1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/ia64/kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  * Copyright (C) Intel Corporation, 2005
8  *
9  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10  *              <anil.s.keshavamurthy@intel.com> adapted from i386
11  */
12 
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/sections.h>
23 #include <asm/exception.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
29 
30 enum instruction_type {A, I, M, F, B, L, X, u};
31 static enum instruction_type bundle_encoding[32][3] = {
32 	[0x00] = { M, I, I },
33 	[0x01] = { M, I, I },
34 	[0x02] = { M, I, I },
35 	[0x03] = { M, I, I },
36 	[0x04] = { M, L, X },
37 	[0x05] = { M, L, X },
38 	[0x06] = { u, u, u },
39 	[0x07] = { u, u, u },
40 	[0x08] = { M, M, I },
41 	[0x09] = { M, M, I },
42 	[0x0A] = { M, M, I },
43 	[0x0B] = { M, M, I },
44 	[0x0C] = { M, F, I },
45 	[0x0D] = { M, F, I },
46 	[0x0E] = { M, M, F },
47 	[0x0F] = { M, M, F },
48 	[0x10] = { M, I, B },
49 	[0x11] = { M, I, B },
50 	[0x12] = { M, B, B },
51 	[0x13] = { M, B, B },
52 	[0x14] = { u, u, u },
53 	[0x15] = { u, u, u },
54 	[0x16] = { B, B, B },
55 	[0x17] = { B, B, B },
56 	[0x18] = { M, M, B },
57 	[0x19] = { M, M, B },
58 	[0x1A] = { u, u, u },
59 	[0x1B] = { u, u, u },
60 	[0x1C] = { M, F, B },
61 	[0x1D] = { M, F, B },
62 	[0x1E] = { u, u, u },
63 	[0x1F] = { u, u, u },
64 };
65 
66 /* Insert a long branch code */
set_brl_inst(void * from,void * to)67 static void __kprobes set_brl_inst(void *from, void *to)
68 {
69 	s64 rel = ((s64) to - (s64) from) >> 4;
70 	bundle_t *brl;
71 	brl = (bundle_t *) ((u64) from & ~0xf);
72 	brl->quad0.template = 0x05;	/* [MLX](stop) */
73 	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
74 	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
75 	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76 	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77 	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
78 }
79 
80 /*
81  * In this function we check to see if the instruction
82  * is IP relative instruction and update the kprobe
83  * inst flag accordingly
84  */
update_kprobe_inst_flag(uint template,uint slot,uint major_opcode,unsigned long kprobe_inst,struct kprobe * p)85 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
86 					      uint major_opcode,
87 					      unsigned long kprobe_inst,
88 					      struct kprobe *p)
89 {
90 	p->ainsn.inst_flag = 0;
91 	p->ainsn.target_br_reg = 0;
92 	p->ainsn.slot = slot;
93 
94 	/* Check for Break instruction
95 	 * Bits 37:40 Major opcode to be zero
96 	 * Bits 27:32 X6 to be zero
97 	 * Bits 32:35 X3 to be zero
98 	 */
99 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
100 		/* is a break instruction */
101 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
102 		return;
103 	}
104 
105 	if (bundle_encoding[template][slot] == B) {
106 		switch (major_opcode) {
107 		  case INDIRECT_CALL_OPCODE:
108 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
109 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
110 			break;
111 		  case IP_RELATIVE_PREDICT_OPCODE:
112 		  case IP_RELATIVE_BRANCH_OPCODE:
113 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
114 			break;
115 		  case IP_RELATIVE_CALL_OPCODE:
116 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
117 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
118 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119 			break;
120 		}
121 	} else if (bundle_encoding[template][slot] == X) {
122 		switch (major_opcode) {
123 		  case LONG_CALL_OPCODE:
124 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
125 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
126 		  break;
127 		}
128 	}
129 	return;
130 }
131 
132 /*
133  * In this function we check to see if the instruction
134  * (qp) cmpx.crel.ctype p1,p2=r2,r3
135  * on which we are inserting kprobe is cmp instruction
136  * with ctype as unc.
137  */
is_cmp_ctype_unc_inst(uint template,uint slot,uint major_opcode,unsigned long kprobe_inst)138 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
139 					    uint major_opcode,
140 					    unsigned long kprobe_inst)
141 {
142 	cmp_inst_t cmp_inst;
143 	uint ctype_unc = 0;
144 
145 	if (!((bundle_encoding[template][slot] == I) ||
146 		(bundle_encoding[template][slot] == M)))
147 		goto out;
148 
149 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
150 		(major_opcode == 0xE)))
151 		goto out;
152 
153 	cmp_inst.l = kprobe_inst;
154 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
155 		/* Integer compare - Register Register (A6 type)*/
156 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
157 				&&(cmp_inst.f.c == 1))
158 			ctype_unc = 1;
159 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
160 		/* Integer compare - Immediate Register (A8 type)*/
161 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
162 			ctype_unc = 1;
163 	}
164 out:
165 	return ctype_unc;
166 }
167 
168 /*
169  * In this function we check to see if the instruction
170  * on which we are inserting kprobe is supported.
171  * Returns qp value if supported
172  * Returns -EINVAL if unsupported
173  */
unsupported_inst(uint template,uint slot,uint major_opcode,unsigned long kprobe_inst,unsigned long addr)174 static int __kprobes unsupported_inst(uint template, uint  slot,
175 				      uint major_opcode,
176 				      unsigned long kprobe_inst,
177 				      unsigned long addr)
178 {
179 	int qp;
180 
181 	qp = kprobe_inst & 0x3f;
182 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
183 		if (slot == 1 && qp)  {
184 			printk(KERN_WARNING "Kprobes on cmp unc "
185 					"instruction on slot 1 at <0x%lx> "
186 					"is not supported\n", addr);
187 			return -EINVAL;
188 
189 		}
190 		qp = 0;
191 	}
192 	else if (bundle_encoding[template][slot] == I) {
193 		if (major_opcode == 0) {
194 			/*
195 			 * Check for Integer speculation instruction
196 			 * - Bit 33-35 to be equal to 0x1
197 			 */
198 			if (((kprobe_inst >> 33) & 0x7) == 1) {
199 				printk(KERN_WARNING
200 					"Kprobes on speculation inst at <0x%lx> not supported\n",
201 						addr);
202 				return -EINVAL;
203 			}
204 			/*
205 			 * IP relative mov instruction
206 			 *  - Bit 27-35 to be equal to 0x30
207 			 */
208 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
209 				printk(KERN_WARNING
210 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
211 						addr);
212 				return -EINVAL;
213 
214 			}
215 		}
216 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
217 				(kprobe_inst & (0x1UL << 12))) {
218 			/* test bit instructions, tbit,tnat,tf
219 			 * bit 33-36 to be equal to 0
220 			 * bit 12 to be equal to 1
221 			 */
222 			if (slot == 1 && qp) {
223 				printk(KERN_WARNING "Kprobes on test bit "
224 						"instruction on slot at <0x%lx> "
225 						"is not supported\n", addr);
226 				return -EINVAL;
227 			}
228 			qp = 0;
229 		}
230 	}
231 	else if (bundle_encoding[template][slot] == B) {
232 		if (major_opcode == 7) {
233 			/* IP-Relative Predict major code is 7 */
234 			printk(KERN_WARNING "Kprobes on IP-Relative"
235 					"Predict is not supported\n");
236 			return -EINVAL;
237 		}
238 		else if (major_opcode == 2) {
239 			/* Indirect Predict, major code is 2
240 			 * bit 27-32 to be equal to 10 or 11
241 			 */
242 			int x6=(kprobe_inst >> 27) & 0x3F;
243 			if ((x6 == 0x10) || (x6 == 0x11)) {
244 				printk(KERN_WARNING "Kprobes on "
245 					"Indirect Predict is not supported\n");
246 				return -EINVAL;
247 			}
248 		}
249 	}
250 	/* kernel does not use float instruction, here for safety kprobe
251 	 * will judge whether it is fcmp/flass/float approximation instruction
252 	 */
253 	else if (unlikely(bundle_encoding[template][slot] == F)) {
254 		if ((major_opcode == 4 || major_opcode == 5) &&
255 				(kprobe_inst  & (0x1 << 12))) {
256 			/* fcmp/fclass unc instruction */
257 			if (slot == 1 && qp) {
258 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
259 					"instruction on slot at <0x%lx> "
260 					"is not supported\n", addr);
261 				return -EINVAL;
262 
263 			}
264 			qp = 0;
265 		}
266 		if ((major_opcode == 0 || major_opcode == 1) &&
267 			(kprobe_inst & (0x1UL << 33))) {
268 			/* float Approximation instruction */
269 			if (slot == 1 && qp) {
270 				printk(KERN_WARNING "Kprobes on float Approx "
271 					"instr at <0x%lx> is not supported\n",
272 						addr);
273 				return -EINVAL;
274 			}
275 			qp = 0;
276 		}
277 	}
278 	return qp;
279 }
280 
281 /*
282  * In this function we override the bundle with
283  * the break instruction at the given slot.
284  */
prepare_break_inst(uint template,uint slot,uint major_opcode,unsigned long kprobe_inst,struct kprobe * p,int qp)285 static void __kprobes prepare_break_inst(uint template, uint  slot,
286 					 uint major_opcode,
287 					 unsigned long kprobe_inst,
288 					 struct kprobe *p,
289 					 int qp)
290 {
291 	unsigned long break_inst = BREAK_INST;
292 	bundle_t *bundle = &p->opcode.bundle;
293 
294 	/*
295 	 * Copy the original kprobe_inst qualifying predicate(qp)
296 	 * to the break instruction
297 	 */
298 	break_inst |= qp;
299 
300 	switch (slot) {
301 	  case 0:
302 		bundle->quad0.slot0 = break_inst;
303 		break;
304 	  case 1:
305 		bundle->quad0.slot1_p0 = break_inst;
306 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
307 		break;
308 	  case 2:
309 		bundle->quad1.slot2 = break_inst;
310 		break;
311 	}
312 
313 	/*
314 	 * Update the instruction flag, so that we can
315 	 * emulate the instruction properly after we
316 	 * single step on original instruction
317 	 */
318 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
319 }
320 
get_kprobe_inst(bundle_t * bundle,uint slot,unsigned long * kprobe_inst,uint * major_opcode)321 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
322 	       	unsigned long *kprobe_inst, uint *major_opcode)
323 {
324 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
325 	unsigned int template;
326 
327 	template = bundle->quad0.template;
328 
329 	switch (slot) {
330 	  case 0:
331 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
332 		*kprobe_inst = bundle->quad0.slot0;
333 		  break;
334 	  case 1:
335 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
336 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
337 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
338 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
339 		break;
340 	  case 2:
341 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
342 		*kprobe_inst = bundle->quad1.slot2;
343 		break;
344 	}
345 }
346 
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
in_ivt_functions(unsigned long addr)348 static int __kprobes in_ivt_functions(unsigned long addr)
349 {
350 	return (addr >= (unsigned long)__start_ivt_text
351 		&& addr < (unsigned long)__end_ivt_text);
352 }
353 
valid_kprobe_addr(int template,int slot,unsigned long addr)354 static int __kprobes valid_kprobe_addr(int template, int slot,
355 				       unsigned long addr)
356 {
357 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
358 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
359 				"at 0x%lx\n", addr);
360 		return -EINVAL;
361 	}
362 
363 	if (in_ivt_functions(addr)) {
364 		printk(KERN_WARNING "Kprobes can't be inserted inside "
365 				"IVT functions at 0x%lx\n", addr);
366 		return -EINVAL;
367 	}
368 
369 	return 0;
370 }
371 
save_previous_kprobe(struct kprobe_ctlblk * kcb)372 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373 {
374 	unsigned int i;
375 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
376 	kcb->prev_kprobe[i-1].kp = kprobe_running();
377 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
378 }
379 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)380 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381 {
382 	unsigned int i;
383 	i = atomic_read(&kcb->prev_kprobe_index);
384 	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
385 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
386 	atomic_sub(1, &kcb->prev_kprobe_index);
387 }
388 
set_current_kprobe(struct kprobe * p,struct kprobe_ctlblk * kcb)389 static void __kprobes set_current_kprobe(struct kprobe *p,
390 			struct kprobe_ctlblk *kcb)
391 {
392 	__this_cpu_write(current_kprobe, p);
393 }
394 
__kretprobe_trampoline(void)395 void __kretprobe_trampoline(void)
396 {
397 }
398 
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)399 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
400 {
401 	regs->cr_iip = __kretprobe_trampoline_handler(regs, NULL);
402 	/*
403 	 * By returning a non-zero value, we are telling
404 	 * kprobe_handler() that we don't want the post_handler
405 	 * to run (and have re-enabled preemption)
406 	 */
407 	return 1;
408 }
409 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)410 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
411 				      struct pt_regs *regs)
412 {
413 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
414 	ri->fp = NULL;
415 
416 	/* Replace the return addr with trampoline addr */
417 	regs->b0 = (unsigned long)dereference_function_descriptor(__kretprobe_trampoline);
418 }
419 
420 /* Check the instruction in the slot is break */
__is_ia64_break_inst(bundle_t * bundle,uint slot)421 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
422 {
423 	unsigned int major_opcode;
424 	unsigned int template = bundle->quad0.template;
425 	unsigned long kprobe_inst;
426 
427 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
428 	if (slot == 1 && bundle_encoding[template][1] == L)
429 		slot++;
430 
431 	/* Get Kprobe probe instruction at given slot*/
432 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
433 
434 	/* For break instruction,
435 	 * Bits 37:40 Major opcode to be zero
436 	 * Bits 27:32 X6 to be zero
437 	 * Bits 32:35 X3 to be zero
438 	 */
439 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
440 		/* Not a break instruction */
441 		return 0;
442 	}
443 
444 	/* Is a break instruction */
445 	return 1;
446 }
447 
448 /*
449  * In this function, we check whether the target bundle modifies IP or
450  * it triggers an exception. If so, it cannot be boostable.
451  */
can_boost(bundle_t * bundle,uint slot,unsigned long bundle_addr)452 static int __kprobes can_boost(bundle_t *bundle, uint slot,
453 			       unsigned long bundle_addr)
454 {
455 	unsigned int template = bundle->quad0.template;
456 
457 	do {
458 		if (search_exception_tables(bundle_addr + slot) ||
459 		    __is_ia64_break_inst(bundle, slot))
460 			return 0;	/* exception may occur in this bundle*/
461 	} while ((++slot) < 3);
462 	template &= 0x1e;
463 	if (template >= 0x10 /* including B unit */ ||
464 	    template == 0x04 /* including X unit */ ||
465 	    template == 0x06) /* undefined */
466 		return 0;
467 
468 	return 1;
469 }
470 
471 /* Prepare long jump bundle and disables other boosters if need */
prepare_booster(struct kprobe * p)472 static void __kprobes prepare_booster(struct kprobe *p)
473 {
474 	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
475 	unsigned int slot = (unsigned long)p->addr & 0xf;
476 	struct kprobe *other_kp;
477 
478 	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
479 		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
480 		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
481 	}
482 
483 	/* disables boosters in previous slots */
484 	for (; addr < (unsigned long)p->addr; addr++) {
485 		other_kp = get_kprobe((void *)addr);
486 		if (other_kp)
487 			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
488 	}
489 }
490 
arch_prepare_kprobe(struct kprobe * p)491 int __kprobes arch_prepare_kprobe(struct kprobe *p)
492 {
493 	unsigned long addr = (unsigned long) p->addr;
494 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
495 	unsigned long kprobe_inst=0;
496 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
497 	bundle_t *bundle;
498 	int qp;
499 
500 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
501 	template = bundle->quad0.template;
502 
503 	if(valid_kprobe_addr(template, slot, addr))
504 		return -EINVAL;
505 
506 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
507 	if (slot == 1 && bundle_encoding[template][1] == L)
508 		slot++;
509 
510 	/* Get kprobe_inst and major_opcode from the bundle */
511 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
512 
513 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
514 	if (qp < 0)
515 		return -EINVAL;
516 
517 	p->ainsn.insn = get_insn_slot();
518 	if (!p->ainsn.insn)
519 		return -ENOMEM;
520 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
521 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
522 
523 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
524 
525 	prepare_booster(p);
526 
527 	return 0;
528 }
529 
arch_arm_kprobe(struct kprobe * p)530 void __kprobes arch_arm_kprobe(struct kprobe *p)
531 {
532 	unsigned long arm_addr;
533 	bundle_t *src, *dest;
534 
535 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
536 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
537 	src = &p->opcode.bundle;
538 
539 	flush_icache_range((unsigned long)p->ainsn.insn,
540 			   (unsigned long)p->ainsn.insn +
541 			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
542 
543 	switch (p->ainsn.slot) {
544 		case 0:
545 			dest->quad0.slot0 = src->quad0.slot0;
546 			break;
547 		case 1:
548 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
549 			break;
550 		case 2:
551 			dest->quad1.slot2 = src->quad1.slot2;
552 			break;
553 	}
554 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
555 }
556 
arch_disarm_kprobe(struct kprobe * p)557 void __kprobes arch_disarm_kprobe(struct kprobe *p)
558 {
559 	unsigned long arm_addr;
560 	bundle_t *src, *dest;
561 
562 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
563 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
564 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
565 	src = &p->ainsn.insn->bundle;
566 	switch (p->ainsn.slot) {
567 		case 0:
568 			dest->quad0.slot0 = src->quad0.slot0;
569 			break;
570 		case 1:
571 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
572 			break;
573 		case 2:
574 			dest->quad1.slot2 = src->quad1.slot2;
575 			break;
576 	}
577 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
578 }
579 
arch_remove_kprobe(struct kprobe * p)580 void __kprobes arch_remove_kprobe(struct kprobe *p)
581 {
582 	if (p->ainsn.insn) {
583 		free_insn_slot(p->ainsn.insn,
584 			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
585 		p->ainsn.insn = NULL;
586 	}
587 }
588 /*
589  * We are resuming execution after a single step fault, so the pt_regs
590  * structure reflects the register state after we executed the instruction
591  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
592  * the ip to point back to the original stack address. To set the IP address
593  * to original stack address, handle the case where we need to fixup the
594  * relative IP address and/or fixup branch register.
595  */
resume_execution(struct kprobe * p,struct pt_regs * regs)596 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
597 {
598 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
599 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
600 	unsigned long template;
601 	int slot = ((unsigned long)p->addr & 0xf);
602 
603 	template = p->ainsn.insn->bundle.quad0.template;
604 
605 	if (slot == 1 && bundle_encoding[template][1] == L)
606 		slot = 2;
607 
608 	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
609 
610 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
611 			/* Fix relative IP address */
612 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
613 					resume_addr;
614 		}
615 
616 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
617 		/*
618 		 * Fix target branch register, software convention is
619 		 * to use either b0 or b6 or b7, so just checking
620 		 * only those registers
621 		 */
622 			switch (p->ainsn.target_br_reg) {
623 			case 0:
624 				if ((regs->b0 == bundle_addr) ||
625 					(regs->b0 == bundle_addr + 0x10)) {
626 					regs->b0 = (regs->b0 - bundle_addr) +
627 						resume_addr;
628 				}
629 				break;
630 			case 6:
631 				if ((regs->b6 == bundle_addr) ||
632 					(regs->b6 == bundle_addr + 0x10)) {
633 					regs->b6 = (regs->b6 - bundle_addr) +
634 						resume_addr;
635 				}
636 				break;
637 			case 7:
638 				if ((regs->b7 == bundle_addr) ||
639 					(regs->b7 == bundle_addr + 0x10)) {
640 					regs->b7 = (regs->b7 - bundle_addr) +
641 						resume_addr;
642 				}
643 				break;
644 			} /* end switch */
645 		}
646 		goto turn_ss_off;
647 	}
648 
649 	if (slot == 2) {
650 		if (regs->cr_iip == bundle_addr + 0x10) {
651 			regs->cr_iip = resume_addr + 0x10;
652 		}
653 	} else {
654 		if (regs->cr_iip == bundle_addr) {
655 			regs->cr_iip = resume_addr;
656 		}
657 	}
658 
659 turn_ss_off:
660 	/* Turn off Single Step bit */
661 	ia64_psr(regs)->ss = 0;
662 }
663 
prepare_ss(struct kprobe * p,struct pt_regs * regs)664 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
665 {
666 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
667 	unsigned long slot = (unsigned long)p->addr & 0xf;
668 
669 	/* single step inline if break instruction */
670 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
671 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
672 	else
673 		regs->cr_iip = bundle_addr & ~0xFULL;
674 
675 	if (slot > 2)
676 		slot = 0;
677 
678 	ia64_psr(regs)->ri = slot;
679 
680 	/* turn on single stepping */
681 	ia64_psr(regs)->ss = 1;
682 }
683 
is_ia64_break_inst(struct pt_regs * regs)684 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
685 {
686 	unsigned int slot = ia64_psr(regs)->ri;
687 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
688 	bundle_t bundle;
689 
690 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
691 
692 	return __is_ia64_break_inst(&bundle, slot);
693 }
694 
pre_kprobes_handler(struct die_args * args)695 static int __kprobes pre_kprobes_handler(struct die_args *args)
696 {
697 	struct kprobe *p;
698 	int ret = 0;
699 	struct pt_regs *regs = args->regs;
700 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
701 	struct kprobe_ctlblk *kcb;
702 
703 	/*
704 	 * We don't want to be preempted for the entire
705 	 * duration of kprobe processing
706 	 */
707 	preempt_disable();
708 	kcb = get_kprobe_ctlblk();
709 
710 	/* Handle recursion cases */
711 	if (kprobe_running()) {
712 		p = get_kprobe(addr);
713 		if (p) {
714 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
715 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
716 				ia64_psr(regs)->ss = 0;
717 				goto no_kprobe;
718 			}
719 			/* We have reentered the pre_kprobe_handler(), since
720 			 * another probe was hit while within the handler.
721 			 * We here save the original kprobes variables and
722 			 * just single step on the instruction of the new probe
723 			 * without calling any user handlers.
724 			 */
725 			save_previous_kprobe(kcb);
726 			set_current_kprobe(p, kcb);
727 			kprobes_inc_nmissed_count(p);
728 			prepare_ss(p, regs);
729 			kcb->kprobe_status = KPROBE_REENTER;
730 			return 1;
731 		} else if (!is_ia64_break_inst(regs)) {
732 			/* The breakpoint instruction was removed by
733 			 * another cpu right after we hit, no further
734 			 * handling of this interrupt is appropriate
735 			 */
736 			ret = 1;
737 			goto no_kprobe;
738 		} else {
739 			/* Not our break */
740 			goto no_kprobe;
741 		}
742 	}
743 
744 	p = get_kprobe(addr);
745 	if (!p) {
746 		if (!is_ia64_break_inst(regs)) {
747 			/*
748 			 * The breakpoint instruction was removed right
749 			 * after we hit it.  Another cpu has removed
750 			 * either a probepoint or a debugger breakpoint
751 			 * at this address.  In either case, no further
752 			 * handling of this interrupt is appropriate.
753 			 */
754 			ret = 1;
755 
756 		}
757 
758 		/* Not one of our break, let kernel handle it */
759 		goto no_kprobe;
760 	}
761 
762 	set_current_kprobe(p, kcb);
763 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
764 
765 	if (p->pre_handler && p->pre_handler(p, regs)) {
766 		reset_current_kprobe();
767 		preempt_enable_no_resched();
768 		return 1;
769 	}
770 
771 #if !defined(CONFIG_PREEMPTION)
772 	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
773 		/* Boost up -- we can execute copied instructions directly */
774 		ia64_psr(regs)->ri = p->ainsn.slot;
775 		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
776 		/* turn single stepping off */
777 		ia64_psr(regs)->ss = 0;
778 
779 		reset_current_kprobe();
780 		preempt_enable_no_resched();
781 		return 1;
782 	}
783 #endif
784 	prepare_ss(p, regs);
785 	kcb->kprobe_status = KPROBE_HIT_SS;
786 	return 1;
787 
788 no_kprobe:
789 	preempt_enable_no_resched();
790 	return ret;
791 }
792 
post_kprobes_handler(struct pt_regs * regs)793 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
794 {
795 	struct kprobe *cur = kprobe_running();
796 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
797 
798 	if (!cur)
799 		return 0;
800 
801 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
802 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
803 		cur->post_handler(cur, regs, 0);
804 	}
805 
806 	resume_execution(cur, regs);
807 
808 	/*Restore back the original saved kprobes variables and continue. */
809 	if (kcb->kprobe_status == KPROBE_REENTER) {
810 		restore_previous_kprobe(kcb);
811 		goto out;
812 	}
813 	reset_current_kprobe();
814 
815 out:
816 	preempt_enable_no_resched();
817 	return 1;
818 }
819 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)820 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
821 {
822 	struct kprobe *cur = kprobe_running();
823 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
824 
825 
826 	switch(kcb->kprobe_status) {
827 	case KPROBE_HIT_SS:
828 	case KPROBE_REENTER:
829 		/*
830 		 * We are here because the instruction being single
831 		 * stepped caused a page fault. We reset the current
832 		 * kprobe and the instruction pointer points back to
833 		 * the probe address and allow the page fault handler
834 		 * to continue as a normal page fault.
835 		 */
836 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
837 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
838 		if (kcb->kprobe_status == KPROBE_REENTER)
839 			restore_previous_kprobe(kcb);
840 		else
841 			reset_current_kprobe();
842 		preempt_enable_no_resched();
843 		break;
844 	case KPROBE_HIT_ACTIVE:
845 	case KPROBE_HIT_SSDONE:
846 		/*
847 		 * In case the user-specified fault handler returned
848 		 * zero, try to fix up.
849 		 */
850 		if (ia64_done_with_exception(regs))
851 			return 1;
852 
853 		/*
854 		 * Let ia64_do_page_fault() fix it.
855 		 */
856 		break;
857 	default:
858 		break;
859 	}
860 
861 	return 0;
862 }
863 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)864 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
865 				       unsigned long val, void *data)
866 {
867 	struct die_args *args = (struct die_args *)data;
868 	int ret = NOTIFY_DONE;
869 
870 	if (args->regs && user_mode(args->regs))
871 		return ret;
872 
873 	switch(val) {
874 	case DIE_BREAK:
875 		/* err is break number from ia64_bad_break() */
876 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
877 			|| args->err == 0)
878 			if (pre_kprobes_handler(args))
879 				ret = NOTIFY_STOP;
880 		break;
881 	case DIE_FAULT:
882 		/* err is vector number from ia64_fault() */
883 		if (args->err == 36)
884 			if (post_kprobes_handler(args->regs))
885 				ret = NOTIFY_STOP;
886 		break;
887 	default:
888 		break;
889 	}
890 	return ret;
891 }
892 
893 static struct kprobe trampoline_p = {
894 	.pre_handler = trampoline_probe_handler
895 };
896 
arch_init_kprobes(void)897 int __init arch_init_kprobes(void)
898 {
899 	trampoline_p.addr =
900 		dereference_function_descriptor(__kretprobe_trampoline);
901 	return register_kprobe(&trampoline_p);
902 }
903 
arch_trampoline_kprobe(struct kprobe * p)904 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
905 {
906 	if (p->addr ==
907 		dereference_function_descriptor(__kretprobe_trampoline))
908 		return 1;
909 
910 	return 0;
911 }
912