1==============================
2Memory Layout on AArch64 Linux
3==============================
4
5Author: Catalin Marinas <catalin.marinas@arm.com>
6
7This document describes the virtual memory layout used by the AArch64
8Linux kernel. The architecture allows up to 4 levels of translation
9tables with a 4KB page size and up to 3 levels with a 64KB page size.
10
11AArch64 Linux uses either 3 levels or 4 levels of translation tables
12with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
13(256TB) virtual addresses, respectively, for both user and kernel. With
1464KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
15virtual address, are used but the memory layout is the same.
16
17ARMv8.2 adds optional support for Large Virtual Address space. This is
18only available when running with a 64KB page size and expands the
19number of descriptors in the first level of translation.
20
21User addresses have bits 63:48 set to 0 while the kernel addresses have
22the same bits set to 1. TTBRx selection is given by bit 63 of the
23virtual address. The swapper_pg_dir contains only kernel (global)
24mappings while the user pgd contains only user (non-global) mappings.
25The swapper_pg_dir address is written to TTBR1 and never written to
26TTBR0.
27
28
29AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
30
31  Start			End			Size		Use
32  -----------------------------------------------------------------------
33  0000000000000000	0000ffffffffffff	 256TB		user
34  ffff000000000000	ffff7fffffffffff	 128TB		kernel logical memory map
35 [ffff600000000000	ffff7fffffffffff]	  32TB		[kasan shadow region]
36  ffff800000000000	ffff800007ffffff	 128MB		modules
37  ffff800008000000	fffffbffefffffff	 124TB		vmalloc
38  fffffbfff0000000	fffffbfffdffffff	 224MB		fixed mappings (top down)
39  fffffbfffe000000	fffffbfffe7fffff	   8MB		[guard region]
40  fffffbfffe800000	fffffbffff7fffff	  16MB		PCI I/O space
41  fffffbffff800000	fffffbffffffffff	   8MB		[guard region]
42  fffffc0000000000	fffffdffffffffff	   2TB		vmemmap
43  fffffe0000000000	ffffffffffffffff	   2TB		[guard region]
44
45
46AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
47
48  Start			End			Size		Use
49  -----------------------------------------------------------------------
50  0000000000000000	000fffffffffffff	   4PB		user
51  fff0000000000000	ffff7fffffffffff	  ~4PB		kernel logical memory map
52 [fffd800000000000	ffff7fffffffffff]	 512TB		[kasan shadow region]
53  ffff800000000000	ffff800007ffffff	 128MB		modules
54  ffff800008000000	fffffbffefffffff	 124TB		vmalloc
55  fffffbfff0000000	fffffbfffdffffff	 224MB		fixed mappings (top down)
56  fffffbfffe000000	fffffbfffe7fffff	   8MB		[guard region]
57  fffffbfffe800000	fffffbffff7fffff	  16MB		PCI I/O space
58  fffffbffff800000	fffffbffffffffff	   8MB		[guard region]
59  fffffc0000000000	ffffffdfffffffff	  ~4TB		vmemmap
60  ffffffe000000000	ffffffffffffffff	 128GB		[guard region]
61
62
63Translation table lookup with 4KB pages::
64
65  +--------+--------+--------+--------+--------+--------+--------+--------+
66  |63    56|55    48|47    40|39    32|31    24|23    16|15     8|7      0|
67  +--------+--------+--------+--------+--------+--------+--------+--------+
68   |                 |         |         |         |         |
69   |                 |         |         |         |         v
70   |                 |         |         |         |   [11:0]  in-page offset
71   |                 |         |         |         +-> [20:12] L3 index
72   |                 |         |         +-----------> [29:21] L2 index
73   |                 |         +---------------------> [38:30] L1 index
74   |                 +-------------------------------> [47:39] L0 index
75   +-------------------------------------------------> [63] TTBR0/1
76
77
78Translation table lookup with 64KB pages::
79
80  +--------+--------+--------+--------+--------+--------+--------+--------+
81  |63    56|55    48|47    40|39    32|31    24|23    16|15     8|7      0|
82  +--------+--------+--------+--------+--------+--------+--------+--------+
83   |                 |    |               |              |
84   |                 |    |               |              v
85   |                 |    |               |            [15:0]  in-page offset
86   |                 |    |               +----------> [28:16] L3 index
87   |                 |    +--------------------------> [41:29] L2 index
88   |                 +-------------------------------> [47:42] L1 index (48-bit)
89   |                                                   [51:42] L1 index (52-bit)
90   +-------------------------------------------------> [63] TTBR0/1
91
92
93When using KVM without the Virtualization Host Extensions, the
94hypervisor maps kernel pages in EL2 at a fixed (and potentially
95random) offset from the linear mapping. See the kern_hyp_va macro and
96kvm_update_va_mask function for more details. MMIO devices such as
97GICv2 gets mapped next to the HYP idmap page, as do vectors when
98ARM64_SPECTRE_V3A is enabled for particular CPUs.
99
100When using KVM with the Virtualization Host Extensions, no additional
101mappings are created, since the host kernel runs directly in EL2.
102
10352-bit VA support in the kernel
104-------------------------------
105If the ARMv8.2-LVA optional feature is present, and we are running
106with a 64KB page size; then it is possible to use 52-bits of address
107space for both userspace and kernel addresses. However, any kernel
108binary that supports 52-bit must also be able to fall back to 48-bit
109at early boot time if the hardware feature is not present.
110
111This fallback mechanism necessitates the kernel .text to be in the
112higher addresses such that they are invariant to 48/52-bit VAs. Due
113to the kasan shadow being a fraction of the entire kernel VA space,
114the end of the kasan shadow must also be in the higher half of the
115kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
116the end of the kasan shadow is invariant and dependent on ~0UL,
117whilst the start address will "grow" towards the lower addresses).
118
119In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
120is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
121this obviates the need for an extra variable read. The physvirt
122offset and vmemmap offsets are computed at early boot to enable
123this logic.
124
125As a single binary will need to support both 48-bit and 52-bit VA
126spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
127also must be sized large enough to accommodate a fixed PAGE_OFFSET.
128
129Most code in the kernel should not need to consider the VA_BITS, for
130code that does need to know the VA size the variables are
131defined as follows:
132
133VA_BITS		constant	the *maximum* VA space size
134
135VA_BITS_MIN	constant	the *minimum* VA space size
136
137vabits_actual	variable	the *actual* VA space size
138
139
140Maximum and minimum sizes can be useful to ensure that buffers are
141sized large enough or that addresses are positioned close enough for
142the "worst" case.
143
14452-bit userspace VAs
145--------------------
146To maintain compatibility with software that relies on the ARMv8.0
147VA space maximum size of 48-bits, the kernel will, by default,
148return virtual addresses to userspace from a 48-bit range.
149
150Software can "opt-in" to receiving VAs from a 52-bit space by
151specifying an mmap hint parameter that is larger than 48-bit.
152
153For example:
154
155.. code-block:: c
156
157   maybe_high_address = mmap(~0UL, size, prot, flags,...);
158
159It is also possible to build a debug kernel that returns addresses
160from a 52-bit space by enabling the following kernel config options:
161
162.. code-block:: sh
163
164   CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
165
166Note that this option is only intended for debugging applications
167and should not be used in production.
168