1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
33 */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 bool check_swap, bool pte_is_tagged)
40 {
41 if (check_swap && is_swap_pte(old_pte)) {
42 swp_entry_t entry = pte_to_swp_entry(old_pte);
43
44 if (!non_swap_entry(entry))
45 mte_restore_tags(entry, page);
46 }
47
48 if (!pte_is_tagged)
49 return;
50
51 if (try_page_mte_tagging(page)) {
52 mte_clear_page_tags(page_address(page));
53 set_page_mte_tagged(page);
54 }
55 }
56
mte_sync_tags(pte_t old_pte,pte_t pte)57 void mte_sync_tags(pte_t old_pte, pte_t pte)
58 {
59 struct page *page = pte_page(pte);
60 long i, nr_pages = compound_nr(page);
61 bool check_swap = nr_pages == 1;
62 bool pte_is_tagged = pte_tagged(pte);
63
64 /* Early out if there's nothing to do */
65 if (!check_swap && !pte_is_tagged)
66 return;
67
68 /* if PG_mte_tagged is set, tags have already been initialised */
69 for (i = 0; i < nr_pages; i++, page++) {
70 if (!page_mte_tagged(page)) {
71 mte_sync_page_tags(page, old_pte, check_swap,
72 pte_is_tagged);
73 set_page_mte_tagged(page);
74 }
75 }
76
77 /* ensure the tags are visible before the PTE is set */
78 smp_wmb();
79 }
80
memcmp_pages(struct page * page1,struct page * page2)81 int memcmp_pages(struct page *page1, struct page *page2)
82 {
83 char *addr1, *addr2;
84 int ret;
85
86 addr1 = page_address(page1);
87 addr2 = page_address(page2);
88 ret = memcmp(addr1, addr2, PAGE_SIZE);
89
90 if (!system_supports_mte() || ret)
91 return ret;
92
93 /*
94 * If the page content is identical but at least one of the pages is
95 * tagged, return non-zero to avoid KSM merging. If only one of the
96 * pages is tagged, set_pte_at() may zero or change the tags of the
97 * other page via mte_sync_tags().
98 */
99 if (page_mte_tagged(page1) || page_mte_tagged(page2))
100 return addr1 != addr2;
101
102 return ret;
103 }
104
__mte_enable_kernel(const char * mode,unsigned long tcf)105 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
106 {
107 /* Enable MTE Sync Mode for EL1. */
108 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
109 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
110 isb();
111
112 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
113 }
114
115 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)116 void mte_enable_kernel_sync(void)
117 {
118 /*
119 * Make sure we enter this function when no PE has set
120 * async mode previously.
121 */
122 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
123 "MTE async mode enabled system wide!");
124
125 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
126 }
127
mte_enable_kernel_async(void)128 void mte_enable_kernel_async(void)
129 {
130 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
131
132 /*
133 * MTE async mode is set system wide by the first PE that
134 * executes this function.
135 *
136 * Note: If in future KASAN acquires a runtime switching
137 * mode in between sync and async, this strategy needs
138 * to be reviewed.
139 */
140 if (!system_uses_mte_async_or_asymm_mode())
141 static_branch_enable(&mte_async_or_asymm_mode);
142 }
143
mte_enable_kernel_asymm(void)144 void mte_enable_kernel_asymm(void)
145 {
146 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
147 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
148
149 /*
150 * MTE asymm mode behaves as async mode for store
151 * operations. The mode is set system wide by the
152 * first PE that executes this function.
153 *
154 * Note: If in future KASAN acquires a runtime switching
155 * mode in between sync and async, this strategy needs
156 * to be reviewed.
157 */
158 if (!system_uses_mte_async_or_asymm_mode())
159 static_branch_enable(&mte_async_or_asymm_mode);
160 } else {
161 /*
162 * If the CPU does not support MTE asymmetric mode the
163 * kernel falls back on synchronous mode which is the
164 * default for kasan=on.
165 */
166 mte_enable_kernel_sync();
167 }
168 }
169 #endif
170
171 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)172 void mte_check_tfsr_el1(void)
173 {
174 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
175
176 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
177 /*
178 * Note: isb() is not required after this direct write
179 * because there is no indirect read subsequent to it
180 * (per ARM DDI 0487F.c table D13-1).
181 */
182 write_sysreg_s(0, SYS_TFSR_EL1);
183
184 kasan_report_async();
185 }
186 }
187 #endif
188
189 /*
190 * This is where we actually resolve the system and process MTE mode
191 * configuration into an actual value in SCTLR_EL1 that affects
192 * userspace.
193 */
mte_update_sctlr_user(struct task_struct * task)194 static void mte_update_sctlr_user(struct task_struct *task)
195 {
196 /*
197 * This must be called with preemption disabled and can only be called
198 * on the current or next task since the CPU must match where the thread
199 * is going to run. The caller is responsible for calling
200 * update_sctlr_el1() later in the same preemption disabled block.
201 */
202 unsigned long sctlr = task->thread.sctlr_user;
203 unsigned long mte_ctrl = task->thread.mte_ctrl;
204 unsigned long pref, resolved_mte_tcf;
205
206 pref = __this_cpu_read(mte_tcf_preferred);
207 /*
208 * If there is no overlap between the system preferred and
209 * program requested values go with what was requested.
210 */
211 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
212 sctlr &= ~SCTLR_EL1_TCF0_MASK;
213 /*
214 * Pick an actual setting. The order in which we check for
215 * set bits and map into register values determines our
216 * default order.
217 */
218 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
219 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
220 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
221 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
222 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
223 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
224 task->thread.sctlr_user = sctlr;
225 }
226
mte_update_gcr_excl(struct task_struct * task)227 static void mte_update_gcr_excl(struct task_struct *task)
228 {
229 /*
230 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
231 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
232 */
233 if (kasan_hw_tags_enabled())
234 return;
235
236 write_sysreg_s(
237 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
238 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
239 SYS_GCR_EL1);
240 }
241
242 #ifdef CONFIG_KASAN_HW_TAGS
243 /* Only called from assembly, silence sparse */
244 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
245 __le32 *updptr, int nr_inst);
246
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)247 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
248 __le32 *updptr, int nr_inst)
249 {
250 BUG_ON(nr_inst != 1); /* Branch -> NOP */
251
252 if (kasan_hw_tags_enabled())
253 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
254 }
255 #endif
256
mte_thread_init_user(void)257 void mte_thread_init_user(void)
258 {
259 if (!system_supports_mte())
260 return;
261
262 /* clear any pending asynchronous tag fault */
263 dsb(ish);
264 write_sysreg_s(0, SYS_TFSRE0_EL1);
265 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
266 /* disable tag checking and reset tag generation mask */
267 set_mte_ctrl(current, 0);
268 }
269
mte_thread_switch(struct task_struct * next)270 void mte_thread_switch(struct task_struct *next)
271 {
272 if (!system_supports_mte())
273 return;
274
275 mte_update_sctlr_user(next);
276 mte_update_gcr_excl(next);
277
278 /* TCO may not have been disabled on exception entry for the current task. */
279 mte_disable_tco_entry(next);
280
281 /*
282 * Check if an async tag exception occurred at EL1.
283 *
284 * Note: On the context switch path we rely on the dsb() present
285 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
286 * are synchronized before this point.
287 */
288 isb();
289 mte_check_tfsr_el1();
290 }
291
mte_cpu_setup(void)292 void mte_cpu_setup(void)
293 {
294 u64 rgsr;
295
296 /*
297 * CnP must be enabled only after the MAIR_EL1 register has been set
298 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
299 * lead to the wrong memory type being used for a brief window during
300 * CPU power-up.
301 *
302 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
303 * make sure that is the case.
304 */
305 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
306 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
307
308 /* Normal Tagged memory type at the corresponding MAIR index */
309 sysreg_clear_set(mair_el1,
310 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
311 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
312 MT_NORMAL_TAGGED));
313
314 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
315
316 /*
317 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
318 * RGSR_EL1.SEED must be non-zero for IRG to produce
319 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
320 * must initialize it.
321 */
322 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
323 SYS_RGSR_EL1_SEED_SHIFT;
324 if (rgsr == 0)
325 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
326 write_sysreg_s(rgsr, SYS_RGSR_EL1);
327
328 /* clear any pending tag check faults in TFSR*_EL1 */
329 write_sysreg_s(0, SYS_TFSR_EL1);
330 write_sysreg_s(0, SYS_TFSRE0_EL1);
331
332 local_flush_tlb_all();
333 }
334
mte_suspend_enter(void)335 void mte_suspend_enter(void)
336 {
337 if (!system_supports_mte())
338 return;
339
340 /*
341 * The barriers are required to guarantee that the indirect writes
342 * to TFSR_EL1 are synchronized before we report the state.
343 */
344 dsb(nsh);
345 isb();
346
347 /* Report SYS_TFSR_EL1 before suspend entry */
348 mte_check_tfsr_el1();
349 }
350
mte_suspend_exit(void)351 void mte_suspend_exit(void)
352 {
353 if (!system_supports_mte())
354 return;
355
356 mte_cpu_setup();
357 }
358
set_mte_ctrl(struct task_struct * task,unsigned long arg)359 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
360 {
361 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
362 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
363
364 if (!system_supports_mte())
365 return 0;
366
367 if (arg & PR_MTE_TCF_ASYNC)
368 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
369 if (arg & PR_MTE_TCF_SYNC)
370 mte_ctrl |= MTE_CTRL_TCF_SYNC;
371
372 /*
373 * If the system supports it and both sync and async modes are
374 * specified then implicitly enable asymmetric mode.
375 * Userspace could see a mix of both sync and async anyway due
376 * to differing or changing defaults on CPUs.
377 */
378 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
379 (arg & PR_MTE_TCF_ASYNC) &&
380 (arg & PR_MTE_TCF_SYNC))
381 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
382
383 task->thread.mte_ctrl = mte_ctrl;
384 if (task == current) {
385 preempt_disable();
386 mte_update_sctlr_user(task);
387 mte_update_gcr_excl(task);
388 update_sctlr_el1(task->thread.sctlr_user);
389 preempt_enable();
390 }
391
392 return 0;
393 }
394
get_mte_ctrl(struct task_struct * task)395 long get_mte_ctrl(struct task_struct *task)
396 {
397 unsigned long ret;
398 u64 mte_ctrl = task->thread.mte_ctrl;
399 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
400 SYS_GCR_EL1_EXCL_MASK;
401
402 if (!system_supports_mte())
403 return 0;
404
405 ret = incl << PR_MTE_TAG_SHIFT;
406 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
407 ret |= PR_MTE_TCF_ASYNC;
408 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
409 ret |= PR_MTE_TCF_SYNC;
410
411 return ret;
412 }
413
414 /*
415 * Access MTE tags in another process' address space as given in mm. Update
416 * the number of tags copied. Return 0 if any tags copied, error otherwise.
417 * Inspired by __access_remote_vm().
418 */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)419 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
420 struct iovec *kiov, unsigned int gup_flags)
421 {
422 struct vm_area_struct *vma;
423 void __user *buf = kiov->iov_base;
424 size_t len = kiov->iov_len;
425 int ret;
426 int write = gup_flags & FOLL_WRITE;
427
428 if (!access_ok(buf, len))
429 return -EFAULT;
430
431 if (mmap_read_lock_killable(mm))
432 return -EIO;
433
434 while (len) {
435 unsigned long tags, offset;
436 void *maddr;
437 struct page *page = NULL;
438
439 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
440 &vma, NULL);
441 if (ret <= 0)
442 break;
443
444 /*
445 * Only copy tags if the page has been mapped as PROT_MTE
446 * (PG_mte_tagged set). Otherwise the tags are not valid and
447 * not accessible to user. Moreover, an mprotect(PROT_MTE)
448 * would cause the existing tags to be cleared if the page
449 * was never mapped with PROT_MTE.
450 */
451 if (!(vma->vm_flags & VM_MTE)) {
452 ret = -EOPNOTSUPP;
453 put_page(page);
454 break;
455 }
456 WARN_ON_ONCE(!page_mte_tagged(page));
457
458 /* limit access to the end of the page */
459 offset = offset_in_page(addr);
460 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
461
462 maddr = page_address(page);
463 if (write) {
464 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
465 set_page_dirty_lock(page);
466 } else {
467 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
468 }
469 put_page(page);
470
471 /* error accessing the tracer's buffer */
472 if (!tags)
473 break;
474
475 len -= tags;
476 buf += tags;
477 addr += tags * MTE_GRANULE_SIZE;
478 }
479 mmap_read_unlock(mm);
480
481 /* return an error if no tags copied */
482 kiov->iov_len = buf - kiov->iov_base;
483 if (!kiov->iov_len) {
484 /* check for error accessing the tracee's address space */
485 if (ret <= 0)
486 return -EIO;
487 else
488 return -EFAULT;
489 }
490
491 return 0;
492 }
493
494 /*
495 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
496 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
497 */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)498 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
499 struct iovec *kiov, unsigned int gup_flags)
500 {
501 struct mm_struct *mm;
502 int ret;
503
504 mm = get_task_mm(tsk);
505 if (!mm)
506 return -EPERM;
507
508 if (!tsk->ptrace || (current != tsk->parent) ||
509 ((get_dumpable(mm) != SUID_DUMP_USER) &&
510 !ptracer_capable(tsk, mm->user_ns))) {
511 mmput(mm);
512 return -EPERM;
513 }
514
515 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
516 mmput(mm);
517
518 return ret;
519 }
520
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)521 int mte_ptrace_copy_tags(struct task_struct *child, long request,
522 unsigned long addr, unsigned long data)
523 {
524 int ret;
525 struct iovec kiov;
526 struct iovec __user *uiov = (void __user *)data;
527 unsigned int gup_flags = FOLL_FORCE;
528
529 if (!system_supports_mte())
530 return -EIO;
531
532 if (get_user(kiov.iov_base, &uiov->iov_base) ||
533 get_user(kiov.iov_len, &uiov->iov_len))
534 return -EFAULT;
535
536 if (request == PTRACE_POKEMTETAGS)
537 gup_flags |= FOLL_WRITE;
538
539 /* align addr to the MTE tag granule */
540 addr &= MTE_GRANULE_MASK;
541
542 ret = access_remote_tags(child, addr, &kiov, gup_flags);
543 if (!ret)
544 ret = put_user(kiov.iov_len, &uiov->iov_len);
545
546 return ret;
547 }
548
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)549 static ssize_t mte_tcf_preferred_show(struct device *dev,
550 struct device_attribute *attr, char *buf)
551 {
552 switch (per_cpu(mte_tcf_preferred, dev->id)) {
553 case MTE_CTRL_TCF_ASYNC:
554 return sysfs_emit(buf, "async\n");
555 case MTE_CTRL_TCF_SYNC:
556 return sysfs_emit(buf, "sync\n");
557 case MTE_CTRL_TCF_ASYMM:
558 return sysfs_emit(buf, "asymm\n");
559 default:
560 return sysfs_emit(buf, "???\n");
561 }
562 }
563
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)564 static ssize_t mte_tcf_preferred_store(struct device *dev,
565 struct device_attribute *attr,
566 const char *buf, size_t count)
567 {
568 u64 tcf;
569
570 if (sysfs_streq(buf, "async"))
571 tcf = MTE_CTRL_TCF_ASYNC;
572 else if (sysfs_streq(buf, "sync"))
573 tcf = MTE_CTRL_TCF_SYNC;
574 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
575 tcf = MTE_CTRL_TCF_ASYMM;
576 else
577 return -EINVAL;
578
579 device_lock(dev);
580 per_cpu(mte_tcf_preferred, dev->id) = tcf;
581 device_unlock(dev);
582
583 return count;
584 }
585 static DEVICE_ATTR_RW(mte_tcf_preferred);
586
register_mte_tcf_preferred_sysctl(void)587 static int register_mte_tcf_preferred_sysctl(void)
588 {
589 unsigned int cpu;
590
591 if (!system_supports_mte())
592 return 0;
593
594 for_each_possible_cpu(cpu) {
595 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
596 device_create_file(get_cpu_device(cpu),
597 &dev_attr_mte_tcf_preferred);
598 }
599
600 return 0;
601 }
602 subsys_initcall(register_mte_tcf_preferred_sysctl);
603
604 /*
605 * Return 0 on success, the number of bytes not probed otherwise.
606 */
mte_probe_user_range(const char __user * uaddr,size_t size)607 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
608 {
609 const char __user *end = uaddr + size;
610 int err = 0;
611 char val;
612
613 __raw_get_user(val, uaddr, err);
614 if (err)
615 return size;
616
617 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
618 while (uaddr < end) {
619 /*
620 * A read is sufficient for mte, the caller should have probed
621 * for the pte write permission if required.
622 */
623 __raw_get_user(val, uaddr, err);
624 if (err)
625 return end - uaddr;
626 uaddr += MTE_GRANULE_SIZE;
627 }
628 (void)val;
629
630 return 0;
631 }
632