1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 ** IA64 System Bus Adapter (SBA) I/O MMU manager
4 **
5 ** (c) Copyright 2002-2005 Alex Williamson
6 ** (c) Copyright 2002-2003 Grant Grundler
7 ** (c) Copyright 2002-2005 Hewlett-Packard Company
8 **
9 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
10 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
11 **
12 **
13 **
14 ** This module initializes the IOC (I/O Controller) found on HP
15 ** McKinley machines and their successors.
16 **
17 */
18
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/acpi.h>
31 #include <linux/efi.h>
32 #include <linux/nodemask.h>
33 #include <linux/bitops.h> /* hweight64() */
34 #include <linux/crash_dump.h>
35 #include <linux/iommu-helper.h>
36 #include <linux/dma-map-ops.h>
37 #include <linux/prefetch.h>
38 #include <linux/swiotlb.h>
39
40 #include <asm/delay.h> /* ia64_get_itc() */
41 #include <asm/io.h>
42 #include <asm/page.h> /* PAGE_OFFSET */
43 #include <asm/dma.h>
44
45 #include <asm/acpi-ext.h>
46
47 #define PFX "IOC: "
48
49 /*
50 ** Enabling timing search of the pdir resource map. Output in /proc.
51 ** Disabled by default to optimize performance.
52 */
53 #undef PDIR_SEARCH_TIMING
54
55 /*
56 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
57 ** not defined, all DMA will be 32bit and go through the TLB.
58 ** There's potentially a conflict in the bio merge code with us
59 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
60 ** appears to give more performance than bio-level virtual merging, we'll
61 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
62 ** completely restrict DMA to the IOMMU.
63 */
64 #define ALLOW_IOV_BYPASS
65
66 /*
67 ** This option specifically allows/disallows bypassing scatterlists with
68 ** multiple entries. Coalescing these entries can allow better DMA streaming
69 ** and in some cases shows better performance than entirely bypassing the
70 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
71 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
72 */
73 #undef ALLOW_IOV_BYPASS_SG
74
75 /*
76 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
77 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
78 ** disconnect on 4k boundaries and prevent such issues. If the device is
79 ** particularly aggressive, this option will keep the entire pdir valid such
80 ** that prefetching will hit a valid address. This could severely impact
81 ** error containment, and is therefore off by default. The page that is
82 ** used for spill-over is poisoned, so that should help debugging somewhat.
83 */
84 #undef FULL_VALID_PDIR
85
86 #define ENABLE_MARK_CLEAN
87
88 /*
89 ** The number of debug flags is a clue - this code is fragile. NOTE: since
90 ** tightening the use of res_lock the resource bitmap and actual pdir are no
91 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
92 ** like that.
93 */
94 #undef DEBUG_SBA_INIT
95 #undef DEBUG_SBA_RUN
96 #undef DEBUG_SBA_RUN_SG
97 #undef DEBUG_SBA_RESOURCE
98 #undef ASSERT_PDIR_SANITY
99 #undef DEBUG_LARGE_SG_ENTRIES
100 #undef DEBUG_BYPASS
101
102 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
103 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
104 #endif
105
106 #define SBA_INLINE __inline__
107 /* #define SBA_INLINE */
108
109 #ifdef DEBUG_SBA_INIT
110 #define DBG_INIT(x...) printk(x)
111 #else
112 #define DBG_INIT(x...)
113 #endif
114
115 #ifdef DEBUG_SBA_RUN
116 #define DBG_RUN(x...) printk(x)
117 #else
118 #define DBG_RUN(x...)
119 #endif
120
121 #ifdef DEBUG_SBA_RUN_SG
122 #define DBG_RUN_SG(x...) printk(x)
123 #else
124 #define DBG_RUN_SG(x...)
125 #endif
126
127
128 #ifdef DEBUG_SBA_RESOURCE
129 #define DBG_RES(x...) printk(x)
130 #else
131 #define DBG_RES(x...)
132 #endif
133
134 #ifdef DEBUG_BYPASS
135 #define DBG_BYPASS(x...) printk(x)
136 #else
137 #define DBG_BYPASS(x...)
138 #endif
139
140 #ifdef ASSERT_PDIR_SANITY
141 #define ASSERT(expr) \
142 if(!(expr)) { \
143 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
144 panic(#expr); \
145 }
146 #else
147 #define ASSERT(expr)
148 #endif
149
150 /*
151 ** The number of pdir entries to "free" before issuing
152 ** a read to PCOM register to flush out PCOM writes.
153 ** Interacts with allocation granularity (ie 4 or 8 entries
154 ** allocated and free'd/purged at a time might make this
155 ** less interesting).
156 */
157 #define DELAYED_RESOURCE_CNT 64
158
159 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
160
161 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
162 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
163 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
166
167 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
168
169 #define IOC_FUNC_ID 0x000
170 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
171 #define IOC_IBASE 0x300 /* IO TLB */
172 #define IOC_IMASK 0x308
173 #define IOC_PCOM 0x310
174 #define IOC_TCNFG 0x318
175 #define IOC_PDIR_BASE 0x320
176
177 #define IOC_ROPE0_CFG 0x500
178 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
179
180
181 /* AGP GART driver looks for this */
182 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
183
184 /*
185 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
186 **
187 ** Some IOCs (sx1000) can run at the above pages sizes, but are
188 ** really only supported using the IOC at a 4k page size.
189 **
190 ** iovp_size could only be greater than PAGE_SIZE if we are
191 ** confident the drivers really only touch the next physical
192 ** page iff that driver instance owns it.
193 */
194 static unsigned long iovp_size;
195 static unsigned long iovp_shift;
196 static unsigned long iovp_mask;
197
198 struct ioc {
199 void __iomem *ioc_hpa; /* I/O MMU base address */
200 char *res_map; /* resource map, bit == pdir entry */
201 u64 *pdir_base; /* physical base address */
202 unsigned long ibase; /* pdir IOV Space base */
203 unsigned long imask; /* pdir IOV Space mask */
204
205 unsigned long *res_hint; /* next avail IOVP - circular search */
206 unsigned long dma_mask;
207 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
208 /* clearing pdir to prevent races with allocations. */
209 unsigned int res_bitshift; /* from the RIGHT! */
210 unsigned int res_size; /* size of resource map in bytes */
211 #ifdef CONFIG_NUMA
212 unsigned int node; /* node where this IOC lives */
213 #endif
214 #if DELAYED_RESOURCE_CNT > 0
215 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
216 /* than res_lock for bigger systems. */
217 int saved_cnt;
218 struct sba_dma_pair {
219 dma_addr_t iova;
220 size_t size;
221 } saved[DELAYED_RESOURCE_CNT];
222 #endif
223
224 #ifdef PDIR_SEARCH_TIMING
225 #define SBA_SEARCH_SAMPLE 0x100
226 unsigned long avg_search[SBA_SEARCH_SAMPLE];
227 unsigned long avg_idx; /* current index into avg_search */
228 #endif
229
230 /* Stuff we don't need in performance path */
231 struct ioc *next; /* list of IOC's in system */
232 acpi_handle handle; /* for multiple IOC's */
233 const char *name;
234 unsigned int func_id;
235 unsigned int rev; /* HW revision of chip */
236 u32 iov_size;
237 unsigned int pdir_size; /* in bytes, determined by IOV Space size */
238 struct pci_dev *sac_only_dev;
239 };
240
241 static struct ioc *ioc_list, *ioc_found;
242 static int reserve_sba_gart = 1;
243
244 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
245 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
246
247 #define sba_sg_address(sg) sg_virt((sg))
248
249 #ifdef FULL_VALID_PDIR
250 static u64 prefetch_spill_page;
251 #endif
252
253 #define GET_IOC(dev) ((dev_is_pci(dev)) \
254 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
255
256 /*
257 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
258 ** (or rather not merge) DMAs into manageable chunks.
259 ** On parisc, this is more of the software/tuning constraint
260 ** rather than the HW. I/O MMU allocation algorithms can be
261 ** faster with smaller sizes (to some degree).
262 */
263 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
264
265 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
266
267 /************************************
268 ** SBA register read and write support
269 **
270 ** BE WARNED: register writes are posted.
271 ** (ie follow writes which must reach HW with a read)
272 **
273 */
274 #define READ_REG(addr) __raw_readq(addr)
275 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
276
277 #ifdef DEBUG_SBA_INIT
278
279 /**
280 * sba_dump_tlb - debugging only - print IOMMU operating parameters
281 * @hpa: base address of the IOMMU
282 *
283 * Print the size/location of the IO MMU PDIR.
284 */
285 static void
sba_dump_tlb(char * hpa)286 sba_dump_tlb(char *hpa)
287 {
288 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
289 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
290 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
291 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
292 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
293 DBG_INIT("\n");
294 }
295 #endif
296
297
298 #ifdef ASSERT_PDIR_SANITY
299
300 /**
301 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
302 * @ioc: IO MMU structure which owns the pdir we are interested in.
303 * @msg: text to print ont the output line.
304 * @pide: pdir index.
305 *
306 * Print one entry of the IO MMU PDIR in human readable form.
307 */
308 static void
sba_dump_pdir_entry(struct ioc * ioc,char * msg,uint pide)309 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
310 {
311 /* start printing from lowest pde in rval */
312 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
313 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
314 uint rcnt;
315
316 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
317 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
318
319 rcnt = 0;
320 while (rcnt < BITS_PER_LONG) {
321 printk(KERN_DEBUG "%s %2d %p %016Lx\n",
322 (rcnt == (pide & (BITS_PER_LONG - 1)))
323 ? " -->" : " ",
324 rcnt, ptr, (unsigned long long) *ptr );
325 rcnt++;
326 ptr++;
327 }
328 printk(KERN_DEBUG "%s", msg);
329 }
330
331
332 /**
333 * sba_check_pdir - debugging only - consistency checker
334 * @ioc: IO MMU structure which owns the pdir we are interested in.
335 * @msg: text to print ont the output line.
336 *
337 * Verify the resource map and pdir state is consistent
338 */
339 static int
sba_check_pdir(struct ioc * ioc,char * msg)340 sba_check_pdir(struct ioc *ioc, char *msg)
341 {
342 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
343 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
344 u64 *pptr = ioc->pdir_base; /* pdir ptr */
345 uint pide = 0;
346
347 while (rptr < rptr_end) {
348 u64 rval;
349 int rcnt; /* number of bits we might check */
350
351 rval = *rptr;
352 rcnt = 64;
353
354 while (rcnt) {
355 /* Get last byte and highest bit from that */
356 u32 pde = ((u32)((*pptr >> (63)) & 0x1));
357 if ((rval & 0x1) ^ pde)
358 {
359 /*
360 ** BUMMER! -- res_map != pdir --
361 ** Dump rval and matching pdir entries
362 */
363 sba_dump_pdir_entry(ioc, msg, pide);
364 return(1);
365 }
366 rcnt--;
367 rval >>= 1; /* try the next bit */
368 pptr++;
369 pide++;
370 }
371 rptr++; /* look at next word of res_map */
372 }
373 /* It'd be nice if we always got here :^) */
374 return 0;
375 }
376
377
378 /**
379 * sba_dump_sg - debugging only - print Scatter-Gather list
380 * @ioc: IO MMU structure which owns the pdir we are interested in.
381 * @startsg: head of the SG list
382 * @nents: number of entries in SG list
383 *
384 * print the SG list so we can verify it's correct by hand.
385 */
386 static void
sba_dump_sg(struct ioc * ioc,struct scatterlist * startsg,int nents)387 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
388 {
389 while (nents-- > 0) {
390 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
391 startsg->dma_address, startsg->dma_length,
392 sba_sg_address(startsg));
393 startsg = sg_next(startsg);
394 }
395 }
396
397 static void
sba_check_sg(struct ioc * ioc,struct scatterlist * startsg,int nents)398 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
399 {
400 struct scatterlist *the_sg = startsg;
401 int the_nents = nents;
402
403 while (the_nents-- > 0) {
404 if (sba_sg_address(the_sg) == 0x0UL)
405 sba_dump_sg(NULL, startsg, nents);
406 the_sg = sg_next(the_sg);
407 }
408 }
409
410 #endif /* ASSERT_PDIR_SANITY */
411
412
413
414
415 /**************************************************************
416 *
417 * I/O Pdir Resource Management
418 *
419 * Bits set in the resource map are in use.
420 * Each bit can represent a number of pages.
421 * LSbs represent lower addresses (IOVA's).
422 *
423 ***************************************************************/
424 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
425
426 /* Convert from IOVP to IOVA and vice versa. */
427 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
428 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
429
430 #define PDIR_ENTRY_SIZE sizeof(u64)
431
432 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
433
434 #define RESMAP_MASK(n) ~(~0UL << (n))
435 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
436
437
438 /**
439 * For most cases the normal get_order is sufficient, however it limits us
440 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
441 * It only incurs about 1 clock cycle to use this one with the static variable
442 * and makes the code more intuitive.
443 */
444 static SBA_INLINE int
get_iovp_order(unsigned long size)445 get_iovp_order (unsigned long size)
446 {
447 long double d = size - 1;
448 long order;
449
450 order = ia64_getf_exp(d);
451 order = order - iovp_shift - 0xffff + 1;
452 if (order < 0)
453 order = 0;
454 return order;
455 }
456
ptr_to_pide(struct ioc * ioc,unsigned long * res_ptr,unsigned int bitshiftcnt)457 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
458 unsigned int bitshiftcnt)
459 {
460 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
461 + bitshiftcnt;
462 }
463
464 /**
465 * sba_search_bitmap - find free space in IO PDIR resource bitmap
466 * @ioc: IO MMU structure which owns the pdir we are interested in.
467 * @bits_wanted: number of entries we need.
468 * @use_hint: use res_hint to indicate where to start looking
469 *
470 * Find consecutive free bits in resource bitmap.
471 * Each bit represents one entry in the IO Pdir.
472 * Cool perf optimization: search for log2(size) bits at a time.
473 */
474 static SBA_INLINE unsigned long
sba_search_bitmap(struct ioc * ioc,struct device * dev,unsigned long bits_wanted,int use_hint)475 sba_search_bitmap(struct ioc *ioc, struct device *dev,
476 unsigned long bits_wanted, int use_hint)
477 {
478 unsigned long *res_ptr;
479 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
480 unsigned long flags, pide = ~0UL, tpide;
481 unsigned long boundary_size;
482 unsigned long shift;
483 int ret;
484
485 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
486 ASSERT(res_ptr < res_end);
487
488 boundary_size = dma_get_seg_boundary_nr_pages(dev, iovp_shift);
489
490 BUG_ON(ioc->ibase & ~iovp_mask);
491 shift = ioc->ibase >> iovp_shift;
492
493 spin_lock_irqsave(&ioc->res_lock, flags);
494
495 /* Allow caller to force a search through the entire resource space */
496 if (likely(use_hint)) {
497 res_ptr = ioc->res_hint;
498 } else {
499 res_ptr = (ulong *)ioc->res_map;
500 ioc->res_bitshift = 0;
501 }
502
503 /*
504 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
505 * if a TLB entry is purged while in use. sba_mark_invalid()
506 * purges IOTLB entries in power-of-two sizes, so we also
507 * allocate IOVA space in power-of-two sizes.
508 */
509 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
510
511 if (likely(bits_wanted == 1)) {
512 unsigned int bitshiftcnt;
513 for(; res_ptr < res_end ; res_ptr++) {
514 if (likely(*res_ptr != ~0UL)) {
515 bitshiftcnt = ffz(*res_ptr);
516 *res_ptr |= (1UL << bitshiftcnt);
517 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
518 ioc->res_bitshift = bitshiftcnt + bits_wanted;
519 goto found_it;
520 }
521 }
522 goto not_found;
523
524 }
525
526 if (likely(bits_wanted <= BITS_PER_LONG/2)) {
527 /*
528 ** Search the resource bit map on well-aligned values.
529 ** "o" is the alignment.
530 ** We need the alignment to invalidate I/O TLB using
531 ** SBA HW features in the unmap path.
532 */
533 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
534 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
535 unsigned long mask, base_mask;
536
537 base_mask = RESMAP_MASK(bits_wanted);
538 mask = base_mask << bitshiftcnt;
539
540 DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
541 for(; res_ptr < res_end ; res_ptr++)
542 {
543 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
544 ASSERT(0 != mask);
545 for (; mask ; mask <<= o, bitshiftcnt += o) {
546 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
547 ret = iommu_is_span_boundary(tpide, bits_wanted,
548 shift,
549 boundary_size);
550 if ((0 == ((*res_ptr) & mask)) && !ret) {
551 *res_ptr |= mask; /* mark resources busy! */
552 pide = tpide;
553 ioc->res_bitshift = bitshiftcnt + bits_wanted;
554 goto found_it;
555 }
556 }
557
558 bitshiftcnt = 0;
559 mask = base_mask;
560
561 }
562
563 } else {
564 int qwords, bits, i;
565 unsigned long *end;
566
567 qwords = bits_wanted >> 6; /* /64 */
568 bits = bits_wanted - (qwords * BITS_PER_LONG);
569
570 end = res_end - qwords;
571
572 for (; res_ptr < end; res_ptr++) {
573 tpide = ptr_to_pide(ioc, res_ptr, 0);
574 ret = iommu_is_span_boundary(tpide, bits_wanted,
575 shift, boundary_size);
576 if (ret)
577 goto next_ptr;
578 for (i = 0 ; i < qwords ; i++) {
579 if (res_ptr[i] != 0)
580 goto next_ptr;
581 }
582 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
583 continue;
584
585 /* Found it, mark it */
586 for (i = 0 ; i < qwords ; i++)
587 res_ptr[i] = ~0UL;
588 res_ptr[i] |= RESMAP_MASK(bits);
589
590 pide = tpide;
591 res_ptr += qwords;
592 ioc->res_bitshift = bits;
593 goto found_it;
594 next_ptr:
595 ;
596 }
597 }
598
599 not_found:
600 prefetch(ioc->res_map);
601 ioc->res_hint = (unsigned long *) ioc->res_map;
602 ioc->res_bitshift = 0;
603 spin_unlock_irqrestore(&ioc->res_lock, flags);
604 return (pide);
605
606 found_it:
607 ioc->res_hint = res_ptr;
608 spin_unlock_irqrestore(&ioc->res_lock, flags);
609 return (pide);
610 }
611
612
613 /**
614 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
615 * @ioc: IO MMU structure which owns the pdir we are interested in.
616 * @size: number of bytes to create a mapping for
617 *
618 * Given a size, find consecutive unmarked and then mark those bits in the
619 * resource bit map.
620 */
621 static int
sba_alloc_range(struct ioc * ioc,struct device * dev,size_t size)622 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
623 {
624 unsigned int pages_needed = size >> iovp_shift;
625 #ifdef PDIR_SEARCH_TIMING
626 unsigned long itc_start;
627 #endif
628 unsigned long pide;
629
630 ASSERT(pages_needed);
631 ASSERT(0 == (size & ~iovp_mask));
632
633 #ifdef PDIR_SEARCH_TIMING
634 itc_start = ia64_get_itc();
635 #endif
636 /*
637 ** "seek and ye shall find"...praying never hurts either...
638 */
639 pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
640 if (unlikely(pide >= (ioc->res_size << 3))) {
641 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
642 if (unlikely(pide >= (ioc->res_size << 3))) {
643 #if DELAYED_RESOURCE_CNT > 0
644 unsigned long flags;
645
646 /*
647 ** With delayed resource freeing, we can give this one more shot. We're
648 ** getting close to being in trouble here, so do what we can to make this
649 ** one count.
650 */
651 spin_lock_irqsave(&ioc->saved_lock, flags);
652 if (ioc->saved_cnt > 0) {
653 struct sba_dma_pair *d;
654 int cnt = ioc->saved_cnt;
655
656 d = &(ioc->saved[ioc->saved_cnt - 1]);
657
658 spin_lock(&ioc->res_lock);
659 while (cnt--) {
660 sba_mark_invalid(ioc, d->iova, d->size);
661 sba_free_range(ioc, d->iova, d->size);
662 d--;
663 }
664 ioc->saved_cnt = 0;
665 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
666 spin_unlock(&ioc->res_lock);
667 }
668 spin_unlock_irqrestore(&ioc->saved_lock, flags);
669
670 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
671 if (unlikely(pide >= (ioc->res_size << 3))) {
672 printk(KERN_WARNING "%s: I/O MMU @ %p is"
673 "out of mapping resources, %u %u %lx\n",
674 __func__, ioc->ioc_hpa, ioc->res_size,
675 pages_needed, dma_get_seg_boundary(dev));
676 return -1;
677 }
678 #else
679 printk(KERN_WARNING "%s: I/O MMU @ %p is"
680 "out of mapping resources, %u %u %lx\n",
681 __func__, ioc->ioc_hpa, ioc->res_size,
682 pages_needed, dma_get_seg_boundary(dev));
683 return -1;
684 #endif
685 }
686 }
687
688 #ifdef PDIR_SEARCH_TIMING
689 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
690 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
691 #endif
692
693 prefetchw(&(ioc->pdir_base[pide]));
694
695 #ifdef ASSERT_PDIR_SANITY
696 /* verify the first enable bit is clear */
697 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
698 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
699 }
700 #endif
701
702 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
703 __func__, size, pages_needed, pide,
704 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
705 ioc->res_bitshift );
706
707 return (pide);
708 }
709
710
711 /**
712 * sba_free_range - unmark bits in IO PDIR resource bitmap
713 * @ioc: IO MMU structure which owns the pdir we are interested in.
714 * @iova: IO virtual address which was previously allocated.
715 * @size: number of bytes to create a mapping for
716 *
717 * clear bits in the ioc's resource map
718 */
719 static SBA_INLINE void
sba_free_range(struct ioc * ioc,dma_addr_t iova,size_t size)720 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
721 {
722 unsigned long iovp = SBA_IOVP(ioc, iova);
723 unsigned int pide = PDIR_INDEX(iovp);
724 unsigned int ridx = pide >> 3; /* convert bit to byte address */
725 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
726 int bits_not_wanted = size >> iovp_shift;
727 unsigned long m;
728
729 /* Round up to power-of-two size: see AR2305 note above */
730 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
731 for (; bits_not_wanted > 0 ; res_ptr++) {
732
733 if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
734
735 /* these mappings start 64bit aligned */
736 *res_ptr = 0UL;
737 bits_not_wanted -= BITS_PER_LONG;
738 pide += BITS_PER_LONG;
739
740 } else {
741
742 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
743 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
744 bits_not_wanted = 0;
745
746 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
747 bits_not_wanted, m, pide, res_ptr, *res_ptr);
748
749 ASSERT(m != 0);
750 ASSERT(bits_not_wanted);
751 ASSERT((*res_ptr & m) == m); /* verify same bits are set */
752 *res_ptr &= ~m;
753 }
754 }
755 }
756
757
758 /**************************************************************
759 *
760 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
761 *
762 ***************************************************************/
763
764 /**
765 * sba_io_pdir_entry - fill in one IO PDIR entry
766 * @pdir_ptr: pointer to IO PDIR entry
767 * @vba: Virtual CPU address of buffer to map
768 *
769 * SBA Mapping Routine
770 *
771 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
772 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
773 * Each IO Pdir entry consists of 8 bytes as shown below
774 * (LSB == bit 0):
775 *
776 * 63 40 11 7 0
777 * +-+---------------------+----------------------------------+----+--------+
778 * |V| U | PPN[39:12] | U | FF |
779 * +-+---------------------+----------------------------------+----+--------+
780 *
781 * V == Valid Bit
782 * U == Unused
783 * PPN == Physical Page Number
784 *
785 * The physical address fields are filled with the results of virt_to_phys()
786 * on the vba.
787 */
788
789 #if 1
790 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
791 | 0x8000000000000000ULL)
792 #else
793 void SBA_INLINE
sba_io_pdir_entry(u64 * pdir_ptr,unsigned long vba)794 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
795 {
796 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
797 }
798 #endif
799
800 #ifdef ENABLE_MARK_CLEAN
801 /**
802 * Since DMA is i-cache coherent, any (complete) pages that were written via
803 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
804 * flush them when they get mapped into an executable vm-area.
805 */
806 static void
mark_clean(void * addr,size_t size)807 mark_clean (void *addr, size_t size)
808 {
809 unsigned long pg_addr, end;
810
811 pg_addr = PAGE_ALIGN((unsigned long) addr);
812 end = (unsigned long) addr + size;
813 while (pg_addr + PAGE_SIZE <= end) {
814 struct page *page = virt_to_page((void *)pg_addr);
815 set_bit(PG_arch_1, &page->flags);
816 pg_addr += PAGE_SIZE;
817 }
818 }
819 #endif
820
821 /**
822 * sba_mark_invalid - invalidate one or more IO PDIR entries
823 * @ioc: IO MMU structure which owns the pdir we are interested in.
824 * @iova: IO Virtual Address mapped earlier
825 * @byte_cnt: number of bytes this mapping covers.
826 *
827 * Marking the IO PDIR entry(ies) as Invalid and invalidate
828 * corresponding IO TLB entry. The PCOM (Purge Command Register)
829 * is to purge stale entries in the IO TLB when unmapping entries.
830 *
831 * The PCOM register supports purging of multiple pages, with a minium
832 * of 1 page and a maximum of 2GB. Hardware requires the address be
833 * aligned to the size of the range being purged. The size of the range
834 * must be a power of 2. The "Cool perf optimization" in the
835 * allocation routine helps keep that true.
836 */
837 static SBA_INLINE void
sba_mark_invalid(struct ioc * ioc,dma_addr_t iova,size_t byte_cnt)838 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
839 {
840 u32 iovp = (u32) SBA_IOVP(ioc,iova);
841
842 int off = PDIR_INDEX(iovp);
843
844 /* Must be non-zero and rounded up */
845 ASSERT(byte_cnt > 0);
846 ASSERT(0 == (byte_cnt & ~iovp_mask));
847
848 #ifdef ASSERT_PDIR_SANITY
849 /* Assert first pdir entry is set */
850 if (!(ioc->pdir_base[off] >> 60)) {
851 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
852 }
853 #endif
854
855 if (byte_cnt <= iovp_size)
856 {
857 ASSERT(off < ioc->pdir_size);
858
859 iovp |= iovp_shift; /* set "size" field for PCOM */
860
861 #ifndef FULL_VALID_PDIR
862 /*
863 ** clear I/O PDIR entry "valid" bit
864 ** Do NOT clear the rest - save it for debugging.
865 ** We should only clear bits that have previously
866 ** been enabled.
867 */
868 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
869 #else
870 /*
871 ** If we want to maintain the PDIR as valid, put in
872 ** the spill page so devices prefetching won't
873 ** cause a hard fail.
874 */
875 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
876 #endif
877 } else {
878 u32 t = get_iovp_order(byte_cnt) + iovp_shift;
879
880 iovp |= t;
881 ASSERT(t <= 31); /* 2GB! Max value of "size" field */
882
883 do {
884 /* verify this pdir entry is enabled */
885 ASSERT(ioc->pdir_base[off] >> 63);
886 #ifndef FULL_VALID_PDIR
887 /* clear I/O Pdir entry "valid" bit first */
888 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
889 #else
890 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
891 #endif
892 off++;
893 byte_cnt -= iovp_size;
894 } while (byte_cnt > 0);
895 }
896
897 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
898 }
899
900 /**
901 * sba_map_page - map one buffer and return IOVA for DMA
902 * @dev: instance of PCI owned by the driver that's asking.
903 * @page: page to map
904 * @poff: offset into page
905 * @size: number of bytes to map
906 * @dir: dma direction
907 * @attrs: optional dma attributes
908 *
909 * See Documentation/core-api/dma-api-howto.rst
910 */
sba_map_page(struct device * dev,struct page * page,unsigned long poff,size_t size,enum dma_data_direction dir,unsigned long attrs)911 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
912 unsigned long poff, size_t size,
913 enum dma_data_direction dir,
914 unsigned long attrs)
915 {
916 struct ioc *ioc;
917 void *addr = page_address(page) + poff;
918 dma_addr_t iovp;
919 dma_addr_t offset;
920 u64 *pdir_start;
921 int pide;
922 #ifdef ASSERT_PDIR_SANITY
923 unsigned long flags;
924 #endif
925 #ifdef ALLOW_IOV_BYPASS
926 unsigned long pci_addr = virt_to_phys(addr);
927 #endif
928
929 #ifdef ALLOW_IOV_BYPASS
930 ASSERT(to_pci_dev(dev)->dma_mask);
931 /*
932 ** Check if the PCI device can DMA to ptr... if so, just return ptr
933 */
934 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
935 /*
936 ** Device is bit capable of DMA'ing to the buffer...
937 ** just return the PCI address of ptr
938 */
939 DBG_BYPASS("sba_map_page() bypass mask/addr: "
940 "0x%lx/0x%lx\n",
941 to_pci_dev(dev)->dma_mask, pci_addr);
942 return pci_addr;
943 }
944 #endif
945 ioc = GET_IOC(dev);
946 ASSERT(ioc);
947
948 prefetch(ioc->res_hint);
949
950 ASSERT(size > 0);
951 ASSERT(size <= DMA_CHUNK_SIZE);
952
953 /* save offset bits */
954 offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
955
956 /* round up to nearest iovp_size */
957 size = (size + offset + ~iovp_mask) & iovp_mask;
958
959 #ifdef ASSERT_PDIR_SANITY
960 spin_lock_irqsave(&ioc->res_lock, flags);
961 if (sba_check_pdir(ioc,"Check before sba_map_page()"))
962 panic("Sanity check failed");
963 spin_unlock_irqrestore(&ioc->res_lock, flags);
964 #endif
965
966 pide = sba_alloc_range(ioc, dev, size);
967 if (pide < 0)
968 return DMA_MAPPING_ERROR;
969
970 iovp = (dma_addr_t) pide << iovp_shift;
971
972 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
973
974 pdir_start = &(ioc->pdir_base[pide]);
975
976 while (size > 0) {
977 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
978 sba_io_pdir_entry(pdir_start, (unsigned long) addr);
979
980 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
981
982 addr += iovp_size;
983 size -= iovp_size;
984 pdir_start++;
985 }
986 /* force pdir update */
987 wmb();
988
989 /* form complete address */
990 #ifdef ASSERT_PDIR_SANITY
991 spin_lock_irqsave(&ioc->res_lock, flags);
992 sba_check_pdir(ioc,"Check after sba_map_page()");
993 spin_unlock_irqrestore(&ioc->res_lock, flags);
994 #endif
995 return SBA_IOVA(ioc, iovp, offset);
996 }
997
998 #ifdef ENABLE_MARK_CLEAN
999 static SBA_INLINE void
sba_mark_clean(struct ioc * ioc,dma_addr_t iova,size_t size)1000 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1001 {
1002 u32 iovp = (u32) SBA_IOVP(ioc,iova);
1003 int off = PDIR_INDEX(iovp);
1004 void *addr;
1005
1006 if (size <= iovp_size) {
1007 addr = phys_to_virt(ioc->pdir_base[off] &
1008 ~0xE000000000000FFFULL);
1009 mark_clean(addr, size);
1010 } else {
1011 do {
1012 addr = phys_to_virt(ioc->pdir_base[off] &
1013 ~0xE000000000000FFFULL);
1014 mark_clean(addr, min(size, iovp_size));
1015 off++;
1016 size -= iovp_size;
1017 } while (size > 0);
1018 }
1019 }
1020 #endif
1021
1022 /**
1023 * sba_unmap_page - unmap one IOVA and free resources
1024 * @dev: instance of PCI owned by the driver that's asking.
1025 * @iova: IOVA of driver buffer previously mapped.
1026 * @size: number of bytes mapped in driver buffer.
1027 * @dir: R/W or both.
1028 * @attrs: optional dma attributes
1029 *
1030 * See Documentation/core-api/dma-api-howto.rst
1031 */
sba_unmap_page(struct device * dev,dma_addr_t iova,size_t size,enum dma_data_direction dir,unsigned long attrs)1032 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1033 enum dma_data_direction dir, unsigned long attrs)
1034 {
1035 struct ioc *ioc;
1036 #if DELAYED_RESOURCE_CNT > 0
1037 struct sba_dma_pair *d;
1038 #endif
1039 unsigned long flags;
1040 dma_addr_t offset;
1041
1042 ioc = GET_IOC(dev);
1043 ASSERT(ioc);
1044
1045 #ifdef ALLOW_IOV_BYPASS
1046 if (likely((iova & ioc->imask) != ioc->ibase)) {
1047 /*
1048 ** Address does not fall w/in IOVA, must be bypassing
1049 */
1050 DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1051 iova);
1052
1053 #ifdef ENABLE_MARK_CLEAN
1054 if (dir == DMA_FROM_DEVICE) {
1055 mark_clean(phys_to_virt(iova), size);
1056 }
1057 #endif
1058 return;
1059 }
1060 #endif
1061 offset = iova & ~iovp_mask;
1062
1063 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1064
1065 iova ^= offset; /* clear offset bits */
1066 size += offset;
1067 size = ROUNDUP(size, iovp_size);
1068
1069 #ifdef ENABLE_MARK_CLEAN
1070 if (dir == DMA_FROM_DEVICE)
1071 sba_mark_clean(ioc, iova, size);
1072 #endif
1073
1074 #if DELAYED_RESOURCE_CNT > 0
1075 spin_lock_irqsave(&ioc->saved_lock, flags);
1076 d = &(ioc->saved[ioc->saved_cnt]);
1077 d->iova = iova;
1078 d->size = size;
1079 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1080 int cnt = ioc->saved_cnt;
1081 spin_lock(&ioc->res_lock);
1082 while (cnt--) {
1083 sba_mark_invalid(ioc, d->iova, d->size);
1084 sba_free_range(ioc, d->iova, d->size);
1085 d--;
1086 }
1087 ioc->saved_cnt = 0;
1088 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1089 spin_unlock(&ioc->res_lock);
1090 }
1091 spin_unlock_irqrestore(&ioc->saved_lock, flags);
1092 #else /* DELAYED_RESOURCE_CNT == 0 */
1093 spin_lock_irqsave(&ioc->res_lock, flags);
1094 sba_mark_invalid(ioc, iova, size);
1095 sba_free_range(ioc, iova, size);
1096 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1097 spin_unlock_irqrestore(&ioc->res_lock, flags);
1098 #endif /* DELAYED_RESOURCE_CNT == 0 */
1099 }
1100
1101 /**
1102 * sba_alloc_coherent - allocate/map shared mem for DMA
1103 * @dev: instance of PCI owned by the driver that's asking.
1104 * @size: number of bytes mapped in driver buffer.
1105 * @dma_handle: IOVA of new buffer.
1106 *
1107 * See Documentation/core-api/dma-api-howto.rst
1108 */
1109 static void *
sba_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)1110 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1111 gfp_t flags, unsigned long attrs)
1112 {
1113 struct page *page;
1114 struct ioc *ioc;
1115 int node = -1;
1116 void *addr;
1117
1118 ioc = GET_IOC(dev);
1119 ASSERT(ioc);
1120 #ifdef CONFIG_NUMA
1121 node = ioc->node;
1122 #endif
1123
1124 page = alloc_pages_node(node, flags, get_order(size));
1125 if (unlikely(!page))
1126 return NULL;
1127
1128 addr = page_address(page);
1129 memset(addr, 0, size);
1130 *dma_handle = page_to_phys(page);
1131
1132 #ifdef ALLOW_IOV_BYPASS
1133 ASSERT(dev->coherent_dma_mask);
1134 /*
1135 ** Check if the PCI device can DMA to ptr... if so, just return ptr
1136 */
1137 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1138 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1139 dev->coherent_dma_mask, *dma_handle);
1140
1141 return addr;
1142 }
1143 #endif
1144
1145 /*
1146 * If device can't bypass or bypass is disabled, pass the 32bit fake
1147 * device to map single to get an iova mapping.
1148 */
1149 *dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1150 DMA_BIDIRECTIONAL, 0);
1151 if (dma_mapping_error(dev, *dma_handle))
1152 return NULL;
1153 return addr;
1154 }
1155
1156
1157 /**
1158 * sba_free_coherent - free/unmap shared mem for DMA
1159 * @dev: instance of PCI owned by the driver that's asking.
1160 * @size: number of bytes mapped in driver buffer.
1161 * @vaddr: virtual address IOVA of "consistent" buffer.
1162 * @dma_handler: IO virtual address of "consistent" buffer.
1163 *
1164 * See Documentation/core-api/dma-api-howto.rst
1165 */
sba_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)1166 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1167 dma_addr_t dma_handle, unsigned long attrs)
1168 {
1169 sba_unmap_page(dev, dma_handle, size, 0, 0);
1170 free_pages((unsigned long) vaddr, get_order(size));
1171 }
1172
1173
1174 /*
1175 ** Since 0 is a valid pdir_base index value, can't use that
1176 ** to determine if a value is valid or not. Use a flag to indicate
1177 ** the SG list entry contains a valid pdir index.
1178 */
1179 #define PIDE_FLAG 0x1UL
1180
1181 #ifdef DEBUG_LARGE_SG_ENTRIES
1182 int dump_run_sg = 0;
1183 #endif
1184
1185
1186 /**
1187 * sba_fill_pdir - write allocated SG entries into IO PDIR
1188 * @ioc: IO MMU structure which owns the pdir we are interested in.
1189 * @startsg: list of IOVA/size pairs
1190 * @nents: number of entries in startsg list
1191 *
1192 * Take preprocessed SG list and write corresponding entries
1193 * in the IO PDIR.
1194 */
1195
1196 static SBA_INLINE int
sba_fill_pdir(struct ioc * ioc,struct scatterlist * startsg,int nents)1197 sba_fill_pdir(
1198 struct ioc *ioc,
1199 struct scatterlist *startsg,
1200 int nents)
1201 {
1202 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1203 int n_mappings = 0;
1204 u64 *pdirp = NULL;
1205 unsigned long dma_offset = 0;
1206
1207 while (nents-- > 0) {
1208 int cnt = startsg->dma_length;
1209 startsg->dma_length = 0;
1210
1211 #ifdef DEBUG_LARGE_SG_ENTRIES
1212 if (dump_run_sg)
1213 printk(" %2d : %08lx/%05x %p\n",
1214 nents, startsg->dma_address, cnt,
1215 sba_sg_address(startsg));
1216 #else
1217 DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1218 nents, startsg->dma_address, cnt,
1219 sba_sg_address(startsg));
1220 #endif
1221 /*
1222 ** Look for the start of a new DMA stream
1223 */
1224 if (startsg->dma_address & PIDE_FLAG) {
1225 u32 pide = startsg->dma_address & ~PIDE_FLAG;
1226 dma_offset = (unsigned long) pide & ~iovp_mask;
1227 startsg->dma_address = 0;
1228 if (n_mappings)
1229 dma_sg = sg_next(dma_sg);
1230 dma_sg->dma_address = pide | ioc->ibase;
1231 pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1232 n_mappings++;
1233 }
1234
1235 /*
1236 ** Look for a VCONTIG chunk
1237 */
1238 if (cnt) {
1239 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1240 ASSERT(pdirp);
1241
1242 /* Since multiple Vcontig blocks could make up
1243 ** one DMA stream, *add* cnt to dma_len.
1244 */
1245 dma_sg->dma_length += cnt;
1246 cnt += dma_offset;
1247 dma_offset=0; /* only want offset on first chunk */
1248 cnt = ROUNDUP(cnt, iovp_size);
1249 do {
1250 sba_io_pdir_entry(pdirp, vaddr);
1251 vaddr += iovp_size;
1252 cnt -= iovp_size;
1253 pdirp++;
1254 } while (cnt > 0);
1255 }
1256 startsg = sg_next(startsg);
1257 }
1258 /* force pdir update */
1259 wmb();
1260
1261 #ifdef DEBUG_LARGE_SG_ENTRIES
1262 dump_run_sg = 0;
1263 #endif
1264 return(n_mappings);
1265 }
1266
1267
1268 /*
1269 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1270 ** "start of next" are both on an IOV page boundary.
1271 **
1272 ** (shift left is a quick trick to mask off upper bits)
1273 */
1274 #define DMA_CONTIG(__X, __Y) \
1275 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1276
1277
1278 /**
1279 * sba_coalesce_chunks - preprocess the SG list
1280 * @ioc: IO MMU structure which owns the pdir we are interested in.
1281 * @startsg: list of IOVA/size pairs
1282 * @nents: number of entries in startsg list
1283 *
1284 * First pass is to walk the SG list and determine where the breaks are
1285 * in the DMA stream. Allocates PDIR entries but does not fill them.
1286 * Returns the number of DMA chunks.
1287 *
1288 * Doing the fill separate from the coalescing/allocation keeps the
1289 * code simpler. Future enhancement could make one pass through
1290 * the sglist do both.
1291 */
1292 static SBA_INLINE int
sba_coalesce_chunks(struct ioc * ioc,struct device * dev,struct scatterlist * startsg,int nents)1293 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1294 struct scatterlist *startsg,
1295 int nents)
1296 {
1297 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1298 unsigned long vcontig_len; /* len of VCONTIG chunk */
1299 unsigned long vcontig_end;
1300 struct scatterlist *dma_sg; /* next DMA stream head */
1301 unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1302 int n_mappings = 0;
1303 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1304 int idx;
1305
1306 while (nents > 0) {
1307 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1308
1309 /*
1310 ** Prepare for first/next DMA stream
1311 */
1312 dma_sg = vcontig_sg = startsg;
1313 dma_len = vcontig_len = vcontig_end = startsg->length;
1314 vcontig_end += vaddr;
1315 dma_offset = vaddr & ~iovp_mask;
1316
1317 /* PARANOID: clear entries */
1318 startsg->dma_address = startsg->dma_length = 0;
1319
1320 /*
1321 ** This loop terminates one iteration "early" since
1322 ** it's always looking one "ahead".
1323 */
1324 while (--nents > 0) {
1325 unsigned long vaddr; /* tmp */
1326
1327 startsg = sg_next(startsg);
1328
1329 /* PARANOID */
1330 startsg->dma_address = startsg->dma_length = 0;
1331
1332 /* catch brokenness in SCSI layer */
1333 ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1334
1335 /*
1336 ** First make sure current dma stream won't
1337 ** exceed DMA_CHUNK_SIZE if we coalesce the
1338 ** next entry.
1339 */
1340 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1341 > DMA_CHUNK_SIZE)
1342 break;
1343
1344 if (dma_len + startsg->length > max_seg_size)
1345 break;
1346
1347 /*
1348 ** Then look for virtually contiguous blocks.
1349 **
1350 ** append the next transaction?
1351 */
1352 vaddr = (unsigned long) sba_sg_address(startsg);
1353 if (vcontig_end == vaddr)
1354 {
1355 vcontig_len += startsg->length;
1356 vcontig_end += startsg->length;
1357 dma_len += startsg->length;
1358 continue;
1359 }
1360
1361 #ifdef DEBUG_LARGE_SG_ENTRIES
1362 dump_run_sg = (vcontig_len > iovp_size);
1363 #endif
1364
1365 /*
1366 ** Not virtually contiguous.
1367 ** Terminate prev chunk.
1368 ** Start a new chunk.
1369 **
1370 ** Once we start a new VCONTIG chunk, dma_offset
1371 ** can't change. And we need the offset from the first
1372 ** chunk - not the last one. Ergo Successive chunks
1373 ** must start on page boundaries and dove tail
1374 ** with it's predecessor.
1375 */
1376 vcontig_sg->dma_length = vcontig_len;
1377
1378 vcontig_sg = startsg;
1379 vcontig_len = startsg->length;
1380
1381 /*
1382 ** 3) do the entries end/start on page boundaries?
1383 ** Don't update vcontig_end until we've checked.
1384 */
1385 if (DMA_CONTIG(vcontig_end, vaddr))
1386 {
1387 vcontig_end = vcontig_len + vaddr;
1388 dma_len += vcontig_len;
1389 continue;
1390 } else {
1391 break;
1392 }
1393 }
1394
1395 /*
1396 ** End of DMA Stream
1397 ** Terminate last VCONTIG block.
1398 ** Allocate space for DMA stream.
1399 */
1400 vcontig_sg->dma_length = vcontig_len;
1401 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1402 ASSERT(dma_len <= DMA_CHUNK_SIZE);
1403 idx = sba_alloc_range(ioc, dev, dma_len);
1404 if (idx < 0) {
1405 dma_sg->dma_length = 0;
1406 return -1;
1407 }
1408 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1409 | dma_offset);
1410 n_mappings++;
1411 }
1412
1413 return n_mappings;
1414 }
1415
1416 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1417 int nents, enum dma_data_direction dir,
1418 unsigned long attrs);
1419 /**
1420 * sba_map_sg - map Scatter/Gather list
1421 * @dev: instance of PCI owned by the driver that's asking.
1422 * @sglist: array of buffer/length pairs
1423 * @nents: number of entries in list
1424 * @dir: R/W or both.
1425 * @attrs: optional dma attributes
1426 *
1427 * See Documentation/core-api/dma-api-howto.rst
1428 */
sba_map_sg_attrs(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)1429 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1430 int nents, enum dma_data_direction dir,
1431 unsigned long attrs)
1432 {
1433 struct ioc *ioc;
1434 int coalesced, filled = 0;
1435 #ifdef ASSERT_PDIR_SANITY
1436 unsigned long flags;
1437 #endif
1438 #ifdef ALLOW_IOV_BYPASS_SG
1439 struct scatterlist *sg;
1440 #endif
1441
1442 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1443 ioc = GET_IOC(dev);
1444 ASSERT(ioc);
1445
1446 #ifdef ALLOW_IOV_BYPASS_SG
1447 ASSERT(to_pci_dev(dev)->dma_mask);
1448 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1449 for_each_sg(sglist, sg, nents, filled) {
1450 sg->dma_length = sg->length;
1451 sg->dma_address = virt_to_phys(sba_sg_address(sg));
1452 }
1453 return filled;
1454 }
1455 #endif
1456 /* Fast path single entry scatterlists. */
1457 if (nents == 1) {
1458 sglist->dma_length = sglist->length;
1459 sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1460 sglist->offset, sglist->length, dir, attrs);
1461 if (dma_mapping_error(dev, sglist->dma_address))
1462 return -EIO;
1463 return 1;
1464 }
1465
1466 #ifdef ASSERT_PDIR_SANITY
1467 spin_lock_irqsave(&ioc->res_lock, flags);
1468 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1469 {
1470 sba_dump_sg(ioc, sglist, nents);
1471 panic("Check before sba_map_sg_attrs()");
1472 }
1473 spin_unlock_irqrestore(&ioc->res_lock, flags);
1474 #endif
1475
1476 prefetch(ioc->res_hint);
1477
1478 /*
1479 ** First coalesce the chunks and allocate I/O pdir space
1480 **
1481 ** If this is one DMA stream, we can properly map using the
1482 ** correct virtual address associated with each DMA page.
1483 ** w/o this association, we wouldn't have coherent DMA!
1484 ** Access to the virtual address is what forces a two pass algorithm.
1485 */
1486 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1487 if (coalesced < 0) {
1488 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1489 return -ENOMEM;
1490 }
1491
1492 /*
1493 ** Program the I/O Pdir
1494 **
1495 ** map the virtual addresses to the I/O Pdir
1496 ** o dma_address will contain the pdir index
1497 ** o dma_len will contain the number of bytes to map
1498 ** o address contains the virtual address.
1499 */
1500 filled = sba_fill_pdir(ioc, sglist, nents);
1501
1502 #ifdef ASSERT_PDIR_SANITY
1503 spin_lock_irqsave(&ioc->res_lock, flags);
1504 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1505 {
1506 sba_dump_sg(ioc, sglist, nents);
1507 panic("Check after sba_map_sg_attrs()\n");
1508 }
1509 spin_unlock_irqrestore(&ioc->res_lock, flags);
1510 #endif
1511
1512 ASSERT(coalesced == filled);
1513 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1514
1515 return filled;
1516 }
1517
1518 /**
1519 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1520 * @dev: instance of PCI owned by the driver that's asking.
1521 * @sglist: array of buffer/length pairs
1522 * @nents: number of entries in list
1523 * @dir: R/W or both.
1524 * @attrs: optional dma attributes
1525 *
1526 * See Documentation/core-api/dma-api-howto.rst
1527 */
sba_unmap_sg_attrs(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)1528 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1529 int nents, enum dma_data_direction dir,
1530 unsigned long attrs)
1531 {
1532 #ifdef ASSERT_PDIR_SANITY
1533 struct ioc *ioc;
1534 unsigned long flags;
1535 #endif
1536
1537 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1538 __func__, nents, sba_sg_address(sglist), sglist->length);
1539
1540 #ifdef ASSERT_PDIR_SANITY
1541 ioc = GET_IOC(dev);
1542 ASSERT(ioc);
1543
1544 spin_lock_irqsave(&ioc->res_lock, flags);
1545 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1546 spin_unlock_irqrestore(&ioc->res_lock, flags);
1547 #endif
1548
1549 while (nents && sglist->dma_length) {
1550
1551 sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1552 dir, attrs);
1553 sglist = sg_next(sglist);
1554 nents--;
1555 }
1556
1557 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1558
1559 #ifdef ASSERT_PDIR_SANITY
1560 spin_lock_irqsave(&ioc->res_lock, flags);
1561 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1562 spin_unlock_irqrestore(&ioc->res_lock, flags);
1563 #endif
1564
1565 }
1566
1567 /**************************************************************
1568 *
1569 * Initialization and claim
1570 *
1571 ***************************************************************/
1572
1573 static void
ioc_iova_init(struct ioc * ioc)1574 ioc_iova_init(struct ioc *ioc)
1575 {
1576 int tcnfg;
1577 int agp_found = 0;
1578 struct pci_dev *device = NULL;
1579 #ifdef FULL_VALID_PDIR
1580 unsigned long index;
1581 #endif
1582
1583 /*
1584 ** Firmware programs the base and size of a "safe IOVA space"
1585 ** (one that doesn't overlap memory or LMMIO space) in the
1586 ** IBASE and IMASK registers.
1587 */
1588 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1589 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1590
1591 ioc->iov_size = ~ioc->imask + 1;
1592
1593 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1594 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1595 ioc->iov_size >> 20);
1596
1597 switch (iovp_size) {
1598 case 4*1024: tcnfg = 0; break;
1599 case 8*1024: tcnfg = 1; break;
1600 case 16*1024: tcnfg = 2; break;
1601 case 64*1024: tcnfg = 3; break;
1602 default:
1603 panic(PFX "Unsupported IOTLB page size %ldK",
1604 iovp_size >> 10);
1605 break;
1606 }
1607 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1608
1609 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1610 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1611 get_order(ioc->pdir_size));
1612 if (!ioc->pdir_base)
1613 panic(PFX "Couldn't allocate I/O Page Table\n");
1614
1615 memset(ioc->pdir_base, 0, ioc->pdir_size);
1616
1617 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1618 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1619
1620 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1621 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1622
1623 /*
1624 ** If an AGP device is present, only use half of the IOV space
1625 ** for PCI DMA. Unfortunately we can't know ahead of time
1626 ** whether GART support will actually be used, for now we
1627 ** can just key on an AGP device found in the system.
1628 ** We program the next pdir index after we stop w/ a key for
1629 ** the GART code to handshake on.
1630 */
1631 for_each_pci_dev(device)
1632 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1633
1634 if (agp_found && reserve_sba_gart) {
1635 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1636 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1637 ioc->pdir_size /= 2;
1638 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1639 }
1640 #ifdef FULL_VALID_PDIR
1641 /*
1642 ** Check to see if the spill page has been allocated, we don't need more than
1643 ** one across multiple SBAs.
1644 */
1645 if (!prefetch_spill_page) {
1646 char *spill_poison = "SBAIOMMU POISON";
1647 int poison_size = 16;
1648 void *poison_addr, *addr;
1649
1650 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1651 if (!addr)
1652 panic(PFX "Couldn't allocate PDIR spill page\n");
1653
1654 poison_addr = addr;
1655 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1656 memcpy(poison_addr, spill_poison, poison_size);
1657
1658 prefetch_spill_page = virt_to_phys(addr);
1659
1660 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1661 }
1662 /*
1663 ** Set all the PDIR entries valid w/ the spill page as the target
1664 */
1665 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1666 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1667 #endif
1668
1669 /* Clear I/O TLB of any possible entries */
1670 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1671 READ_REG(ioc->ioc_hpa + IOC_PCOM);
1672
1673 /* Enable IOVA translation */
1674 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1675 READ_REG(ioc->ioc_hpa + IOC_IBASE);
1676 }
1677
1678 static void __init
ioc_resource_init(struct ioc * ioc)1679 ioc_resource_init(struct ioc *ioc)
1680 {
1681 spin_lock_init(&ioc->res_lock);
1682 #if DELAYED_RESOURCE_CNT > 0
1683 spin_lock_init(&ioc->saved_lock);
1684 #endif
1685
1686 /* resource map size dictated by pdir_size */
1687 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1688 ioc->res_size >>= 3; /* convert bit count to byte count */
1689 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1690
1691 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1692 get_order(ioc->res_size));
1693 if (!ioc->res_map)
1694 panic(PFX "Couldn't allocate resource map\n");
1695
1696 memset(ioc->res_map, 0, ioc->res_size);
1697 /* next available IOVP - circular search */
1698 ioc->res_hint = (unsigned long *) ioc->res_map;
1699
1700 #ifdef ASSERT_PDIR_SANITY
1701 /* Mark first bit busy - ie no IOVA 0 */
1702 ioc->res_map[0] = 0x1;
1703 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1704 #endif
1705 #ifdef FULL_VALID_PDIR
1706 /* Mark the last resource used so we don't prefetch beyond IOVA space */
1707 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1708 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1709 | prefetch_spill_page);
1710 #endif
1711
1712 DBG_INIT("%s() res_map %x %p\n", __func__,
1713 ioc->res_size, (void *) ioc->res_map);
1714 }
1715
1716 static void __init
ioc_sac_init(struct ioc * ioc)1717 ioc_sac_init(struct ioc *ioc)
1718 {
1719 struct pci_dev *sac = NULL;
1720 struct pci_controller *controller = NULL;
1721
1722 /*
1723 * pci_alloc_coherent() must return a DMA address which is
1724 * SAC (single address cycle) addressable, so allocate a
1725 * pseudo-device to enforce that.
1726 */
1727 sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1728 if (!sac)
1729 panic(PFX "Couldn't allocate struct pci_dev");
1730
1731 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1732 if (!controller)
1733 panic(PFX "Couldn't allocate struct pci_controller");
1734
1735 controller->iommu = ioc;
1736 sac->sysdata = controller;
1737 sac->dma_mask = 0xFFFFFFFFUL;
1738 sac->dev.bus = &pci_bus_type;
1739 ioc->sac_only_dev = sac;
1740 }
1741
1742 static void __init
ioc_zx1_init(struct ioc * ioc)1743 ioc_zx1_init(struct ioc *ioc)
1744 {
1745 unsigned long rope_config;
1746 unsigned int i;
1747
1748 if (ioc->rev < 0x20)
1749 panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1750
1751 /* 38 bit memory controller + extra bit for range displaced by MMIO */
1752 ioc->dma_mask = (0x1UL << 39) - 1;
1753
1754 /*
1755 ** Clear ROPE(N)_CONFIG AO bit.
1756 ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1757 ** Overrides bit 1 in DMA Hint Sets.
1758 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1759 */
1760 for (i=0; i<(8*8); i+=8) {
1761 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1762 rope_config &= ~IOC_ROPE_AO;
1763 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1764 }
1765 }
1766
1767 typedef void (initfunc)(struct ioc *);
1768
1769 struct ioc_iommu {
1770 u32 func_id;
1771 char *name;
1772 initfunc *init;
1773 };
1774
1775 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1776 { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1777 { ZX2_IOC_ID, "zx2", NULL },
1778 { SX1000_IOC_ID, "sx1000", NULL },
1779 { SX2000_IOC_ID, "sx2000", NULL },
1780 };
1781
ioc_init(unsigned long hpa,struct ioc * ioc)1782 static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1783 {
1784 struct ioc_iommu *info;
1785
1786 ioc->next = ioc_list;
1787 ioc_list = ioc;
1788
1789 ioc->ioc_hpa = ioremap(hpa, 0x1000);
1790
1791 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1792 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1793 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1794
1795 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1796 if (ioc->func_id == info->func_id) {
1797 ioc->name = info->name;
1798 if (info->init)
1799 (info->init)(ioc);
1800 }
1801 }
1802
1803 iovp_size = (1 << iovp_shift);
1804 iovp_mask = ~(iovp_size - 1);
1805
1806 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1807 PAGE_SIZE >> 10, iovp_size >> 10);
1808
1809 if (!ioc->name) {
1810 ioc->name = kmalloc(24, GFP_KERNEL);
1811 if (ioc->name)
1812 sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1813 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1814 else
1815 ioc->name = "Unknown";
1816 }
1817
1818 ioc_iova_init(ioc);
1819 ioc_resource_init(ioc);
1820 ioc_sac_init(ioc);
1821
1822 printk(KERN_INFO PFX
1823 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1824 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1825 hpa, ioc->iov_size >> 20, ioc->ibase);
1826 }
1827
1828
1829
1830 /**************************************************************************
1831 **
1832 ** SBA initialization code (HW and SW)
1833 **
1834 ** o identify SBA chip itself
1835 ** o FIXME: initialize DMA hints for reasonable defaults
1836 **
1837 **************************************************************************/
1838
1839 #ifdef CONFIG_PROC_FS
1840 static void *
ioc_start(struct seq_file * s,loff_t * pos)1841 ioc_start(struct seq_file *s, loff_t *pos)
1842 {
1843 struct ioc *ioc;
1844 loff_t n = *pos;
1845
1846 for (ioc = ioc_list; ioc; ioc = ioc->next)
1847 if (!n--)
1848 return ioc;
1849
1850 return NULL;
1851 }
1852
1853 static void *
ioc_next(struct seq_file * s,void * v,loff_t * pos)1854 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1855 {
1856 struct ioc *ioc = v;
1857
1858 ++*pos;
1859 return ioc->next;
1860 }
1861
1862 static void
ioc_stop(struct seq_file * s,void * v)1863 ioc_stop(struct seq_file *s, void *v)
1864 {
1865 }
1866
1867 static int
ioc_show(struct seq_file * s,void * v)1868 ioc_show(struct seq_file *s, void *v)
1869 {
1870 struct ioc *ioc = v;
1871 unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1872 int i, used = 0;
1873
1874 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1875 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1876 #ifdef CONFIG_NUMA
1877 if (ioc->node != NUMA_NO_NODE)
1878 seq_printf(s, "NUMA node : %d\n", ioc->node);
1879 #endif
1880 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1881 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1882
1883 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1884 used += hweight64(*res_ptr);
1885
1886 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1887 seq_printf(s, "PDIR used : %d entries\n", used);
1888
1889 #ifdef PDIR_SEARCH_TIMING
1890 {
1891 unsigned long i = 0, avg = 0, min, max;
1892 min = max = ioc->avg_search[0];
1893 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1894 avg += ioc->avg_search[i];
1895 if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1896 if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1897 }
1898 avg /= SBA_SEARCH_SAMPLE;
1899 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1900 min, avg, max);
1901 }
1902 #endif
1903 #ifndef ALLOW_IOV_BYPASS
1904 seq_printf(s, "IOVA bypass disabled\n");
1905 #endif
1906 return 0;
1907 }
1908
1909 static const struct seq_operations ioc_seq_ops = {
1910 .start = ioc_start,
1911 .next = ioc_next,
1912 .stop = ioc_stop,
1913 .show = ioc_show
1914 };
1915
1916 static void __init
ioc_proc_init(void)1917 ioc_proc_init(void)
1918 {
1919 struct proc_dir_entry *dir;
1920
1921 dir = proc_mkdir("bus/mckinley", NULL);
1922 if (!dir)
1923 return;
1924
1925 proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1926 }
1927 #endif
1928
1929 static void
sba_connect_bus(struct pci_bus * bus)1930 sba_connect_bus(struct pci_bus *bus)
1931 {
1932 acpi_handle handle, parent;
1933 acpi_status status;
1934 struct ioc *ioc;
1935
1936 if (!PCI_CONTROLLER(bus))
1937 panic(PFX "no sysdata on bus %d!\n", bus->number);
1938
1939 if (PCI_CONTROLLER(bus)->iommu)
1940 return;
1941
1942 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1943 if (!handle)
1944 return;
1945
1946 /*
1947 * The IOC scope encloses PCI root bridges in the ACPI
1948 * namespace, so work our way out until we find an IOC we
1949 * claimed previously.
1950 */
1951 do {
1952 for (ioc = ioc_list; ioc; ioc = ioc->next)
1953 if (ioc->handle == handle) {
1954 PCI_CONTROLLER(bus)->iommu = ioc;
1955 return;
1956 }
1957
1958 status = acpi_get_parent(handle, &parent);
1959 handle = parent;
1960 } while (ACPI_SUCCESS(status));
1961
1962 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1963 }
1964
1965 static void __init
sba_map_ioc_to_node(struct ioc * ioc,acpi_handle handle)1966 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1967 {
1968 #ifdef CONFIG_NUMA
1969 unsigned int node;
1970
1971 node = acpi_get_node(handle);
1972 if (node != NUMA_NO_NODE && !node_online(node))
1973 node = NUMA_NO_NODE;
1974
1975 ioc->node = node;
1976 #endif
1977 }
1978
acpi_sba_ioc_add(struct ioc * ioc)1979 static void __init acpi_sba_ioc_add(struct ioc *ioc)
1980 {
1981 acpi_handle handle = ioc->handle;
1982 acpi_status status;
1983 u64 hpa, length;
1984 struct acpi_device_info *adi;
1985
1986 ioc_found = ioc->next;
1987 status = hp_acpi_csr_space(handle, &hpa, &length);
1988 if (ACPI_FAILURE(status))
1989 goto err;
1990
1991 status = acpi_get_object_info(handle, &adi);
1992 if (ACPI_FAILURE(status))
1993 goto err;
1994
1995 /*
1996 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
1997 * root bridges, and its CSR space includes the IOC function.
1998 */
1999 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2000 hpa += ZX1_IOC_OFFSET;
2001 /* zx1 based systems default to kernel page size iommu pages */
2002 if (!iovp_shift)
2003 iovp_shift = min(PAGE_SHIFT, 16);
2004 }
2005 kfree(adi);
2006
2007 /*
2008 * default anything not caught above or specified on cmdline to 4k
2009 * iommu page size
2010 */
2011 if (!iovp_shift)
2012 iovp_shift = 12;
2013
2014 ioc_init(hpa, ioc);
2015 /* setup NUMA node association */
2016 sba_map_ioc_to_node(ioc, handle);
2017 return;
2018
2019 err:
2020 kfree(ioc);
2021 }
2022
2023 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2024 {"HWP0001", 0},
2025 {"HWP0004", 0},
2026 {"", 0},
2027 };
2028
acpi_sba_ioc_attach(struct acpi_device * device,const struct acpi_device_id * not_used)2029 static int acpi_sba_ioc_attach(struct acpi_device *device,
2030 const struct acpi_device_id *not_used)
2031 {
2032 struct ioc *ioc;
2033
2034 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2035 if (!ioc)
2036 return -ENOMEM;
2037
2038 ioc->next = ioc_found;
2039 ioc_found = ioc;
2040 ioc->handle = device->handle;
2041 return 1;
2042 }
2043
2044
2045 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2046 .ids = hp_ioc_iommu_device_ids,
2047 .attach = acpi_sba_ioc_attach,
2048 };
2049
acpi_sba_ioc_init_acpi(void)2050 static int __init acpi_sba_ioc_init_acpi(void)
2051 {
2052 return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2053 }
2054 /* This has to run before acpi_scan_init(). */
2055 arch_initcall(acpi_sba_ioc_init_acpi);
2056
sba_dma_supported(struct device * dev,u64 mask)2057 static int sba_dma_supported (struct device *dev, u64 mask)
2058 {
2059 /* make sure it's at least 32bit capable */
2060 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2061 }
2062
2063 static const struct dma_map_ops sba_dma_ops = {
2064 .alloc = sba_alloc_coherent,
2065 .free = sba_free_coherent,
2066 .map_page = sba_map_page,
2067 .unmap_page = sba_unmap_page,
2068 .map_sg = sba_map_sg_attrs,
2069 .unmap_sg = sba_unmap_sg_attrs,
2070 .dma_supported = sba_dma_supported,
2071 .mmap = dma_common_mmap,
2072 .get_sgtable = dma_common_get_sgtable,
2073 .alloc_pages = dma_common_alloc_pages,
2074 .free_pages = dma_common_free_pages,
2075 };
2076
2077 static int __init
sba_init(void)2078 sba_init(void)
2079 {
2080 /*
2081 * If we are booting a kdump kernel, the sba_iommu will cause devices
2082 * that were not shutdown properly to MCA as soon as they are turned
2083 * back on. Our only option for a successful kdump kernel boot is to
2084 * use swiotlb.
2085 */
2086 if (is_kdump_kernel())
2087 return 0;
2088
2089 /*
2090 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2091 * routine, but that only happens if acpi_scan_init() has already run.
2092 */
2093 while (ioc_found)
2094 acpi_sba_ioc_add(ioc_found);
2095
2096 if (!ioc_list)
2097 return 0;
2098
2099 {
2100 struct pci_bus *b = NULL;
2101 while ((b = pci_find_next_bus(b)) != NULL)
2102 sba_connect_bus(b);
2103 }
2104
2105 /* no need for swiotlb with the iommu */
2106 swiotlb_exit();
2107 dma_ops = &sba_dma_ops;
2108
2109 #ifdef CONFIG_PROC_FS
2110 ioc_proc_init();
2111 #endif
2112 return 0;
2113 }
2114
2115 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2116
2117 static int __init
nosbagart(char * str)2118 nosbagart(char *str)
2119 {
2120 reserve_sba_gart = 0;
2121 return 1;
2122 }
2123
2124 __setup("nosbagart", nosbagart);
2125
2126 static int __init
sba_page_override(char * str)2127 sba_page_override(char *str)
2128 {
2129 unsigned long page_size;
2130
2131 page_size = memparse(str, &str);
2132 switch (page_size) {
2133 case 4096:
2134 case 8192:
2135 case 16384:
2136 case 65536:
2137 iovp_shift = ffs(page_size) - 1;
2138 break;
2139 default:
2140 printk("%s: unknown/unsupported iommu page size %ld\n",
2141 __func__, page_size);
2142 }
2143
2144 return 1;
2145 }
2146
2147 __setup("sbapagesize=",sba_page_override);
2148