1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55 * as from 2.5, kernels no longer have an init_tasks structure
56 * so we need some other way of telling a new secondary core
57 * where to place its SVC stack
58 */
59 struct secondary_data secondary_data;
60
61 enum ipi_msg_type {
62 IPI_WAKEUP,
63 IPI_TIMER,
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CPU_STOP,
67 IPI_IRQ_WORK,
68 IPI_COMPLETION,
69 NR_IPI,
70 /*
71 * CPU_BACKTRACE is special and not included in NR_IPI
72 * or tracable with trace_ipi_*
73 */
74 IPI_CPU_BACKTRACE = NR_IPI,
75 /*
76 * SGI8-15 can be reserved by secure firmware, and thus may
77 * not be usable by the kernel. Please keep the above limited
78 * to at most 8 entries.
79 */
80 MAX_IPI
81 };
82
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87 static void ipi_setup(int cpu);
88
89 static DECLARE_COMPLETION(cpu_running);
90
91 static struct smp_operations smp_ops __ro_after_init;
92
smp_set_ops(const struct smp_operations * ops)93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95 if (ops)
96 smp_ops = *ops;
97 };
98
get_arch_pgd(pgd_t * pgd)99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102 return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104 return virt_to_phys(pgd);
105 #endif
106 }
107
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111 if (!cpu_vtable[cpu])
112 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114 return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116
secondary_biglittle_init(void)117 static void secondary_biglittle_init(void)
118 {
119 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
secondary_biglittle_prepare(unsigned int cpu)122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124 return 0;
125 }
126
secondary_biglittle_init(void)127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131
__cpu_up(unsigned int cpu,struct task_struct * idle)132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134 int ret;
135
136 if (!smp_ops.smp_boot_secondary)
137 return -ENOSYS;
138
139 ret = secondary_biglittle_prepare(cpu);
140 if (ret)
141 return ret;
142
143 /*
144 * We need to tell the secondary core where to find
145 * its stack and the page tables.
146 */
147 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149 secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151
152 #ifdef CONFIG_MMU
153 secondary_data.pgdir = virt_to_phys(idmap_pgd);
154 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156 secondary_data.task = idle;
157 sync_cache_w(&secondary_data);
158
159 /*
160 * Now bring the CPU into our world.
161 */
162 ret = smp_ops.smp_boot_secondary(cpu, idle);
163 if (ret == 0) {
164 /*
165 * CPU was successfully started, wait for it
166 * to come online or time out.
167 */
168 wait_for_completion_timeout(&cpu_running,
169 msecs_to_jiffies(1000));
170
171 if (!cpu_online(cpu)) {
172 pr_crit("CPU%u: failed to come online\n", cpu);
173 ret = -EIO;
174 }
175 } else {
176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177 }
178
179
180 memset(&secondary_data, 0, sizeof(secondary_data));
181 return ret;
182 }
183
184 /* platform specific SMP operations */
smp_init_cpus(void)185 void __init smp_init_cpus(void)
186 {
187 if (smp_ops.smp_init_cpus)
188 smp_ops.smp_init_cpus();
189 }
190
platform_can_secondary_boot(void)191 int platform_can_secondary_boot(void)
192 {
193 return !!smp_ops.smp_boot_secondary;
194 }
195
platform_can_cpu_hotplug(void)196 int platform_can_cpu_hotplug(void)
197 {
198 #ifdef CONFIG_HOTPLUG_CPU
199 if (smp_ops.cpu_kill)
200 return 1;
201 #endif
202
203 return 0;
204 }
205
206 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)207 static int platform_cpu_kill(unsigned int cpu)
208 {
209 if (smp_ops.cpu_kill)
210 return smp_ops.cpu_kill(cpu);
211 return 1;
212 }
213
platform_cpu_disable(unsigned int cpu)214 static int platform_cpu_disable(unsigned int cpu)
215 {
216 if (smp_ops.cpu_disable)
217 return smp_ops.cpu_disable(cpu);
218
219 return 0;
220 }
221
platform_can_hotplug_cpu(unsigned int cpu)222 int platform_can_hotplug_cpu(unsigned int cpu)
223 {
224 /* cpu_die must be specified to support hotplug */
225 if (!smp_ops.cpu_die)
226 return 0;
227
228 if (smp_ops.cpu_can_disable)
229 return smp_ops.cpu_can_disable(cpu);
230
231 /*
232 * By default, allow disabling all CPUs except the first one,
233 * since this is special on a lot of platforms, e.g. because
234 * of clock tick interrupts.
235 */
236 return cpu != 0;
237 }
238
ipi_teardown(int cpu)239 static void ipi_teardown(int cpu)
240 {
241 int i;
242
243 if (WARN_ON_ONCE(!ipi_irq_base))
244 return;
245
246 for (i = 0; i < nr_ipi; i++)
247 disable_percpu_irq(ipi_irq_base + i);
248 }
249
250 /*
251 * __cpu_disable runs on the processor to be shutdown.
252 */
__cpu_disable(void)253 int __cpu_disable(void)
254 {
255 unsigned int cpu = smp_processor_id();
256 int ret;
257
258 ret = platform_cpu_disable(cpu);
259 if (ret)
260 return ret;
261
262 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
263 remove_cpu_topology(cpu);
264 #endif
265
266 /*
267 * Take this CPU offline. Once we clear this, we can't return,
268 * and we must not schedule until we're ready to give up the cpu.
269 */
270 set_cpu_online(cpu, false);
271 ipi_teardown(cpu);
272
273 /*
274 * OK - migrate IRQs away from this CPU
275 */
276 irq_migrate_all_off_this_cpu();
277
278 /*
279 * Flush user cache and TLB mappings, and then remove this CPU
280 * from the vm mask set of all processes.
281 *
282 * Caches are flushed to the Level of Unification Inner Shareable
283 * to write-back dirty lines to unified caches shared by all CPUs.
284 */
285 flush_cache_louis();
286 local_flush_tlb_all();
287
288 return 0;
289 }
290
291 /*
292 * called on the thread which is asking for a CPU to be shutdown -
293 * waits until shutdown has completed, or it is timed out.
294 */
__cpu_die(unsigned int cpu)295 void __cpu_die(unsigned int cpu)
296 {
297 if (!cpu_wait_death(cpu, 5)) {
298 pr_err("CPU%u: cpu didn't die\n", cpu);
299 return;
300 }
301 pr_debug("CPU%u: shutdown\n", cpu);
302
303 clear_tasks_mm_cpumask(cpu);
304 /*
305 * platform_cpu_kill() is generally expected to do the powering off
306 * and/or cutting of clocks to the dying CPU. Optionally, this may
307 * be done by the CPU which is dying in preference to supporting
308 * this call, but that means there is _no_ synchronisation between
309 * the requesting CPU and the dying CPU actually losing power.
310 */
311 if (!platform_cpu_kill(cpu))
312 pr_err("CPU%u: unable to kill\n", cpu);
313 }
314
315 /*
316 * Called from the idle thread for the CPU which has been shutdown.
317 *
318 * Note that we disable IRQs here, but do not re-enable them
319 * before returning to the caller. This is also the behaviour
320 * of the other hotplug-cpu capable cores, so presumably coming
321 * out of idle fixes this.
322 */
arch_cpu_idle_dead(void)323 void arch_cpu_idle_dead(void)
324 {
325 unsigned int cpu = smp_processor_id();
326
327 idle_task_exit();
328
329 local_irq_disable();
330
331 /*
332 * Flush the data out of the L1 cache for this CPU. This must be
333 * before the completion to ensure that data is safely written out
334 * before platform_cpu_kill() gets called - which may disable
335 * *this* CPU and power down its cache.
336 */
337 flush_cache_louis();
338
339 /*
340 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
341 * this returns, power and/or clocks can be removed at any point
342 * from this CPU and its cache by platform_cpu_kill().
343 */
344 (void)cpu_report_death();
345
346 /*
347 * Ensure that the cache lines associated with that completion are
348 * written out. This covers the case where _this_ CPU is doing the
349 * powering down, to ensure that the completion is visible to the
350 * CPU waiting for this one.
351 */
352 flush_cache_louis();
353
354 /*
355 * The actual CPU shutdown procedure is at least platform (if not
356 * CPU) specific. This may remove power, or it may simply spin.
357 *
358 * Platforms are generally expected *NOT* to return from this call,
359 * although there are some which do because they have no way to
360 * power down the CPU. These platforms are the _only_ reason we
361 * have a return path which uses the fragment of assembly below.
362 *
363 * The return path should not be used for platforms which can
364 * power off the CPU.
365 */
366 if (smp_ops.cpu_die)
367 smp_ops.cpu_die(cpu);
368
369 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
370 cpu);
371
372 /*
373 * Do not return to the idle loop - jump back to the secondary
374 * cpu initialisation. There's some initialisation which needs
375 * to be repeated to undo the effects of taking the CPU offline.
376 */
377 __asm__("mov sp, %0\n"
378 " mov fp, #0\n"
379 " mov r0, %1\n"
380 " b secondary_start_kernel"
381 :
382 : "r" (task_stack_page(current) + THREAD_SIZE - 8),
383 "r" (current)
384 : "r0");
385 }
386 #endif /* CONFIG_HOTPLUG_CPU */
387
388 /*
389 * Called by both boot and secondaries to move global data into
390 * per-processor storage.
391 */
smp_store_cpu_info(unsigned int cpuid)392 static void smp_store_cpu_info(unsigned int cpuid)
393 {
394 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395
396 cpu_info->loops_per_jiffy = loops_per_jiffy;
397 cpu_info->cpuid = read_cpuid_id();
398
399 store_cpu_topology(cpuid);
400 check_cpu_icache_size(cpuid);
401 }
402
set_current(struct task_struct * cur)403 static void set_current(struct task_struct *cur)
404 {
405 /* Set TPIDRURO */
406 asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
407 }
408
409 /*
410 * This is the secondary CPU boot entry. We're using this CPUs
411 * idle thread stack, but a set of temporary page tables.
412 */
secondary_start_kernel(struct task_struct * task)413 asmlinkage void secondary_start_kernel(struct task_struct *task)
414 {
415 struct mm_struct *mm = &init_mm;
416 unsigned int cpu;
417
418 set_current(task);
419
420 secondary_biglittle_init();
421
422 /*
423 * The identity mapping is uncached (strongly ordered), so
424 * switch away from it before attempting any exclusive accesses.
425 */
426 cpu_switch_mm(mm->pgd, mm);
427 local_flush_bp_all();
428 enter_lazy_tlb(mm, current);
429 local_flush_tlb_all();
430
431 /*
432 * All kernel threads share the same mm context; grab a
433 * reference and switch to it.
434 */
435 cpu = smp_processor_id();
436 mmgrab(mm);
437 current->active_mm = mm;
438 cpumask_set_cpu(cpu, mm_cpumask(mm));
439
440 cpu_init();
441
442 #ifndef CONFIG_MMU
443 setup_vectors_base();
444 #endif
445 pr_debug("CPU%u: Booted secondary processor\n", cpu);
446
447 trace_hardirqs_off();
448
449 /*
450 * Give the platform a chance to do its own initialisation.
451 */
452 if (smp_ops.smp_secondary_init)
453 smp_ops.smp_secondary_init(cpu);
454
455 notify_cpu_starting(cpu);
456
457 ipi_setup(cpu);
458
459 calibrate_delay();
460
461 smp_store_cpu_info(cpu);
462
463 /*
464 * OK, now it's safe to let the boot CPU continue. Wait for
465 * the CPU migration code to notice that the CPU is online
466 * before we continue - which happens after __cpu_up returns.
467 */
468 set_cpu_online(cpu, true);
469
470 check_other_bugs();
471
472 complete(&cpu_running);
473
474 local_irq_enable();
475 local_fiq_enable();
476 local_abt_enable();
477
478 /*
479 * OK, it's off to the idle thread for us
480 */
481 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
482 }
483
smp_cpus_done(unsigned int max_cpus)484 void __init smp_cpus_done(unsigned int max_cpus)
485 {
486 int cpu;
487 unsigned long bogosum = 0;
488
489 for_each_online_cpu(cpu)
490 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
491
492 printk(KERN_INFO "SMP: Total of %d processors activated "
493 "(%lu.%02lu BogoMIPS).\n",
494 num_online_cpus(),
495 bogosum / (500000/HZ),
496 (bogosum / (5000/HZ)) % 100);
497
498 hyp_mode_check();
499 }
500
smp_prepare_boot_cpu(void)501 void __init smp_prepare_boot_cpu(void)
502 {
503 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
504 }
505
smp_prepare_cpus(unsigned int max_cpus)506 void __init smp_prepare_cpus(unsigned int max_cpus)
507 {
508 unsigned int ncores = num_possible_cpus();
509
510 init_cpu_topology();
511
512 smp_store_cpu_info(smp_processor_id());
513
514 /*
515 * are we trying to boot more cores than exist?
516 */
517 if (max_cpus > ncores)
518 max_cpus = ncores;
519 if (ncores > 1 && max_cpus) {
520 /*
521 * Initialise the present map, which describes the set of CPUs
522 * actually populated at the present time. A platform should
523 * re-initialize the map in the platforms smp_prepare_cpus()
524 * if present != possible (e.g. physical hotplug).
525 */
526 init_cpu_present(cpu_possible_mask);
527
528 /*
529 * Initialise the SCU if there are more than one CPU
530 * and let them know where to start.
531 */
532 if (smp_ops.smp_prepare_cpus)
533 smp_ops.smp_prepare_cpus(max_cpus);
534 }
535 }
536
537 static const char *ipi_types[NR_IPI] __tracepoint_string = {
538 [IPI_WAKEUP] = "CPU wakeup interrupts",
539 [IPI_TIMER] = "Timer broadcast interrupts",
540 [IPI_RESCHEDULE] = "Rescheduling interrupts",
541 [IPI_CALL_FUNC] = "Function call interrupts",
542 [IPI_CPU_STOP] = "CPU stop interrupts",
543 [IPI_IRQ_WORK] = "IRQ work interrupts",
544 [IPI_COMPLETION] = "completion interrupts",
545 };
546
547 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
548
show_ipi_list(struct seq_file * p,int prec)549 void show_ipi_list(struct seq_file *p, int prec)
550 {
551 unsigned int cpu, i;
552
553 for (i = 0; i < NR_IPI; i++) {
554 if (!ipi_desc[i])
555 continue;
556
557 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
558
559 for_each_online_cpu(cpu)
560 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
561
562 seq_printf(p, " %s\n", ipi_types[i]);
563 }
564 }
565
arch_send_call_function_ipi_mask(const struct cpumask * mask)566 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
567 {
568 smp_cross_call(mask, IPI_CALL_FUNC);
569 }
570
arch_send_wakeup_ipi_mask(const struct cpumask * mask)571 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
572 {
573 smp_cross_call(mask, IPI_WAKEUP);
574 }
575
arch_send_call_function_single_ipi(int cpu)576 void arch_send_call_function_single_ipi(int cpu)
577 {
578 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
579 }
580
581 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)582 void arch_irq_work_raise(void)
583 {
584 if (arch_irq_work_has_interrupt())
585 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
586 }
587 #endif
588
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)590 void tick_broadcast(const struct cpumask *mask)
591 {
592 smp_cross_call(mask, IPI_TIMER);
593 }
594 #endif
595
596 static DEFINE_RAW_SPINLOCK(stop_lock);
597
598 /*
599 * ipi_cpu_stop - handle IPI from smp_send_stop()
600 */
ipi_cpu_stop(unsigned int cpu)601 static void ipi_cpu_stop(unsigned int cpu)
602 {
603 local_fiq_disable();
604
605 if (system_state <= SYSTEM_RUNNING) {
606 raw_spin_lock(&stop_lock);
607 pr_crit("CPU%u: stopping\n", cpu);
608 dump_stack();
609 raw_spin_unlock(&stop_lock);
610 }
611
612 set_cpu_online(cpu, false);
613
614 while (1) {
615 cpu_relax();
616 wfe();
617 }
618 }
619
620 static DEFINE_PER_CPU(struct completion *, cpu_completion);
621
register_ipi_completion(struct completion * completion,int cpu)622 int register_ipi_completion(struct completion *completion, int cpu)
623 {
624 per_cpu(cpu_completion, cpu) = completion;
625 return IPI_COMPLETION;
626 }
627
ipi_complete(unsigned int cpu)628 static void ipi_complete(unsigned int cpu)
629 {
630 complete(per_cpu(cpu_completion, cpu));
631 }
632
633 /*
634 * Main handler for inter-processor interrupts
635 */
do_handle_IPI(int ipinr)636 static void do_handle_IPI(int ipinr)
637 {
638 unsigned int cpu = smp_processor_id();
639
640 if ((unsigned)ipinr < NR_IPI)
641 trace_ipi_entry(ipi_types[ipinr]);
642
643 switch (ipinr) {
644 case IPI_WAKEUP:
645 break;
646
647 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
648 case IPI_TIMER:
649 tick_receive_broadcast();
650 break;
651 #endif
652
653 case IPI_RESCHEDULE:
654 scheduler_ipi();
655 break;
656
657 case IPI_CALL_FUNC:
658 generic_smp_call_function_interrupt();
659 break;
660
661 case IPI_CPU_STOP:
662 ipi_cpu_stop(cpu);
663 break;
664
665 #ifdef CONFIG_IRQ_WORK
666 case IPI_IRQ_WORK:
667 irq_work_run();
668 break;
669 #endif
670
671 case IPI_COMPLETION:
672 ipi_complete(cpu);
673 break;
674
675 case IPI_CPU_BACKTRACE:
676 printk_deferred_enter();
677 nmi_cpu_backtrace(get_irq_regs());
678 printk_deferred_exit();
679 break;
680
681 default:
682 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
683 cpu, ipinr);
684 break;
685 }
686
687 if ((unsigned)ipinr < NR_IPI)
688 trace_ipi_exit(ipi_types[ipinr]);
689 }
690
691 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)692 void handle_IPI(int ipinr, struct pt_regs *regs)
693 {
694 struct pt_regs *old_regs = set_irq_regs(regs);
695
696 irq_enter();
697 do_handle_IPI(ipinr);
698 irq_exit();
699
700 set_irq_regs(old_regs);
701 }
702
ipi_handler(int irq,void * data)703 static irqreturn_t ipi_handler(int irq, void *data)
704 {
705 do_handle_IPI(irq - ipi_irq_base);
706 return IRQ_HANDLED;
707 }
708
smp_cross_call(const struct cpumask * target,unsigned int ipinr)709 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
710 {
711 trace_ipi_raise(target, ipi_types[ipinr]);
712 __ipi_send_mask(ipi_desc[ipinr], target);
713 }
714
ipi_setup(int cpu)715 static void ipi_setup(int cpu)
716 {
717 int i;
718
719 if (WARN_ON_ONCE(!ipi_irq_base))
720 return;
721
722 for (i = 0; i < nr_ipi; i++)
723 enable_percpu_irq(ipi_irq_base + i, 0);
724 }
725
set_smp_ipi_range(int ipi_base,int n)726 void __init set_smp_ipi_range(int ipi_base, int n)
727 {
728 int i;
729
730 WARN_ON(n < MAX_IPI);
731 nr_ipi = min(n, MAX_IPI);
732
733 for (i = 0; i < nr_ipi; i++) {
734 int err;
735
736 err = request_percpu_irq(ipi_base + i, ipi_handler,
737 "IPI", &irq_stat);
738 WARN_ON(err);
739
740 ipi_desc[i] = irq_to_desc(ipi_base + i);
741 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
742 }
743
744 ipi_irq_base = ipi_base;
745
746 /* Setup the boot CPU immediately */
747 ipi_setup(smp_processor_id());
748 }
749
smp_send_reschedule(int cpu)750 void smp_send_reschedule(int cpu)
751 {
752 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
753 }
754
smp_send_stop(void)755 void smp_send_stop(void)
756 {
757 unsigned long timeout;
758 struct cpumask mask;
759
760 cpumask_copy(&mask, cpu_online_mask);
761 cpumask_clear_cpu(smp_processor_id(), &mask);
762 if (!cpumask_empty(&mask))
763 smp_cross_call(&mask, IPI_CPU_STOP);
764
765 /* Wait up to one second for other CPUs to stop */
766 timeout = USEC_PER_SEC;
767 while (num_online_cpus() > 1 && timeout--)
768 udelay(1);
769
770 if (num_online_cpus() > 1)
771 pr_warn("SMP: failed to stop secondary CPUs\n");
772 }
773
774 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
775 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
776 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
777 * kdump fails. So split out the panic_smp_self_stop() and add
778 * set_cpu_online(smp_processor_id(), false).
779 */
panic_smp_self_stop(void)780 void panic_smp_self_stop(void)
781 {
782 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
783 smp_processor_id());
784 set_cpu_online(smp_processor_id(), false);
785 while (1)
786 cpu_relax();
787 }
788
789 #ifdef CONFIG_CPU_FREQ
790
791 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
792 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
793 static unsigned long global_l_p_j_ref;
794 static unsigned long global_l_p_j_ref_freq;
795
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)796 static int cpufreq_callback(struct notifier_block *nb,
797 unsigned long val, void *data)
798 {
799 struct cpufreq_freqs *freq = data;
800 struct cpumask *cpus = freq->policy->cpus;
801 int cpu, first = cpumask_first(cpus);
802 unsigned int lpj;
803
804 if (freq->flags & CPUFREQ_CONST_LOOPS)
805 return NOTIFY_OK;
806
807 if (!per_cpu(l_p_j_ref, first)) {
808 for_each_cpu(cpu, cpus) {
809 per_cpu(l_p_j_ref, cpu) =
810 per_cpu(cpu_data, cpu).loops_per_jiffy;
811 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
812 }
813
814 if (!global_l_p_j_ref) {
815 global_l_p_j_ref = loops_per_jiffy;
816 global_l_p_j_ref_freq = freq->old;
817 }
818 }
819
820 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
821 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
822 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
823 global_l_p_j_ref_freq,
824 freq->new);
825
826 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
827 per_cpu(l_p_j_ref_freq, first), freq->new);
828 for_each_cpu(cpu, cpus)
829 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
830 }
831 return NOTIFY_OK;
832 }
833
834 static struct notifier_block cpufreq_notifier = {
835 .notifier_call = cpufreq_callback,
836 };
837
register_cpufreq_notifier(void)838 static int __init register_cpufreq_notifier(void)
839 {
840 return cpufreq_register_notifier(&cpufreq_notifier,
841 CPUFREQ_TRANSITION_NOTIFIER);
842 }
843 core_initcall(register_cpufreq_notifier);
844
845 #endif
846
raise_nmi(cpumask_t * mask)847 static void raise_nmi(cpumask_t *mask)
848 {
849 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
850 }
851
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)852 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
853 {
854 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
855 }
856