1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  */
17 
18 /*
19  * This is derived from the Berkeley source:
20  *	@(#)random.c	5.5 (Berkeley) 7/6/88
21  * It was reworked for the GNU C Library by Roland McGrath.
22  * Rewritten to be reentrant by Ulrich Drepper, 1995
23  */
24 
25 #include <features.h>
26 #include <errno.h>
27 #include <limits.h>
28 #include <stddef.h>
29 #include <stdlib.h>
30 #include <unistd.h>
31 
32 /* An improved random number generation package.  In addition to the standard
33    rand()/srand() like interface, this package also has a special state info
34    interface.  The initstate() routine is called with a seed, an array of
35    bytes, and a count of how many bytes are being passed in; this array is
36    then initialized to contain information for random number generation with
37    that much state information.  Good sizes for the amount of state
38    information are 32, 64, 128, and 256 bytes.  The state can be switched by
39    calling the setstate() function with the same array as was initialized
40    with initstate().  By default, the package runs with 128 bytes of state
41    information and generates far better random numbers than a linear
42    congruential generator.  If the amount of state information is less than
43    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
44    state information is treated as an array of longs; the zeroth element of
45    the array is the type of R.N.G. being used (small integer); the remainder
46    of the array is the state information for the R.N.G.  Thus, 32 bytes of
47    state information will give 7 longs worth of state information, which will
48    allow a degree seven polynomial.  (Note: The zeroth word of state
49    information also has some other information stored in it; see setstate
50    for details).  The random number generation technique is a linear feedback
51    shift register approach, employing trinomials (since there are fewer terms
52    to sum up that way).  In this approach, the least significant bit of all
53    the numbers in the state table will act as a linear feedback shift register,
54    and will have period 2^deg - 1 (where deg is the degree of the polynomial
55    being used, assuming that the polynomial is irreducible and primitive).
56    The higher order bits will have longer periods, since their values are
57    also influenced by pseudo-random carries out of the lower bits.  The
58    total period of the generator is approximately deg*(2**deg - 1); thus
59    doubling the amount of state information has a vast influence on the
60    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
61    only good for large deg, when the period of the shift register is the
62    dominant factor.  With deg equal to seven, the period is actually much
63    longer than the 7*(2**7 - 1) predicted by this formula.  */
64 
65 
66 
67 /* For each of the currently supported random number generators, we have a
68    break value on the amount of state information (you need at least this many
69    bytes of state info to support this random number generator), a degree for
70    the polynomial (actually a trinomial) that the R.N.G. is based on, and
71    separation between the two lower order coefficients of the trinomial.  */
72 
73 /* Linear congruential.  */
74 #define	TYPE_0		0
75 #define	BREAK_0		8
76 #define	DEG_0		0
77 #define	SEP_0		0
78 
79 /* x**7 + x**3 + 1.  */
80 #define	TYPE_1		1
81 #define	BREAK_1		32
82 #define	DEG_1		7
83 #define	SEP_1		3
84 
85 /* x**15 + x + 1.  */
86 #define	TYPE_2		2
87 #define	BREAK_2		64
88 #define	DEG_2		15
89 #define	SEP_2		1
90 
91 /* x**31 + x**3 + 1.  */
92 #define	TYPE_3		3
93 #define	BREAK_3		128
94 #define	DEG_3		31
95 #define	SEP_3		3
96 
97 /* x**63 + x + 1.  */
98 #define	TYPE_4		4
99 #define	BREAK_4		256
100 #define	DEG_4		63
101 #define	SEP_4		1
102 
103 
104 /* Array versions of the above information to make code run faster.
105    Relies on fact that TYPE_i == i.  */
106 
107 #define	MAX_TYPES	5	/* Max number of types above.  */
108 
109 struct random_poly_info
110 {
111     smallint seps[MAX_TYPES];
112     smallint degrees[MAX_TYPES];
113 };
114 
115 static const struct random_poly_info random_poly_info =
116 {
117     { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
118     { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
119 };
120 
121 
122 
123 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
124    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
125    same in all the other cases due to all the global variables that have been
126    set up.  The basic operation is to add the number at the rear pointer into
127    the one at the front pointer.  Then both pointers are advanced to the next
128    location cyclically in the table.  The value returned is the sum generated,
129    reduced to 31 bits by throwing away the "least random" low bit.
130    Note: The code takes advantage of the fact that both the front and
131    rear pointers can't wrap on the same call by not testing the rear
132    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
133 
random_r(struct random_data * buf,int32_t * result)134 int random_r(struct random_data *buf, int32_t *result)
135 {
136     int32_t *state;
137 
138     if (buf == NULL || result == NULL)
139 	goto fail;
140 
141     state = buf->state;
142 
143     if (buf->rand_type == TYPE_0)
144     {
145 	int32_t val = state[0];
146 	val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
147 	state[0] = val;
148 	*result = val;
149     }
150     else
151     {
152 	int32_t *fptr = buf->fptr;
153 	int32_t *rptr = buf->rptr;
154 	int32_t *end_ptr = buf->end_ptr;
155 	int32_t val;
156 
157 	val = *fptr += *rptr;
158 	/* Chucking least random bit.  */
159 	*result = (val >> 1) & 0x7fffffff;
160 	++fptr;
161 	if (fptr >= end_ptr)
162 	{
163 	    fptr = state;
164 	    ++rptr;
165 	}
166 	else
167 	{
168 	    ++rptr;
169 	    if (rptr >= end_ptr)
170 		rptr = state;
171 	}
172 	buf->fptr = fptr;
173 	buf->rptr = rptr;
174     }
175     return 0;
176 
177 fail:
178     __set_errno (EINVAL);
179     return -1;
180 }
libc_hidden_def(random_r)181 libc_hidden_def(random_r)
182 
183 /* Initialize the random number generator based on the given seed.  If the
184    type is the trivial no-state-information type, just remember the seed.
185    Otherwise, initializes state[] based on the given "seed" via a linear
186    congruential generator.  Then, the pointers are set to known locations
187    that are exactly rand_sep places apart.  Lastly, it cycles the state
188    information a given number of times to get rid of any initial dependencies
189    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
190    for default usage relies on values produced by this routine.  */
191 int srandom_r (unsigned int seed, struct random_data *buf)
192 {
193     int type;
194     int32_t *state;
195     long int i;
196     long int word;
197     int32_t *dst;
198     int kc;
199 
200     if (buf == NULL)
201 	goto fail;
202     type = buf->rand_type;
203     if ((unsigned int) type >= MAX_TYPES)
204 	goto fail;
205 
206     state = buf->state;
207     /* We must make sure the seed is not 0.  Take arbitrarily 1 in this case.  */
208     if (seed == 0)
209 	seed = 1;
210     state[0] = seed;
211     if (type == TYPE_0)
212 	goto done;
213 
214     dst = state;
215     word = seed;
216     kc = buf->rand_deg;
217     for (i = 1; i < kc; ++i)
218     {
219 	/* This does:
220 	   state[i] = (16807 * state[i - 1]) % 2147483647;
221 	   but avoids overflowing 31 bits.  */
222 	long int hi = word / 127773;
223 	long int lo = word % 127773;
224 	word = 16807 * lo - 2836 * hi;
225 	if (word < 0)
226 	    word += 2147483647;
227 	*++dst = word;
228     }
229 
230     buf->fptr = &state[buf->rand_sep];
231     buf->rptr = &state[0];
232     kc *= 10;
233     while (--kc >= 0)
234     {
235 	int32_t discard;
236 	(void) random_r (buf, &discard);
237     }
238 
239 done:
240     return 0;
241 
242 fail:
243     return -1;
244 }
libc_hidden_def(srandom_r)245 libc_hidden_def(srandom_r)
246 
247 /* Initialize the state information in the given array of N bytes for
248    future random number generation.  Based on the number of bytes we
249    are given, and the break values for the different R.N.G.'s, we choose
250    the best (largest) one we can and set things up for it.  srandom is
251    then called to initialize the state information.  Note that on return
252    from srandom, we set state[-1] to be the type multiplexed with the current
253    value of the rear pointer; this is so successive calls to initstate won't
254    lose this information and will be able to restart with setstate.
255    Note: The first thing we do is save the current state, if any, just like
256    setstate so that it doesn't matter when initstate is called.
257    Returns a pointer to the old state.  */
258 int initstate_r (unsigned int seed, char *arg_state, size_t n, struct random_data *buf)
259 {
260     int type;
261     int degree;
262     int separation;
263     int32_t *state;
264 
265     if (buf == NULL)
266 	goto fail;
267 
268     if (n >= BREAK_3)
269 	type = n < BREAK_4 ? TYPE_3 : TYPE_4;
270     else if (n < BREAK_1)
271     {
272 	if (n < BREAK_0)
273 	{
274 	    __set_errno (EINVAL);
275 	    goto fail;
276 	}
277 	type = TYPE_0;
278     }
279     else
280 	type = n < BREAK_2 ? TYPE_1 : TYPE_2;
281 
282     degree = random_poly_info.degrees[type];
283     separation = random_poly_info.seps[type];
284 
285     buf->rand_type = type;
286     buf->rand_sep = separation;
287     buf->rand_deg = degree;
288     state = &((int32_t *) arg_state)[1];	/* First location.  */
289     /* Must set END_PTR before srandom.  */
290     buf->end_ptr = &state[degree];
291 
292     buf->state = state;
293 
294     srandom_r (seed, buf);
295 
296     state[-1] = TYPE_0;
297     if (type != TYPE_0)
298 	state[-1] = (buf->rptr - state) * MAX_TYPES + type;
299 
300     return 0;
301 
302 fail:
303     __set_errno (EINVAL);
304     return -1;
305 }
libc_hidden_def(initstate_r)306 libc_hidden_def(initstate_r)
307 
308 /* Restore the state from the given state array.
309    Note: It is important that we also remember the locations of the pointers
310    in the current state information, and restore the locations of the pointers
311    from the old state information.  This is done by multiplexing the pointer
312    location into the zeroth word of the state information. Note that due
313    to the order in which things are done, it is OK to call setstate with the
314    same state as the current state
315    Returns a pointer to the old state information.  */
316 int setstate_r (char *arg_state, struct random_data *buf)
317 {
318     int32_t *new_state = 1 + (int32_t *) arg_state;
319     int type;
320     int old_type;
321     int32_t *old_state;
322     int degree;
323     int separation;
324 
325     if (arg_state == NULL || buf == NULL)
326 	goto fail;
327 
328     old_type = buf->rand_type;
329     old_state = buf->state;
330     if (old_type == TYPE_0)
331 	old_state[-1] = TYPE_0;
332     else
333 	old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
334 
335     type = new_state[-1] % MAX_TYPES;
336     if (type < TYPE_0 || type > TYPE_4)
337 	goto fail;
338 
339     buf->rand_deg = degree = random_poly_info.degrees[type];
340     buf->rand_sep = separation = random_poly_info.seps[type];
341     buf->rand_type = type;
342 
343     if (type != TYPE_0)
344     {
345 	int rear = new_state[-1] / MAX_TYPES;
346 	buf->rptr = &new_state[rear];
347 	buf->fptr = &new_state[(rear + separation) % degree];
348     }
349     buf->state = new_state;
350     /* Set end_ptr too.  */
351     buf->end_ptr = &new_state[degree];
352 
353     return 0;
354 
355 fail:
356     __set_errno (EINVAL);
357     return -1;
358 }
359 libc_hidden_def(setstate_r)
360