1 // Special functions -*- C++ -*-
2 
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/beta_function.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29 
30 //
31 // ISO C++ 14882 TR1: 5.2  Special functions
32 //
33 
34 // Written by Edward Smith-Rowland based on:
35 //   (1) Handbook of Mathematical Functions,
36 //       ed. Milton Abramowitz and Irene A. Stegun,
37 //       Dover Publications,
38 //       Section 6, pp. 253-266
39 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42 //       2nd ed, pp. 213-216
43 //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
44 //       Princeton, 2003.
45 
46 #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
47 #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
48 
49 namespace std _GLIBCXX_VISIBILITY(default)
50 {
51 _GLIBCXX_BEGIN_NAMESPACE_VERSION
52 
53 #if _GLIBCXX_USE_STD_SPEC_FUNCS
54 # define _GLIBCXX_MATH_NS ::std
55 #elif defined(_GLIBCXX_TR1_CMATH)
56 namespace tr1
57 {
58 # define _GLIBCXX_MATH_NS ::std::tr1
59 #else
60 # error do not include this header directly, use <cmath> or <tr1/cmath>
61 #endif
62   // [5.2] Special functions
63 
64   // Implementation-space details.
65   namespace __detail
66   {
67     /**
68      *   @brief  Return the beta function: \f$B(x,y)\f$.
69      *
70      *   The beta function is defined by
71      *   @f[
72      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
73      *   @f]
74      *
75      *   @param __x The first argument of the beta function.
76      *   @param __y The second argument of the beta function.
77      *   @return  The beta function.
78      */
79     template<typename _Tp>
80     _Tp
__beta_gamma(_Tp __x,_Tp __y)81     __beta_gamma(_Tp __x, _Tp __y)
82     {
83 
84       _Tp __bet;
85 #if _GLIBCXX_USE_C99_MATH_TR1
86       if (__x > __y)
87         {
88           __bet = _GLIBCXX_MATH_NS::tgamma(__x)
89                 / _GLIBCXX_MATH_NS::tgamma(__x + __y);
90           __bet *= _GLIBCXX_MATH_NS::tgamma(__y);
91         }
92       else
93         {
94           __bet = _GLIBCXX_MATH_NS::tgamma(__y)
95                 / _GLIBCXX_MATH_NS::tgamma(__x + __y);
96           __bet *= _GLIBCXX_MATH_NS::tgamma(__x);
97         }
98 #else
99       if (__x > __y)
100         {
101           __bet = __gamma(__x) / __gamma(__x + __y);
102           __bet *= __gamma(__y);
103         }
104       else
105         {
106           __bet = __gamma(__y) / __gamma(__x + __y);
107           __bet *= __gamma(__x);
108         }
109 #endif
110 
111       return __bet;
112     }
113 
114     /**
115      *   @brief  Return the beta function \f$B(x,y)\f$ using
116      *           the log gamma functions.
117      *
118      *   The beta function is defined by
119      *   @f[
120      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
121      *   @f]
122      *
123      *   @param __x The first argument of the beta function.
124      *   @param __y The second argument of the beta function.
125      *   @return  The beta function.
126      */
127     template<typename _Tp>
128     _Tp
__beta_lgamma(_Tp __x,_Tp __y)129     __beta_lgamma(_Tp __x, _Tp __y)
130     {
131 #if _GLIBCXX_USE_C99_MATH_TR1
132       _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x)
133                 + _GLIBCXX_MATH_NS::lgamma(__y)
134                 - _GLIBCXX_MATH_NS::lgamma(__x + __y);
135 #else
136       _Tp __bet = __log_gamma(__x)
137                 + __log_gamma(__y)
138                 - __log_gamma(__x + __y);
139 #endif
140       __bet = std::exp(__bet);
141       return __bet;
142     }
143 
144 
145     /**
146      *   @brief  Return the beta function \f$B(x,y)\f$ using
147      *           the product form.
148      *
149      *   The beta function is defined by
150      *   @f[
151      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
152      *   @f]
153      *
154      *   @param __x The first argument of the beta function.
155      *   @param __y The second argument of the beta function.
156      *   @return  The beta function.
157      */
158     template<typename _Tp>
159     _Tp
__beta_product(_Tp __x,_Tp __y)160     __beta_product(_Tp __x, _Tp __y)
161     {
162 
163       _Tp __bet = (__x + __y) / (__x * __y);
164 
165       unsigned int __max_iter = 1000000;
166       for (unsigned int __k = 1; __k < __max_iter; ++__k)
167         {
168           _Tp __term = (_Tp(1) + (__x + __y) / __k)
169                      / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
170           __bet *= __term;
171         }
172 
173       return __bet;
174     }
175 
176 
177     /**
178      *   @brief  Return the beta function \f$ B(x,y) \f$.
179      *
180      *   The beta function is defined by
181      *   @f[
182      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
183      *   @f]
184      *
185      *   @param __x The first argument of the beta function.
186      *   @param __y The second argument of the beta function.
187      *   @return  The beta function.
188      */
189     template<typename _Tp>
190     inline _Tp
__beta(_Tp __x,_Tp __y)191     __beta(_Tp __x, _Tp __y)
192     {
193       if (__isnan(__x) || __isnan(__y))
194         return std::numeric_limits<_Tp>::quiet_NaN();
195       else
196         return __beta_lgamma(__x, __y);
197     }
198   } // namespace __detail
199 #undef _GLIBCXX_MATH_NS
200 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
201 } // namespace tr1
202 #endif
203 
204 _GLIBCXX_END_NAMESPACE_VERSION
205 }
206 
207 #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC
208