1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14
15 #define ARCH_HAS_IOREMAP_WC
16
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21
22 #include <asm/addrspace.h>
23 #include <asm/barrier.h>
24 #include <asm/bug.h>
25 #include <asm/byteorder.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm-generic/iomap.h>
29 #include <asm/page.h>
30 #include <asm/pgtable-bits.h>
31 #include <asm/processor.h>
32 #include <asm/string.h>
33 #include <mangle-port.h>
34
35 /*
36 * Raw operations are never swapped in software. OTOH values that raw
37 * operations are working on may or may not have been swapped by the bus
38 * hardware. An example use would be for flash memory that's used for
39 * execute in place.
40 */
41 # define __raw_ioswabb(a, x) (x)
42 # define __raw_ioswabw(a, x) (x)
43 # define __raw_ioswabl(a, x) (x)
44 # define __raw_ioswabq(a, x) (x)
45 # define ____raw_ioswabq(a, x) (x)
46
47 # define __relaxed_ioswabb ioswabb
48 # define __relaxed_ioswabw ioswabw
49 # define __relaxed_ioswabl ioswabl
50 # define __relaxed_ioswabq ioswabq
51
52 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53
54 /*
55 * On MIPS I/O ports are memory mapped, so we access them using normal
56 * load/store instructions. mips_io_port_base is the virtual address to
57 * which all ports are being mapped. For sake of efficiency some code
58 * assumes that this is an address that can be loaded with a single lui
59 * instruction, so the lower 16 bits must be zero. Should be true on
60 * any sane architecture; generic code does not use this assumption.
61 */
62 extern unsigned long mips_io_port_base;
63
set_io_port_base(unsigned long base)64 static inline void set_io_port_base(unsigned long base)
65 {
66 mips_io_port_base = base;
67 }
68
69 /*
70 * Provide the necessary definitions for generic iomap. We make use of
71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
72 * use with I/O ports.
73 */
74
75 #define HAVE_ARCH_PIO_SIZE
76 #define PIO_OFFSET mips_io_port_base
77 #define PIO_MASK IO_SPACE_LIMIT
78 #define PIO_RESERVED 0x0UL
79
80 /*
81 * Enforce in-order execution of data I/O. In the MIPS architecture
82 * these are equivalent to corresponding platform-specific memory
83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
84 * with sync additionally defined.
85 */
86 #define iobarrier_rw() mb()
87 #define iobarrier_r() rmb()
88 #define iobarrier_w() wmb()
89 #define iobarrier_sync() iob()
90
91 /*
92 * virt_to_phys - map virtual addresses to physical
93 * @address: address to remap
94 *
95 * The returned physical address is the physical (CPU) mapping for
96 * the memory address given. It is only valid to use this function on
97 * addresses directly mapped or allocated via kmalloc.
98 *
99 * This function does not give bus mappings for DMA transfers. In
100 * almost all conceivable cases a device driver should not be using
101 * this function
102 */
__virt_to_phys_nodebug(volatile const void * address)103 static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104 {
105 return __pa(address);
106 }
107
108 #ifdef CONFIG_DEBUG_VIRTUAL
109 extern phys_addr_t __virt_to_phys(volatile const void *x);
110 #else
111 #define __virt_to_phys(x) __virt_to_phys_nodebug(x)
112 #endif
113
114 #define virt_to_phys virt_to_phys
virt_to_phys(const volatile void * x)115 static inline phys_addr_t virt_to_phys(const volatile void *x)
116 {
117 return __virt_to_phys(x);
118 }
119
120 /*
121 * phys_to_virt - map physical address to virtual
122 * @address: address to remap
123 *
124 * The returned virtual address is a current CPU mapping for
125 * the memory address given. It is only valid to use this function on
126 * addresses that have a kernel mapping
127 *
128 * This function does not handle bus mappings for DMA transfers. In
129 * almost all conceivable cases a device driver should not be using
130 * this function
131 */
phys_to_virt(unsigned long address)132 static inline void * phys_to_virt(unsigned long address)
133 {
134 return __va(address);
135 }
136
137 /*
138 * ISA I/O bus memory addresses are 1:1 with the physical address.
139 */
isa_virt_to_bus(volatile void * address)140 static inline unsigned long isa_virt_to_bus(volatile void *address)
141 {
142 return virt_to_phys(address);
143 }
144
isa_bus_to_virt(unsigned long address)145 static inline void *isa_bus_to_virt(unsigned long address)
146 {
147 return phys_to_virt(address);
148 }
149
150 /*
151 * Change "struct page" to physical address.
152 */
153 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
154
155 void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
156 unsigned long prot_val);
157 void iounmap(const volatile void __iomem *addr);
158
159 /*
160 * ioremap - map bus memory into CPU space
161 * @offset: bus address of the memory
162 * @size: size of the resource to map
163 *
164 * ioremap performs a platform specific sequence of operations to
165 * make bus memory CPU accessible via the readb/readw/readl/writeb/
166 * writew/writel functions and the other mmio helpers. The returned
167 * address is not guaranteed to be usable directly as a virtual
168 * address.
169 */
170 #define ioremap(offset, size) \
171 ioremap_prot((offset), (size), _CACHE_UNCACHED)
172 #define ioremap_uc ioremap
173
174 /*
175 * ioremap_cache - map bus memory into CPU space
176 * @offset: bus address of the memory
177 * @size: size of the resource to map
178 *
179 * ioremap_cache performs a platform specific sequence of operations to
180 * make bus memory CPU accessible via the readb/readw/readl/writeb/
181 * writew/writel functions and the other mmio helpers. The returned
182 * address is not guaranteed to be usable directly as a virtual
183 * address.
184 *
185 * This version of ioremap ensures that the memory is marked cachable by
186 * the CPU. Also enables full write-combining. Useful for some
187 * memory-like regions on I/O busses.
188 */
189 #define ioremap_cache(offset, size) \
190 ioremap_prot((offset), (size), _page_cachable_default)
191
192 /*
193 * ioremap_wc - map bus memory into CPU space
194 * @offset: bus address of the memory
195 * @size: size of the resource to map
196 *
197 * ioremap_wc performs a platform specific sequence of operations to
198 * make bus memory CPU accessible via the readb/readw/readl/writeb/
199 * writew/writel functions and the other mmio helpers. The returned
200 * address is not guaranteed to be usable directly as a virtual
201 * address.
202 *
203 * This version of ioremap ensures that the memory is marked uncachable
204 * but accelerated by means of write-combining feature. It is specifically
205 * useful for PCIe prefetchable windows, which may vastly improve a
206 * communications performance. If it was determined on boot stage, what
207 * CPU CCA doesn't support UCA, the method shall fall-back to the
208 * _CACHE_UNCACHED option (see cpu_probe() method).
209 */
210 #define ioremap_wc(offset, size) \
211 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
212
213 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
214 #define war_io_reorder_wmb() wmb()
215 #else
216 #define war_io_reorder_wmb() barrier()
217 #endif
218
219 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
220 \
221 static inline void pfx##write##bwlq(type val, \
222 volatile void __iomem *mem) \
223 { \
224 volatile type *__mem; \
225 type __val; \
226 \
227 if (barrier) \
228 iobarrier_rw(); \
229 else \
230 war_io_reorder_wmb(); \
231 \
232 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
233 \
234 __val = pfx##ioswab##bwlq(__mem, val); \
235 \
236 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
237 *__mem = __val; \
238 else if (cpu_has_64bits) { \
239 unsigned long __flags; \
240 type __tmp; \
241 \
242 if (irq) \
243 local_irq_save(__flags); \
244 __asm__ __volatile__( \
245 ".set push" "\t\t# __writeq""\n\t" \
246 ".set arch=r4000" "\n\t" \
247 "dsll32 %L0, %L0, 0" "\n\t" \
248 "dsrl32 %L0, %L0, 0" "\n\t" \
249 "dsll32 %M0, %M0, 0" "\n\t" \
250 "or %L0, %L0, %M0" "\n\t" \
251 "sd %L0, %2" "\n\t" \
252 ".set pop" "\n" \
253 : "=r" (__tmp) \
254 : "0" (__val), "m" (*__mem)); \
255 if (irq) \
256 local_irq_restore(__flags); \
257 } else \
258 BUG(); \
259 } \
260 \
261 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
262 { \
263 volatile type *__mem; \
264 type __val; \
265 \
266 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
267 \
268 if (barrier) \
269 iobarrier_rw(); \
270 \
271 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
272 __val = *__mem; \
273 else if (cpu_has_64bits) { \
274 unsigned long __flags; \
275 \
276 if (irq) \
277 local_irq_save(__flags); \
278 __asm__ __volatile__( \
279 ".set push" "\t\t# __readq" "\n\t" \
280 ".set arch=r4000" "\n\t" \
281 "ld %L0, %1" "\n\t" \
282 "dsra32 %M0, %L0, 0" "\n\t" \
283 "sll %L0, %L0, 0" "\n\t" \
284 ".set pop" "\n" \
285 : "=r" (__val) \
286 : "m" (*__mem)); \
287 if (irq) \
288 local_irq_restore(__flags); \
289 } else { \
290 __val = 0; \
291 BUG(); \
292 } \
293 \
294 /* prevent prefetching of coherent DMA data prematurely */ \
295 if (!relax) \
296 rmb(); \
297 return pfx##ioswab##bwlq(__mem, __val); \
298 }
299
300 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
301 \
302 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
303 { \
304 volatile type *__addr; \
305 type __val; \
306 \
307 if (barrier) \
308 iobarrier_rw(); \
309 else \
310 war_io_reorder_wmb(); \
311 \
312 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
313 \
314 __val = pfx##ioswab##bwlq(__addr, val); \
315 \
316 /* Really, we want this to be atomic */ \
317 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
318 \
319 *__addr = __val; \
320 } \
321 \
322 static inline type pfx##in##bwlq##p(unsigned long port) \
323 { \
324 volatile type *__addr; \
325 type __val; \
326 \
327 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
328 \
329 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
330 \
331 if (barrier) \
332 iobarrier_rw(); \
333 \
334 __val = *__addr; \
335 \
336 /* prevent prefetching of coherent DMA data prematurely */ \
337 if (!relax) \
338 rmb(); \
339 return pfx##ioswab##bwlq(__addr, __val); \
340 }
341
342 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
343 \
344 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
345
346 #define BUILDIO_MEM(bwlq, type) \
347 \
348 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
349 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
350 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
351 __BUILD_MEMORY_PFX(, bwlq, type, 0)
352
BUILDIO_MEM(b,u8)353 BUILDIO_MEM(b, u8)
354 BUILDIO_MEM(w, u16)
355 BUILDIO_MEM(l, u32)
356 #ifdef CONFIG_64BIT
357 BUILDIO_MEM(q, u64)
358 #else
359 __BUILD_MEMORY_PFX(__raw_, q, u64, 0)
360 __BUILD_MEMORY_PFX(__mem_, q, u64, 0)
361 #endif
362
363 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
364 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
365 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
366
367 #define BUILDIO_IOPORT(bwlq, type) \
368 __BUILD_IOPORT_PFX(, bwlq, type) \
369 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
370
371 BUILDIO_IOPORT(b, u8)
372 BUILDIO_IOPORT(w, u16)
373 BUILDIO_IOPORT(l, u32)
374 #ifdef CONFIG_64BIT
375 BUILDIO_IOPORT(q, u64)
376 #endif
377
378 #define __BUILDIO(bwlq, type) \
379 \
380 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
381
382 __BUILDIO(q, u64)
383
384 #define readb_relaxed __relaxed_readb
385 #define readw_relaxed __relaxed_readw
386 #define readl_relaxed __relaxed_readl
387 #ifdef CONFIG_64BIT
388 #define readq_relaxed __relaxed_readq
389 #endif
390
391 #define writeb_relaxed __relaxed_writeb
392 #define writew_relaxed __relaxed_writew
393 #define writel_relaxed __relaxed_writel
394 #ifdef CONFIG_64BIT
395 #define writeq_relaxed __relaxed_writeq
396 #endif
397
398 #define readb_be(addr) \
399 __raw_readb((__force unsigned *)(addr))
400 #define readw_be(addr) \
401 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
402 #define readl_be(addr) \
403 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
404 #define readq_be(addr) \
405 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
406
407 #define writeb_be(val, addr) \
408 __raw_writeb((val), (__force unsigned *)(addr))
409 #define writew_be(val, addr) \
410 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
411 #define writel_be(val, addr) \
412 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
413 #define writeq_be(val, addr) \
414 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
415
416 /*
417 * Some code tests for these symbols
418 */
419 #ifdef CONFIG_64BIT
420 #define readq readq
421 #define writeq writeq
422 #endif
423
424 #define __BUILD_MEMORY_STRING(bwlq, type) \
425 \
426 static inline void writes##bwlq(volatile void __iomem *mem, \
427 const void *addr, unsigned int count) \
428 { \
429 const volatile type *__addr = addr; \
430 \
431 while (count--) { \
432 __mem_write##bwlq(*__addr, mem); \
433 __addr++; \
434 } \
435 } \
436 \
437 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
438 unsigned int count) \
439 { \
440 volatile type *__addr = addr; \
441 \
442 while (count--) { \
443 *__addr = __mem_read##bwlq(mem); \
444 __addr++; \
445 } \
446 }
447
448 #define __BUILD_IOPORT_STRING(bwlq, type) \
449 \
450 static inline void outs##bwlq(unsigned long port, const void *addr, \
451 unsigned int count) \
452 { \
453 const volatile type *__addr = addr; \
454 \
455 while (count--) { \
456 __mem_out##bwlq(*__addr, port); \
457 __addr++; \
458 } \
459 } \
460 \
461 static inline void ins##bwlq(unsigned long port, void *addr, \
462 unsigned int count) \
463 { \
464 volatile type *__addr = addr; \
465 \
466 while (count--) { \
467 *__addr = __mem_in##bwlq(port); \
468 __addr++; \
469 } \
470 }
471
472 #define BUILDSTRING(bwlq, type) \
473 \
474 __BUILD_MEMORY_STRING(bwlq, type) \
475 __BUILD_IOPORT_STRING(bwlq, type)
476
477 BUILDSTRING(b, u8)
478 BUILDSTRING(w, u16)
479 BUILDSTRING(l, u32)
480 #ifdef CONFIG_64BIT
481 BUILDSTRING(q, u64)
482 #endif
483
484 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
485 {
486 memset((void __force *) addr, val, count);
487 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)488 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
489 {
490 memcpy(dst, (void __force *) src, count);
491 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)492 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
493 {
494 memcpy((void __force *) dst, src, count);
495 }
496
497 /*
498 * The caches on some architectures aren't dma-coherent and have need to
499 * handle this in software. There are three types of operations that
500 * can be applied to dma buffers.
501 *
502 * - dma_cache_wback_inv(start, size) makes caches and coherent by
503 * writing the content of the caches back to memory, if necessary.
504 * The function also invalidates the affected part of the caches as
505 * necessary before DMA transfers from outside to memory.
506 * - dma_cache_wback(start, size) makes caches and coherent by
507 * writing the content of the caches back to memory, if necessary.
508 * The function also invalidates the affected part of the caches as
509 * necessary before DMA transfers from outside to memory.
510 * - dma_cache_inv(start, size) invalidates the affected parts of the
511 * caches. Dirty lines of the caches may be written back or simply
512 * be discarded. This operation is necessary before dma operations
513 * to the memory.
514 *
515 * This API used to be exported; it now is for arch code internal use only.
516 */
517 #ifdef CONFIG_DMA_NONCOHERENT
518
519 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
520 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
521 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
522
523 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
524 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
525 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
526
527 #else /* Sane hardware */
528
529 #define dma_cache_wback_inv(start,size) \
530 do { (void) (start); (void) (size); } while (0)
531 #define dma_cache_wback(start,size) \
532 do { (void) (start); (void) (size); } while (0)
533 #define dma_cache_inv(start,size) \
534 do { (void) (start); (void) (size); } while (0)
535
536 #endif /* CONFIG_DMA_NONCOHERENT */
537
538 /*
539 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
540 * Avoid interrupt mucking, just adjust the address for 4-byte access.
541 * Assume the addresses are 8-byte aligned.
542 */
543 #ifdef __MIPSEB__
544 #define __CSR_32_ADJUST 4
545 #else
546 #define __CSR_32_ADJUST 0
547 #endif
548
549 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
550 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
551
552 /*
553 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
554 * access
555 */
556 #define xlate_dev_mem_ptr(p) __va(p)
557
558 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
559
560 #endif /* _ASM_IO_H */
561