start; }
111 
112 	iterator
113 	begin() const throw()
114 	{ return this->_M_start; }
115 
116 	iterator
117 	end() const throw()
118 	{ return this->_M_finish; }
119 
120 	reference
121 	back() const throw()
122 	{ return *(this->end() - 1); }
123 
124 	reference
125 	operator[](const size_type __pos) const throw()
126 	{ return this->_M_start[__pos]; }
127 
128 	void
129 	insert(iterator __pos, const_reference __x);
130 
131 	void
132 	push_back(const_reference __x)
133 	{
134 	  if (this->_M_space_left())
135 	    {
136 	      *this->end() = __x;
137 	      ++this->_M_finish;
138 	    }
139 	  else
140 	    this->insert(this->end(), __x);
141 	}
142 
143 	void
144 	pop_back() throw()
145 	{ --this->_M_finish; }
146 
147 	void
148 	erase(iterator __pos) throw();
149 
150 	void
151 	clear() throw()
152 	{ this->_M_finish = this->_M_start; }
153       };
154 
155     // Out of line function definitions.
156     template<typename _Tp>
157       void __mini_vector<_Tp>::
158       insert(iterator __pos, const_reference __x)
159       {
160 	if (this->_M_space_left())
161 	  {
162 	    size_type __to_move = this->_M_finish - __pos;
163 	    iterator __dest = this->end();
164 	    iterator __src = this->end() - 1;
165 
166 	    ++this->_M_finish;
167 	    while (__to_move)
168 	      {
169 		*__dest = *__src;
170 		--__dest; --__src; --__to_move;
171 	      }
172 	    *__pos = __x;
173 	  }
174 	else
175 	  {
176 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
177 	    iterator __new_start = this->allocate(__new_size);
178 	    iterator __first = this->begin();
179 	    iterator __start = __new_start;
180 	    while (__first != __pos)
181 	      {
182 		*__start = *__first;
183 		++__start; ++__first;
184 	      }
185 	    *__start = __x;
186 	    ++__start;
187 	    while (__first != this->end())
188 	      {
189 		*__start = *__first;
190 		++__start; ++__first;
191 	      }
192 	    if (this->_M_start)
193 	      this->deallocate(this->_M_start, this->size());
194 
195 	    this->_M_start = __new_start;
196 	    this->_M_finish = __start;
197 	    this->_M_end_of_storage = this->_M_start + __new_size;
198 	  }
199       }
200 
201     template<typename _Tp>
202       void __mini_vector<_Tp>::
203       erase(iterator __pos) throw()
204       {
205 	while (__pos + 1 != this->end())
206 	  {
207 	    *__pos = __pos[1];
208 	    ++__pos;
209 	  }
210 	--this->_M_finish;
211       }
212 
213 
214     template<typename _Tp>
215       struct __mv_iter_traits
216       {
217 	typedef typename _Tp::value_type value_type;
218 	typedef typename _Tp::difference_type difference_type;
219       };
220 
221     template<typename _Tp>
222       struct __mv_iter_traits<_Tp*>
223       {
224 	typedef _Tp value_type;
225 	typedef ptrdiff_t difference_type;
226       };
227 
228     enum
229       {
230 	bits_per_byte = 8,
231 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
232       };
233 
234     template<typename _ForwardIterator, typename _Tp, typename _Compare>
235       _ForwardIterator
236       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
237 		    const _Tp& __val, _Compare __comp)
238       {
239 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
240 	  _DistanceType;
241 
242 	_DistanceType __len = __last - __first;
243 	_DistanceType __half;
244 	_ForwardIterator __middle;
245 
246 	while (__len > 0)
247 	  {
248 	    __half = __len >> 1;
249 	    __middle = __first;
250 	    __middle += __half;
251 	    if (__comp(*__middle, __val))
252 	      {
253 		__first = __middle;
254 		++__first;
255 		__len = __len - __half - 1;
256 	      }
257 	    else
258 	      __len = __half;
259 	  }
260 	return __first;
261       }
262 
263     /** @brief The number of Blocks pointed to by the address pair
264      *  passed to the function.
265      */
266     template<typename _AddrPair>
267       inline size_t
268       __num_blocks(_AddrPair __ap)
269       { return (__ap.second - __ap.first) + 1; }
270 
271     /** @brief The number of Bit-maps pointed to by the address pair
272      *  passed to the function.
273      */
274     template<typename _AddrPair>
275       inline size_t
276       __num_bitmaps(_AddrPair __ap)
277       { return __num_blocks(__ap) / size_t(bits_per_block); }
278 
279     // _Tp should be a pointer type.
280     template<typename _Tp>
281       class _Inclusive_between
282       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
283       {
284 	typedef _Tp pointer;
285 	pointer _M_ptr_value;
286 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
287 
288       public:
289 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
290 	{ }
291 
292 	bool
293 	operator()(_Block_pair __bp) const throw()
294 	{
295 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
296 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
297 	    return true;
298 	  else
299 	    return false;
300 	}
301       };
302 
303     // Used to pass a Functor to functions by reference.
304     template<typename _Functor>
305       class _Functor_Ref
306       : public std::unary_function<typename _Functor::argument_type,
307 				   typename _Functor::result_type>
308       {
309 	_Functor& _M_fref;
310 
311       public:
312 	typedef typename _Functor::argument_type argument_type;
313 	typedef typename _Functor::result_type result_type;
314 
315 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
316 	{ }
317 
318 	result_type
319 	operator()(argument_type __arg)
320 	{ return _M_fref(__arg); }
321       };
322 
323     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
324      *
325      *  @brief  The class which acts as a predicate for applying the
326      *  first-fit memory allocation policy for the bitmap allocator.
327      */
328     // _Tp should be a pointer type, and _Alloc is the Allocator for
329     // the vector.
330     template<typename _Tp>
331       class _Ffit_finder
332       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
333       {
334 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
335 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
336 	typedef typename _BPVector::difference_type _Counter_type;
337 
338 	size_t* _M_pbitmap;
339 	_Counter_type _M_data_offset;
340 
341       public:
342 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
343 	{ }
344 
345 	bool
346 	operator()(_Block_pair __bp) throw()
347 	{
348 	  // Set the _rover to the last physical location bitmap,
349 	  // which is the bitmap which belongs to the first free
350 	  // block. Thus, the bitmaps are in exact reverse order of
351 	  // the actual memory layout. So, we count down the bitmaps,
352 	  // which is the same as moving up the memory.
353 
354 	  // If the used count stored at the start of the Bit Map headers
355 	  // is equal to the number of Objects that the current Block can
356 	  // store, then there is definitely no space for another single
357 	  // object, so just return false.
358 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
359 
360 	  if (*(reinterpret_cast<size_t*>
361 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
362 	    return false;
363 
364 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
365 
366 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
367 	    {
368 	      _M_data_offset = __i;
369 	      if (*__rover)
370 		{
371 		  _M_pbitmap = __rover;
372 		  return true;
373 		}
374 	      --__rover;
375 	    }
376 	  return false;
377 	}
378 
379 	size_t*
380 	_M_get() const throw()
381 	{ return _M_pbitmap; }
382 
383 	_Counter_type
384 	_M_offset() const throw()
385 	{ return _M_data_offset * size_t(bits_per_block); }
386       };
387 
388     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
389      *
390      *  @brief  The bitmap counter which acts as the bitmap
391      *  manipulator, and manages the bit-manipulation functions and
392      *  the searching and identification functions on the bit-map.
393      */
394     // _Tp should be a pointer type.
395     template<typename _Tp>
396       class _Bitmap_counter
397       {
398 	typedef typename
399 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
400 	typedef typename _BPVector::size_type _Index_type;
401 	typedef _Tp pointer;
402 
403 	_BPVector& _M_vbp;
404 	size_t* _M_curr_bmap;
405 	size_t* _M_last_bmap_in_block;
406 	_Index_type _M_curr_index;
407 
408       public:
409 	// Use the 2nd parameter with care. Make sure that such an
410 	// entry exists in the vector before passing that particular
411 	// index to this ctor.
412 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
413 	{ this->_M_reset(__index); }
414 
415 	void
416 	_M_reset(long __index = -1) throw()
417 	{
418 	  if (__index == -1)
419 	    {
420 	      _M_curr_bmap = 0;
421 	      _M_curr_index = static_cast<_Index_type>(-1);
422 	      return;
423 	    }
424 
425 	  _M_curr_index = __index;
426 	  _M_curr_bmap = reinterpret_cast<size_t*>
427 	    (_M_vbp[_M_curr_index].first) - 1;
428 
429 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
430 
431 	  _M_last_bmap_in_block = _M_curr_bmap
432 	    - ((_M_vbp[_M_curr_index].second
433 		- _M_vbp[_M_curr_index].first + 1)
434 	       / size_t(bits_per_block) - 1);
435 	}
436 
437 	// Dangerous Function! Use with extreme care. Pass to this
438 	// function ONLY those values that are known to be correct,
439 	// otherwise this will mess up big time.
440 	void
441 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
442 	{ _M_curr_bmap = __new_internal_marker; }
443 
444 	bool
445 	_M_finished() const throw()
446 	{ return(_M_curr_bmap == 0); }
447 
448 	_Bitmap_counter&
449 	operator++() throw()
450 	{
451 	  if (_M_curr_bmap == _M_last_bmap_in_block)
452 	    {
453 	      if (++_M_curr_index == _M_vbp.size())
454 		_M_curr_bmap = 0;
455 	      else
456 		this->_M_reset(_M_curr_index);
457 	    }
458 	  else
459 	    --_M_curr_bmap;
460 	  return *this;
461 	}
462 
463 	size_t*
464 	_M_get() const throw()
465 	{ return _M_curr_bmap; }
466 
467 	pointer
468 	_M_base() const throw()
469 	{ return _M_vbp[_M_curr_index].first; }
470 
471 	_Index_type
472 	_M_offset() const throw()
473 	{
474 	  return size_t(bits_per_block)
475 	    * ((reinterpret_cast<size_t*>(this->_M_base())
476 		- _M_curr_bmap) - 1);
477 	}
478 
479 	_Index_type
480 	_M_where() const throw()
481 	{ return _M_curr_index; }
482       };
483 
484     /** @brief  Mark a memory address as allocated by re-setting the
485      *  corresponding bit in the bit-map.
486      */
487     inline void
488     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
489     {
490       size_t __mask = 1 << __pos;
491       __mask = ~__mask;
492       *__pbmap &= __mask;
493     }
494 
495     /** @brief  Mark a memory address as free by setting the
496      *  corresponding bit in the bit-map.
497      */
498     inline void
499     __bit_free(size_t* __pbmap, size_t __pos) throw()
500     {
501       size_t __mask = 1 << __pos;
502       *__pbmap |= __mask;
503     }
504 
505   _GLIBCXX_END_NAMESPACE_VERSION
506   } // namespace __detail
507 
508 _GLIBCXX_BEGIN_NAMESPACE_VERSION
509 
510   /** @brief  Generic Version of the bsf instruction.
511    */
512   inline size_t
513   _Bit_scan_forward(size_t __num)
514   { return static_cast<size_t>(__builtin_ctzl(__num)); }
515 
516   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
517    *
518    *  @brief  The free list class for managing chunks of memory to be
519    *  given to and returned by the bitmap_allocator.
520    */
521   class free_list
522   {
523   public:
524     typedef size_t* 				value_type;
525     typedef __detail::__mini_vector<value_type> vector_type;
526     typedef vector_type::iterator 		iterator;
527     typedef __mutex				__mutex_type;
528 
529   private:
530     struct _LT_pointer_compare
531     {
532       bool
533       operator()(const size_t* __pui,
534 		 const size_t __cui) const throw()
535       { return *__pui < __cui; }
536     };
537 
538 #if defined __GTHREADS
539     __mutex_type&
540     _M_get_mutex()
541     {
542       static __mutex_type _S_mutex;
543       return _S_mutex;
544     }
545 #endif
546 
547     vector_type&
548     _M_get_free_list()
549     {
550       static vector_type _S_free_list;
551       return _S_free_list;
552     }
553 
554     /** @brief  Performs validation of memory based on their size.
555      *
556      *  @param  __addr The pointer to the memory block to be
557      *  validated.
558      *
559      *  Validates the memory block passed to this function and
560      *  appropriately performs the action of managing the free list of
561      *  blocks by adding this block to the free list or deleting this
562      *  or larger blocks from the free list.
563      */
564     void
565     _M_validate(size_t* __addr) throw()
566     {
567       vector_type& __free_list = _M_get_free_list();
568       const vector_type::size_type __max_size = 64;
569       if (__free_list.size() >= __max_size)
570 	{
571 	  // Ok, the threshold value has been reached.  We determine
572 	  // which block to remove from the list of free blocks.
573 	  if (*__addr >= *__free_list.back())
574 	    {
575 	      // Ok, the new block is greater than or equal to the
576 	      // last block in the list of free blocks. We just free
577 	      // the new block.
578 	      ::operator delete(static_cast<void*>(__addr));
579 	      return;
580 	    }
581 	  else
582 	    {
583 	      // Deallocate the last block in the list of free lists,
584 	      // and insert the new one in its correct position.
585 	      ::operator delete(static_cast<void*>(__free_list.back()));
586 	      __free_list.pop_back();
587 	    }
588 	}
589 
590       // Just add the block to the list of free lists unconditionally.
591       iterator __temp = __detail::__lower_bound
592 	(__free_list.begin(), __free_list.end(),
593 	 *__addr, _LT_pointer_compare());
594 
595       // We may insert the new free list before _temp;
596       __free_list.insert(__temp, __addr);
597     }
598 
599     /** @brief  Decides whether the wastage of memory is acceptable for
600      *  the current memory request and returns accordingly.
601      *
602      *  @param __block_size The size of the block available in the free
603      *  list.
604      *
605      *  @param __required_size The required size of the memory block.
606      *
607      *  @return true if the wastage incurred is acceptable, else returns
608      *  false.
609      */
610     bool
611     _M_should_i_give(size_t __block_size,
612 		     size_t __required_size) throw()
613     {
614       const size_t __max_wastage_percentage = 36;
615       if (__block_size >= __required_size &&
616 	  (((__block_size - __required_size) * 100 / __block_size)
617 	   < __max_wastage_percentage))
618 	return true;
619       else
620 	return false;
621     }
622 
623   public:
624     /** @brief This function returns the block of memory to the
625      *  internal free list.
626      *
627      *  @param  __addr The pointer to the memory block that was given
628      *  by a call to the _M_get function.
629      */
630     inline void
631     _M_insert(size_t* __addr) throw()
632     {
633 #if defined __GTHREADS
634       __scoped_lock __bfl_lock(_M_get_mutex());
635 #endif
636       // Call _M_validate to decide what should be done with
637       // this particular free list.
638       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
639       // See discussion as to why this is 1!
640     }
641 
642     /** @brief  This function gets a block of memory of the specified
643      *  size from the free list.
644      *
645      *  @param  __sz The size in bytes of the memory required.
646      *
647      *  @return  A pointer to the new memory block of size at least
648      *  equal to that requested.
649      */
650     size_t*
651     _M_get(size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
652 
653     /** @brief  This function just clears the internal Free List, and
654      *  gives back all the memory to the OS.
655      */
656     void
657     _M_clear();
658   };
659 
660 
661   // Forward declare the class.
662   template<typename _Tp>
663     class bitmap_allocator;
664 
665   // Specialize for void:
666   template<>
667     class bitmap_allocator<void>
668     {
669     public:
670       typedef void*       pointer;
671       typedef const void* const_pointer;
672 
673       // Reference-to-void members are impossible.
674       typedef void  value_type;
675       template<typename _Tp1>
676         struct rebind
677 	{
678 	  typedef bitmap_allocator<_Tp1> other;
679 	};
680     };
681 
682   /**
683    * @brief Bitmap Allocator, primary template.
684    * @ingroup allocators
685    */
686   template<typename _Tp>
687     class bitmap_allocator : private free_list
688     {
689     public:
690       typedef size_t    		size_type;
691       typedef ptrdiff_t 		difference_type;
692       typedef _Tp*        		pointer;
693       typedef const _Tp*  		const_pointer;
694       typedef _Tp&        		reference;
695       typedef const _Tp&  		const_reference;
696       typedef _Tp         		value_type;
697       typedef free_list::__mutex_type 	__mutex_type;
698 
699       template<typename _Tp1>
700         struct rebind
701 	{
702 	  typedef bitmap_allocator<_Tp1> other;
703 	};
704 
705 #if __cplusplus >= 201103L
706       // _GLIBCXX_RESOLVE_LIB_DEFECTS
707       // 2103. propagate_on_container_move_assignment
708       typedef std::true_type propagate_on_container_move_assignment;
709 #endif
710 
711     private:
712       template<size_t _BSize, size_t _AlignSize>
713         struct aligned_size
714 	{
715 	  enum
716 	    {
717 	      modulus = _BSize % _AlignSize,
718 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
719 	    };
720 	};
721 
722       struct _Alloc_block
723       {
724 	char __M_unused[aligned_size<sizeof(value_type),
725 			_BALLOC_ALIGN_BYTES>::value];
726       };
727 
728 
729       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
730 
731       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
732       typedef typename _BPVector::iterator _BPiter;
733 
734       template<typename _Predicate>
735         static _BPiter
736         _S_find(_Predicate __p)
737         {
738 	  _BPiter __first = _S_mem_blocks.begin();
739 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
740 	    ++__first;
741 	  return __first;
742 	}
743 
744 #if defined _GLIBCXX_DEBUG
745       // Complexity: O(lg(N)). Where, N is the number of block of size
746       // sizeof(value_type).
747       void
748       _S_check_for_free_blocks() throw()
749       {
750 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
751 	_BPiter __bpi = _S_find(_FFF());
752 
753 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
754       }
755 #endif
756 
757       /** @brief  Responsible for exponentially growing the internal
758        *  memory pool.
759        *
760        *  @throw  std::bad_alloc. If memory can not be allocated.
761        *
762        *  Complexity: O(1), but internally depends upon the
763        *  complexity of the function free_list::_M_get. The part where
764        *  the bitmap headers are written has complexity: O(X),where X
765        *  is the number of blocks of size sizeof(value_type) within
766        *  the newly acquired block. Having a tight bound.
767        */
768       void
769       _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
770       {
771 #if defined _GLIBCXX_DEBUG
772 	_S_check_for_free_blocks();
773 #endif
774 
775 	const size_t __num_bitmaps = (_S_block_size
776 				      / size_t(__detail::bits_per_block));
777 	const size_t __size_to_allocate = sizeof(size_t)
778 	  + _S_block_size * sizeof(_Alloc_block)
779 	  + __num_bitmaps * sizeof(size_t);
780 
781 	size_t* __temp =
782 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
783 	*__temp = 0;
784 	++__temp;
785 
786 	// The Header information goes at the Beginning of the Block.
787 	_Block_pair __bp =
788 	  std::make_pair(reinterpret_cast<_Alloc_block*>
789 			 (__temp + __num_bitmaps),
790 			 reinterpret_cast<_Alloc_block*>
791 			 (__temp + __num_bitmaps)
792 			 + _S_block_size - 1);
793 
794 	// Fill the Vector with this information.
795 	_S_mem_blocks.push_back(__bp);
796 
797 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
798 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
799 
800 	_S_block_size *= 2;
801       }
802 
803       static _BPVector _S_mem_blocks;
804       static size_t _S_block_size;
805       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
806       static typename _BPVector::size_type _S_last_dealloc_index;
807 #if defined __GTHREADS
808       static __mutex_type _S_mut;
809 #endif
810 
811     public:
812 
813       /** @brief  Allocates memory for a single object of size
814        *  sizeof(_Tp).
815        *
816        *  @throw  std::bad_alloc. If memory can not be allocated.
817        *
818        *  Complexity: Worst case complexity is O(N), but that
819        *  is hardly ever hit. If and when this particular case is
820        *  encountered, the next few cases are guaranteed to have a
821        *  worst case complexity of O(1)!  That's why this function
822        *  performs very well on average. You can consider this
823        *  function to have a complexity referred to commonly as:
824        *  Amortized Constant time.
825        */
826       pointer
827       _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
828       {
829 #if defined __GTHREADS
830 	__scoped_lock __bit_lock(_S_mut);
831 #endif
832 
833 	// The algorithm is something like this: The last_request
834 	// variable points to the last accessed Bit Map. When such a
835 	// condition occurs, we try to find a free block in the
836 	// current bitmap, or succeeding bitmaps until the last bitmap
837 	// is reached. If no free block turns up, we resort to First
838 	// Fit method.
839 
840 	// WARNING: Do not re-order the condition in the while
841 	// statement below, because it relies on C++'s short-circuit
842 	// evaluation. The return from _S_last_request->_M_get() will
843 	// NOT be dereference able if _S_last_request->_M_finished()
844 	// returns true. This would inevitably lead to a NULL pointer
845 	// dereference if tinkered with.
846 	while (_S_last_request._M_finished() == false
847 	       && (*(_S_last_request._M_get()) == 0))
848 	  _S_last_request.operator++();
849 
850 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
851 	  {
852 	    // Fall Back to First Fit algorithm.
853 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
854 	    _FFF __fff;
855 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
856 
857 	    if (__bpi != _S_mem_blocks.end())
858 	      {
859 		// Search was successful. Ok, now mark the first bit from
860 		// the right as 0, meaning Allocated. This bit is obtained
861 		// by calling _M_get() on __fff.
862 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
863 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
864 
865 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
866 
867 		// Now, get the address of the bit we marked as allocated.
868 		pointer __ret = reinterpret_cast<pointer>
869 		  (__bpi->first + __fff._M_offset() + __nz_bit);
870 		size_t* __puse_count =
871 		  reinterpret_cast<size_t*>
872 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
873 
874 		++(*__puse_count);
875 		return __ret;
876 	      }
877 	    else
878 	      {
879 		// Search was unsuccessful. We Add more memory to the
880 		// pool by calling _S_refill_pool().
881 		_S_refill_pool();
882 
883 		// _M_Reset the _S_last_request structure to the first
884 		// free block's bit map.
885 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
886 
887 		// Now, mark that bit as allocated.
888 	      }
889 	  }
890 
891 	// _S_last_request holds a pointer to a valid bit map, that
892 	// points to a free block in memory.
893 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
894 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
895 
896 	pointer __ret = reinterpret_cast<pointer>
897 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
898 
899 	size_t* __puse_count = reinterpret_cast<size_t*>
900 	  (_S_mem_blocks[_S_last_request._M_where()].first)
901 	  - (__detail::
902 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
903 
904 	++(*__puse_count);
905 	return __ret;
906       }
907 
908       /** @brief  Deallocates memory that belongs to a single object of
909        *  size sizeof(_Tp).
910        *
911        *  Complexity: O(lg(N)), but the worst case is not hit
912        *  often!  This is because containers usually deallocate memory
913        *  close to each other and this case is handled in O(1) time by
914        *  the deallocate function.
915        */
916       void
917       _M_deallocate_single_object(pointer __p) throw()
918       {
919 #if defined __GTHREADS
920 	__scoped_lock __bit_lock(_S_mut);
921 #endif
922 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
923 
924 	typedef typename _BPVector::iterator _Iterator;
925 	typedef typename _BPVector::difference_type _Difference_type;
926 
927 	_Difference_type __diff;
928 	long __displacement;
929 
930 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
931 
932 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
933 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
934 	  {
935 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
936 				  <= _S_mem_blocks.size() - 1);
937 
938 	    // Initial Assumption was correct!
939 	    __diff = _S_last_dealloc_index;
940 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
941 	  }
942 	else
943 	  {
944 	    _Iterator _iter = _S_find(__ibt);
945 
946 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
947 
948 	    __diff = _iter - _S_mem_blocks.begin();
949 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
950 	    _S_last_dealloc_index = __diff;
951 	  }
952 
953 	// Get the position of the iterator that has been found.
954 	const size_t __rotate = (__displacement
955 				 % size_t(__detail::bits_per_block));
956 	size_t* __bitmapC =
957 	  reinterpret_cast<size_t*>
958 	  (_S_mem_blocks[__diff].first) - 1;
959 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
960 
961 	__detail::__bit_free(__bitmapC, __rotate);
962 	size_t* __puse_count = reinterpret_cast<size_t*>
963 	  (_S_mem_blocks[__diff].first)
964 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
965 
966 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
967 
968 	--(*__puse_count);
969 
970 	if (__builtin_expect(*__puse_count == 0, false))
971 	  {
972 	    _S_block_size /= 2;
973 
974 	    // We can safely remove this block.
975 	    // _Block_pair __bp = _S_mem_blocks[__diff];
976 	    this->_M_insert(__puse_count);
977 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
978 
979 	    // Reset the _S_last_request variable to reflect the
980 	    // erased block. We do this to protect future requests
981 	    // after the last block has been removed from a particular
982 	    // memory Chunk, which in turn has been returned to the
983 	    // free list, and hence had been erased from the vector,
984 	    // so the size of the vector gets reduced by 1.
985 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
986 	      _S_last_request._M_reset(__diff);
987 
988 	    // If the Index into the vector of the region of memory
989 	    // that might hold the next address that will be passed to
990 	    // deallocated may have been invalidated due to the above
991 	    // erase procedure being called on the vector, hence we
992 	    // try to restore this invariant too.
993 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
994 	      {
995 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
996 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
997 	      }
998 	  }
999       }
1000 
1001     public:
1002       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1003       { }
1004 
1005       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1006       { }
1007 
1008       template<typename _Tp1>
1009         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1010         { }
1011 
1012       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1013       { }
1014 
1015       pointer
1016       allocate(size_type __n)
1017       {
1018 	if (__n > this->max_size())
1019 	  std::__throw_bad_alloc();
1020 
1021 #if __cpp_aligned_new
1022 	if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1023 	  {
1024 	    const size_type __b = __n * sizeof(value_type);
1025 	    std::align_val_t __al = std::align_val_t(alignof(value_type));
1026 	    return static_cast<pointer>(::operator new(__b, __al));
1027 	  }
1028 #endif
1029 
1030 	if (__builtin_expect(__n == 1, true))
1031 	  return this->_M_allocate_single_object();
1032 	else
1033 	  {
1034 	    const size_type __b = __n * sizeof(value_type);
1035 	    return reinterpret_cast<pointer>(::operator new(__b));
1036 	  }
1037       }
1038 
1039       pointer
1040       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1041       { return allocate(__n); }
1042 
1043       void
1044       deallocate(pointer __p, size_type __n) throw()
1045       {
1046 	if (__builtin_expect(__p != 0, true))
1047 	  {
1048 #if __cpp_aligned_new
1049 	    // Types with extended alignment are handled by operator delete.
1050 	    if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1051 	      {
1052 		::operator delete(__p, std::align_val_t(alignof(value_type)));
1053 		return;
1054 	      }
1055 #endif
1056 
1057 	    if (__builtin_expect(__n == 1, true))
1058 	      this->_M_deallocate_single_object(__p);
1059 	    else
1060 	      ::operator delete(__p);
1061 	  }
1062       }
1063 
1064       pointer
1065       address(reference __r) const _GLIBCXX_NOEXCEPT
1066       { return std::__addressof(__r); }
1067 
1068       const_pointer
1069       address(const_reference __r) const _GLIBCXX_NOEXCEPT
1070       { return std::__addressof(__r); }
1071 
1072       size_type
1073       max_size() const _GLIBCXX_USE_NOEXCEPT
1074       { return size_type(-1) / sizeof(value_type); }
1075 
1076 #if __cplusplus >= 201103L
1077       template<typename _Up, typename... _Args>
1078         void
1079         construct(_Up* __p, _Args&&... __args)
1080 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1081 
1082       template<typename _Up>
1083         void
1084         destroy(_Up* __p)
1085         { __p->~_Up(); }
1086 #else
1087       void
1088       construct(pointer __p, const_reference __data)
1089       { ::new((void *)__p) value_type(__data); }
1090 
1091       void
1092       destroy(pointer __p)
1093       { __p->~value_type(); }
1094 #endif
1095     };
1096 
1097   template<typename _Tp1, typename _Tp2>
1098     bool
1099     operator==(const bitmap_allocator<_Tp1>&,
1100 	       const bitmap_allocator<_Tp2>&) throw()
1101     { return true; }
1102 
1103   template<typename _Tp1, typename _Tp2>
1104     bool
1105     operator!=(const bitmap_allocator<_Tp1>&,
1106 	       const bitmap_allocator<_Tp2>&) throw()
1107   { return false; }
1108 
1109   // Static member definitions.
1110   template<typename _Tp>
1111     typename bitmap_allocator<_Tp>::_BPVector
1112     bitmap_allocator<_Tp>::_S_mem_blocks;
1113 
1114   template<typename _Tp>
1115     size_t bitmap_allocator<_Tp>::_S_block_size =
1116     2 * size_t(__detail::bits_per_block);
1117 
1118   template<typename _Tp>
1119     typename bitmap_allocator<_Tp>::_BPVector::size_type
1120     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1121 
1122   template<typename _Tp>
1123     __detail::_Bitmap_counter
1124       <typename bitmap_allocator<_Tp>::_Alloc_block*>
1125     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1126 
1127 #if defined __GTHREADS
1128   template<typename _Tp>
1129     typename bitmap_allocator<_Tp>::__mutex_type
1130     bitmap_allocator<_Tp>::_S_mut;
1131 #endif
1132 
1133 _GLIBCXX_END_NAMESPACE_VERSION
1134 } // namespace __gnu_cxx
1135 
1136 #endif
1137 
1138