1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common boot and setup code for both 32-bit and 64-bit.
4  * Extracted from arch/powerpc/kernel/setup_64.c.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/export.h>
12 #include <linux/panic_notifier.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/delay.h>
19 #include <linux/initrd.h>
20 #include <linux/platform_device.h>
21 #include <linux/printk.h>
22 #include <linux/seq_file.h>
23 #include <linux/ioport.h>
24 #include <linux/console.h>
25 #include <linux/screen_info.h>
26 #include <linux/root_dev.h>
27 #include <linux/cpu.h>
28 #include <linux/unistd.h>
29 #include <linux/seq_buf.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/percpu.h>
33 #include <linux/memblock.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_fdt.h>
36 #include <linux/of_platform.h>
37 #include <linux/hugetlb.h>
38 #include <linux/pgtable.h>
39 #include <asm/io.h>
40 #include <asm/paca.h>
41 #include <asm/processor.h>
42 #include <asm/vdso_datapage.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/cputable.h>
48 #include <asm/sections.h>
49 #include <asm/firmware.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/rtas.h>
54 #include <asm/iommu.h>
55 #include <asm/serial.h>
56 #include <asm/cache.h>
57 #include <asm/page.h>
58 #include <asm/mmu.h>
59 #include <asm/xmon.h>
60 #include <asm/cputhreads.h>
61 #include <mm/mmu_decl.h>
62 #include <asm/archrandom.h>
63 #include <asm/fadump.h>
64 #include <asm/udbg.h>
65 #include <asm/hugetlb.h>
66 #include <asm/livepatch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cpu_has_feature.h>
69 #include <asm/kasan.h>
70 #include <asm/mce.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 /* The main machine-dep calls structure
81  */
82 struct machdep_calls ppc_md;
83 EXPORT_SYMBOL(ppc_md);
84 struct machdep_calls *machine_id;
85 EXPORT_SYMBOL(machine_id);
86 
87 int boot_cpuid = -1;
88 EXPORT_SYMBOL_GPL(boot_cpuid);
89 
90 #ifdef CONFIG_PPC64
91 int boot_cpu_hwid = -1;
92 #endif
93 
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 
101 /*
102  * This still seems to be needed... -- paulus
103  */
104 struct screen_info screen_info = {
105 	.orig_x = 0,
106 	.orig_y = 25,
107 	.orig_video_cols = 80,
108 	.orig_video_lines = 25,
109 	.orig_video_isVGA = 1,
110 	.orig_video_points = 16
111 };
112 #if defined(CONFIG_FB_VGA16_MODULE)
113 EXPORT_SYMBOL(screen_info);
114 #endif
115 
116 /* Variables required to store legacy IO irq routing */
117 int of_i8042_kbd_irq;
118 EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
119 int of_i8042_aux_irq;
120 EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
121 
122 #ifdef __DO_IRQ_CANON
123 /* XXX should go elsewhere eventually */
124 int ppc_do_canonicalize_irqs;
125 EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
126 #endif
127 
128 #ifdef CONFIG_CRASH_CORE
129 /* This keeps a track of which one is the crashing cpu. */
130 int crashing_cpu = -1;
131 #endif
132 
133 /* also used by kexec */
machine_shutdown(void)134 void machine_shutdown(void)
135 {
136 	/*
137 	 * if fadump is active, cleanup the fadump registration before we
138 	 * shutdown.
139 	 */
140 	fadump_cleanup();
141 
142 	if (ppc_md.machine_shutdown)
143 		ppc_md.machine_shutdown();
144 }
145 
machine_hang(void)146 static void machine_hang(void)
147 {
148 	pr_emerg("System Halted, OK to turn off power\n");
149 	local_irq_disable();
150 	while (1)
151 		;
152 }
153 
machine_restart(char * cmd)154 void machine_restart(char *cmd)
155 {
156 	machine_shutdown();
157 	if (ppc_md.restart)
158 		ppc_md.restart(cmd);
159 
160 	smp_send_stop();
161 
162 	do_kernel_restart(cmd);
163 	mdelay(1000);
164 
165 	machine_hang();
166 }
167 
machine_power_off(void)168 void machine_power_off(void)
169 {
170 	machine_shutdown();
171 	do_kernel_power_off();
172 	smp_send_stop();
173 	machine_hang();
174 }
175 /* Used by the G5 thermal driver */
176 EXPORT_SYMBOL_GPL(machine_power_off);
177 
178 void (*pm_power_off)(void);
179 EXPORT_SYMBOL_GPL(pm_power_off);
180 
arch_get_random_seed_longs(unsigned long * v,size_t max_longs)181 size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs)
182 {
183 	if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v))
184 		return 1;
185 	return 0;
186 }
187 EXPORT_SYMBOL(arch_get_random_seed_longs);
188 
machine_halt(void)189 void machine_halt(void)
190 {
191 	machine_shutdown();
192 	if (ppc_md.halt)
193 		ppc_md.halt();
194 
195 	smp_send_stop();
196 	machine_hang();
197 }
198 
199 #ifdef CONFIG_SMP
200 DEFINE_PER_CPU(unsigned int, cpu_pvr);
201 #endif
202 
show_cpuinfo_summary(struct seq_file * m)203 static void show_cpuinfo_summary(struct seq_file *m)
204 {
205 	struct device_node *root;
206 	const char *model = NULL;
207 	unsigned long bogosum = 0;
208 	int i;
209 
210 	if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) {
211 		for_each_online_cpu(i)
212 			bogosum += loops_per_jiffy;
213 		seq_printf(m, "total bogomips\t: %lu.%02lu\n",
214 			   bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100);
215 	}
216 	seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
217 	if (ppc_md.name)
218 		seq_printf(m, "platform\t: %s\n", ppc_md.name);
219 	root = of_find_node_by_path("/");
220 	if (root)
221 		model = of_get_property(root, "model", NULL);
222 	if (model)
223 		seq_printf(m, "model\t\t: %s\n", model);
224 	of_node_put(root);
225 
226 	if (ppc_md.show_cpuinfo != NULL)
227 		ppc_md.show_cpuinfo(m);
228 
229 	/* Display the amount of memory */
230 	if (IS_ENABLED(CONFIG_PPC32))
231 		seq_printf(m, "Memory\t\t: %d MB\n",
232 			   (unsigned int)(total_memory / (1024 * 1024)));
233 }
234 
show_cpuinfo(struct seq_file * m,void * v)235 static int show_cpuinfo(struct seq_file *m, void *v)
236 {
237 	unsigned long cpu_id = (unsigned long)v - 1;
238 	unsigned int pvr;
239 	unsigned long proc_freq;
240 	unsigned short maj;
241 	unsigned short min;
242 
243 #ifdef CONFIG_SMP
244 	pvr = per_cpu(cpu_pvr, cpu_id);
245 #else
246 	pvr = mfspr(SPRN_PVR);
247 #endif
248 	maj = (pvr >> 8) & 0xFF;
249 	min = pvr & 0xFF;
250 
251 	seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id);
252 
253 	if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name)
254 		seq_puts(m, cur_cpu_spec->cpu_name);
255 	else
256 		seq_printf(m, "unknown (%08x)", pvr);
257 
258 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
259 		seq_puts(m, ", altivec supported");
260 
261 	seq_putc(m, '\n');
262 
263 #ifdef CONFIG_TAU
264 	if (cpu_has_feature(CPU_FTR_TAU)) {
265 		if (IS_ENABLED(CONFIG_TAU_AVERAGE)) {
266 			/* more straightforward, but potentially misleading */
267 			seq_printf(m,  "temperature \t: %u C (uncalibrated)\n",
268 				   cpu_temp(cpu_id));
269 		} else {
270 			/* show the actual temp sensor range */
271 			u32 temp;
272 			temp = cpu_temp_both(cpu_id);
273 			seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
274 				   temp & 0xff, temp >> 16);
275 		}
276 	}
277 #endif /* CONFIG_TAU */
278 
279 	/*
280 	 * Platforms that have variable clock rates, should implement
281 	 * the method ppc_md.get_proc_freq() that reports the clock
282 	 * rate of a given cpu. The rest can use ppc_proc_freq to
283 	 * report the clock rate that is same across all cpus.
284 	 */
285 	if (ppc_md.get_proc_freq)
286 		proc_freq = ppc_md.get_proc_freq(cpu_id);
287 	else
288 		proc_freq = ppc_proc_freq;
289 
290 	if (proc_freq)
291 		seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
292 			   proc_freq / 1000000, proc_freq % 1000000);
293 
294 	/* If we are a Freescale core do a simple check so
295 	 * we don't have to keep adding cases in the future */
296 	if (PVR_VER(pvr) & 0x8000) {
297 		switch (PVR_VER(pvr)) {
298 		case 0x8000:	/* 7441/7450/7451, Voyager */
299 		case 0x8001:	/* 7445/7455, Apollo 6 */
300 		case 0x8002:	/* 7447/7457, Apollo 7 */
301 		case 0x8003:	/* 7447A, Apollo 7 PM */
302 		case 0x8004:	/* 7448, Apollo 8 */
303 		case 0x800c:	/* 7410, Nitro */
304 			maj = ((pvr >> 8) & 0xF);
305 			min = PVR_MIN(pvr);
306 			break;
307 		default:	/* e500/book-e */
308 			maj = PVR_MAJ(pvr);
309 			min = PVR_MIN(pvr);
310 			break;
311 		}
312 	} else {
313 		switch (PVR_VER(pvr)) {
314 			case 0x1008:	/* 740P/750P ?? */
315 				maj = ((pvr >> 8) & 0xFF) - 1;
316 				min = pvr & 0xFF;
317 				break;
318 			case 0x004e: /* POWER9 bits 12-15 give chip type */
319 			case 0x0080: /* POWER10 bit 12 gives SMT8/4 */
320 				maj = (pvr >> 8) & 0x0F;
321 				min = pvr & 0xFF;
322 				break;
323 			default:
324 				maj = (pvr >> 8) & 0xFF;
325 				min = pvr & 0xFF;
326 				break;
327 		}
328 	}
329 
330 	seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
331 		   maj, min, PVR_VER(pvr), PVR_REV(pvr));
332 
333 	if (IS_ENABLED(CONFIG_PPC32))
334 		seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ),
335 			   (loops_per_jiffy / (5000 / HZ)) % 100);
336 
337 	seq_putc(m, '\n');
338 
339 	/* If this is the last cpu, print the summary */
340 	if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
341 		show_cpuinfo_summary(m);
342 
343 	return 0;
344 }
345 
c_start(struct seq_file * m,loff_t * pos)346 static void *c_start(struct seq_file *m, loff_t *pos)
347 {
348 	if (*pos == 0)	/* just in case, cpu 0 is not the first */
349 		*pos = cpumask_first(cpu_online_mask);
350 	else
351 		*pos = cpumask_next(*pos - 1, cpu_online_mask);
352 	if ((*pos) < nr_cpu_ids)
353 		return (void *)(unsigned long)(*pos + 1);
354 	return NULL;
355 }
356 
c_next(struct seq_file * m,void * v,loff_t * pos)357 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
358 {
359 	(*pos)++;
360 	return c_start(m, pos);
361 }
362 
c_stop(struct seq_file * m,void * v)363 static void c_stop(struct seq_file *m, void *v)
364 {
365 }
366 
367 const struct seq_operations cpuinfo_op = {
368 	.start	= c_start,
369 	.next	= c_next,
370 	.stop	= c_stop,
371 	.show	= show_cpuinfo,
372 };
373 
check_for_initrd(void)374 void __init check_for_initrd(void)
375 {
376 #ifdef CONFIG_BLK_DEV_INITRD
377 	DBG(" -> check_for_initrd()  initrd_start=0x%lx  initrd_end=0x%lx\n",
378 	    initrd_start, initrd_end);
379 
380 	/* If we were passed an initrd, set the ROOT_DEV properly if the values
381 	 * look sensible. If not, clear initrd reference.
382 	 */
383 	if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
384 	    initrd_end > initrd_start)
385 		ROOT_DEV = Root_RAM0;
386 	else
387 		initrd_start = initrd_end = 0;
388 
389 	if (initrd_start)
390 		pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
391 
392 	DBG(" <- check_for_initrd()\n");
393 #endif /* CONFIG_BLK_DEV_INITRD */
394 }
395 
396 #ifdef CONFIG_SMP
397 
398 int threads_per_core, threads_per_subcore, threads_shift __read_mostly;
399 cpumask_t threads_core_mask __read_mostly;
400 EXPORT_SYMBOL_GPL(threads_per_core);
401 EXPORT_SYMBOL_GPL(threads_per_subcore);
402 EXPORT_SYMBOL_GPL(threads_shift);
403 EXPORT_SYMBOL_GPL(threads_core_mask);
404 
cpu_init_thread_core_maps(int tpc)405 static void __init cpu_init_thread_core_maps(int tpc)
406 {
407 	int i;
408 
409 	threads_per_core = tpc;
410 	threads_per_subcore = tpc;
411 	cpumask_clear(&threads_core_mask);
412 
413 	/* This implementation only supports power of 2 number of threads
414 	 * for simplicity and performance
415 	 */
416 	threads_shift = ilog2(tpc);
417 	BUG_ON(tpc != (1 << threads_shift));
418 
419 	for (i = 0; i < tpc; i++)
420 		cpumask_set_cpu(i, &threads_core_mask);
421 
422 	printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
423 	       tpc, tpc > 1 ? "s" : "");
424 	printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
425 }
426 
427 
428 u32 *cpu_to_phys_id = NULL;
429 
430 /**
431  * setup_cpu_maps - initialize the following cpu maps:
432  *                  cpu_possible_mask
433  *                  cpu_present_mask
434  *
435  * Having the possible map set up early allows us to restrict allocations
436  * of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
437  *
438  * We do not initialize the online map here; cpus set their own bits in
439  * cpu_online_mask as they come up.
440  *
441  * This function is valid only for Open Firmware systems.  finish_device_tree
442  * must be called before using this.
443  *
444  * While we're here, we may as well set the "physical" cpu ids in the paca.
445  *
446  * NOTE: This must match the parsing done in early_init_dt_scan_cpus.
447  */
smp_setup_cpu_maps(void)448 void __init smp_setup_cpu_maps(void)
449 {
450 	struct device_node *dn;
451 	int cpu = 0;
452 	int nthreads = 1;
453 
454 	DBG("smp_setup_cpu_maps()\n");
455 
456 	cpu_to_phys_id = memblock_alloc(nr_cpu_ids * sizeof(u32),
457 					__alignof__(u32));
458 	if (!cpu_to_phys_id)
459 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
460 		      __func__, nr_cpu_ids * sizeof(u32), __alignof__(u32));
461 
462 	for_each_node_by_type(dn, "cpu") {
463 		const __be32 *intserv;
464 		__be32 cpu_be;
465 		int j, len;
466 
467 		DBG("  * %pOF...\n", dn);
468 
469 		intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
470 				&len);
471 		if (intserv) {
472 			DBG("    ibm,ppc-interrupt-server#s -> %lu threads\n",
473 			    (len / sizeof(int)));
474 		} else {
475 			DBG("    no ibm,ppc-interrupt-server#s -> 1 thread\n");
476 			intserv = of_get_property(dn, "reg", &len);
477 			if (!intserv) {
478 				cpu_be = cpu_to_be32(cpu);
479 				/* XXX: what is this? uninitialized?? */
480 				intserv = &cpu_be;	/* assume logical == phys */
481 				len = 4;
482 			}
483 		}
484 
485 		nthreads = len / sizeof(int);
486 
487 		for (j = 0; j < nthreads && cpu < nr_cpu_ids; j++) {
488 			bool avail;
489 
490 			DBG("    thread %d -> cpu %d (hard id %d)\n",
491 			    j, cpu, be32_to_cpu(intserv[j]));
492 
493 			avail = of_device_is_available(dn);
494 			if (!avail)
495 				avail = !of_property_match_string(dn,
496 						"enable-method", "spin-table");
497 
498 			set_cpu_present(cpu, avail);
499 			set_cpu_possible(cpu, true);
500 			cpu_to_phys_id[cpu] = be32_to_cpu(intserv[j]);
501 			cpu++;
502 		}
503 
504 		if (cpu >= nr_cpu_ids) {
505 			of_node_put(dn);
506 			break;
507 		}
508 	}
509 
510 	/* If no SMT supported, nthreads is forced to 1 */
511 	if (!cpu_has_feature(CPU_FTR_SMT)) {
512 		DBG("  SMT disabled ! nthreads forced to 1\n");
513 		nthreads = 1;
514 	}
515 
516 #ifdef CONFIG_PPC64
517 	/*
518 	 * On pSeries LPAR, we need to know how many cpus
519 	 * could possibly be added to this partition.
520 	 */
521 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
522 	    (dn = of_find_node_by_path("/rtas"))) {
523 		int num_addr_cell, num_size_cell, maxcpus;
524 		const __be32 *ireg;
525 
526 		num_addr_cell = of_n_addr_cells(dn);
527 		num_size_cell = of_n_size_cells(dn);
528 
529 		ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
530 
531 		if (!ireg)
532 			goto out;
533 
534 		maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
535 
536 		/* Double maxcpus for processors which have SMT capability */
537 		if (cpu_has_feature(CPU_FTR_SMT))
538 			maxcpus *= nthreads;
539 
540 		if (maxcpus > nr_cpu_ids) {
541 			printk(KERN_WARNING
542 			       "Partition configured for %d cpus, "
543 			       "operating system maximum is %u.\n",
544 			       maxcpus, nr_cpu_ids);
545 			maxcpus = nr_cpu_ids;
546 		} else
547 			printk(KERN_INFO "Partition configured for %d cpus.\n",
548 			       maxcpus);
549 
550 		for (cpu = 0; cpu < maxcpus; cpu++)
551 			set_cpu_possible(cpu, true);
552 	out:
553 		of_node_put(dn);
554 	}
555 	vdso_data->processorCount = num_present_cpus();
556 #endif /* CONFIG_PPC64 */
557 
558         /* Initialize CPU <=> thread mapping/
559 	 *
560 	 * WARNING: We assume that the number of threads is the same for
561 	 * every CPU in the system. If that is not the case, then some code
562 	 * here will have to be reworked
563 	 */
564 	cpu_init_thread_core_maps(nthreads);
565 
566 	/* Now that possible cpus are set, set nr_cpu_ids for later use */
567 	setup_nr_cpu_ids();
568 
569 	free_unused_pacas();
570 }
571 #endif /* CONFIG_SMP */
572 
573 #ifdef CONFIG_PCSPKR_PLATFORM
add_pcspkr(void)574 static __init int add_pcspkr(void)
575 {
576 	struct device_node *np;
577 	struct platform_device *pd;
578 	int ret;
579 
580 	np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
581 	of_node_put(np);
582 	if (!np)
583 		return -ENODEV;
584 
585 	pd = platform_device_alloc("pcspkr", -1);
586 	if (!pd)
587 		return -ENOMEM;
588 
589 	ret = platform_device_add(pd);
590 	if (ret)
591 		platform_device_put(pd);
592 
593 	return ret;
594 }
595 device_initcall(add_pcspkr);
596 #endif	/* CONFIG_PCSPKR_PLATFORM */
597 
598 static char ppc_hw_desc_buf[128] __initdata;
599 
600 struct seq_buf ppc_hw_desc __initdata = {
601 	.buffer = ppc_hw_desc_buf,
602 	.size = sizeof(ppc_hw_desc_buf),
603 	.len = 0,
604 	.readpos = 0,
605 };
606 
probe_machine(void)607 static __init void probe_machine(void)
608 {
609 	extern struct machdep_calls __machine_desc_start;
610 	extern struct machdep_calls __machine_desc_end;
611 	unsigned int i;
612 
613 	/*
614 	 * Iterate all ppc_md structures until we find the proper
615 	 * one for the current machine type
616 	 */
617 	DBG("Probing machine type ...\n");
618 
619 	/*
620 	 * Check ppc_md is empty, if not we have a bug, ie, we setup an
621 	 * entry before probe_machine() which will be overwritten
622 	 */
623 	for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
624 		if (((void **)&ppc_md)[i]) {
625 			printk(KERN_ERR "Entry %d in ppc_md non empty before"
626 			       " machine probe !\n", i);
627 		}
628 	}
629 
630 	for (machine_id = &__machine_desc_start;
631 	     machine_id < &__machine_desc_end;
632 	     machine_id++) {
633 		DBG("  %s ...", machine_id->name);
634 		memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
635 		if (ppc_md.probe()) {
636 			DBG(" match !\n");
637 			break;
638 		}
639 		DBG("\n");
640 	}
641 	/* What can we do if we didn't find ? */
642 	if (machine_id >= &__machine_desc_end) {
643 		pr_err("No suitable machine description found !\n");
644 		for (;;);
645 	}
646 
647 	// Append the machine name to other info we've gathered
648 	seq_buf_puts(&ppc_hw_desc, ppc_md.name);
649 
650 	// Set the generic hardware description shown in oopses
651 	dump_stack_set_arch_desc(ppc_hw_desc.buffer);
652 
653 	pr_info("Hardware name: %s\n", ppc_hw_desc.buffer);
654 }
655 
656 /* Match a class of boards, not a specific device configuration. */
check_legacy_ioport(unsigned long base_port)657 int check_legacy_ioport(unsigned long base_port)
658 {
659 	struct device_node *parent, *np = NULL;
660 	int ret = -ENODEV;
661 
662 	switch(base_port) {
663 	case I8042_DATA_REG:
664 		if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
665 			np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
666 		if (np) {
667 			parent = of_get_parent(np);
668 
669 			of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
670 			if (!of_i8042_kbd_irq)
671 				of_i8042_kbd_irq = 1;
672 
673 			of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
674 			if (!of_i8042_aux_irq)
675 				of_i8042_aux_irq = 12;
676 
677 			of_node_put(np);
678 			np = parent;
679 			break;
680 		}
681 		np = of_find_node_by_type(NULL, "8042");
682 		/* Pegasos has no device_type on its 8042 node, look for the
683 		 * name instead */
684 		if (!np)
685 			np = of_find_node_by_name(NULL, "8042");
686 		if (np) {
687 			of_i8042_kbd_irq = 1;
688 			of_i8042_aux_irq = 12;
689 		}
690 		break;
691 	case FDC_BASE: /* FDC1 */
692 		np = of_find_node_by_type(NULL, "fdc");
693 		break;
694 	default:
695 		/* ipmi is supposed to fail here */
696 		break;
697 	}
698 	if (!np)
699 		return ret;
700 	parent = of_get_parent(np);
701 	if (parent) {
702 		if (of_node_is_type(parent, "isa"))
703 			ret = 0;
704 		of_node_put(parent);
705 	}
706 	of_node_put(np);
707 	return ret;
708 }
709 EXPORT_SYMBOL(check_legacy_ioport);
710 
711 /*
712  * Panic notifiers setup
713  *
714  * We have 3 notifiers for powerpc, each one from a different "nature":
715  *
716  * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables
717  *   IRQs and deal with the Firmware-Assisted dump, when it is configured;
718  *   should run early in the panic path.
719  *
720  * - dump_kernel_offset() is an informative notifier, just showing the KASLR
721  *   offset if we have RANDOMIZE_BASE set.
722  *
723  * - ppc_panic_platform_handler() is a low-level handler that's registered
724  *   only if the platform wishes to perform final actions in the panic path,
725  *   hence it should run late and might not even return. Currently, only
726  *   pseries and ps3 platforms register callbacks.
727  */
ppc_panic_fadump_handler(struct notifier_block * this,unsigned long event,void * ptr)728 static int ppc_panic_fadump_handler(struct notifier_block *this,
729 				    unsigned long event, void *ptr)
730 {
731 	/*
732 	 * panic does a local_irq_disable, but we really
733 	 * want interrupts to be hard disabled.
734 	 */
735 	hard_irq_disable();
736 
737 	/*
738 	 * If firmware-assisted dump has been registered then trigger
739 	 * its callback and let the firmware handles everything else.
740 	 */
741 	crash_fadump(NULL, ptr);
742 
743 	return NOTIFY_DONE;
744 }
745 
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)746 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
747 			      void *p)
748 {
749 	pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
750 		 kaslr_offset(), KERNELBASE);
751 
752 	return NOTIFY_DONE;
753 }
754 
ppc_panic_platform_handler(struct notifier_block * this,unsigned long event,void * ptr)755 static int ppc_panic_platform_handler(struct notifier_block *this,
756 				      unsigned long event, void *ptr)
757 {
758 	/*
759 	 * This handler is only registered if we have a panic callback
760 	 * on ppc_md, hence NULL check is not needed.
761 	 * Also, it may not return, so it runs really late on panic path.
762 	 */
763 	ppc_md.panic(ptr);
764 
765 	return NOTIFY_DONE;
766 }
767 
768 static struct notifier_block ppc_fadump_block = {
769 	.notifier_call = ppc_panic_fadump_handler,
770 	.priority = INT_MAX, /* run early, to notify the firmware ASAP */
771 };
772 
773 static struct notifier_block kernel_offset_notifier = {
774 	.notifier_call = dump_kernel_offset,
775 };
776 
777 static struct notifier_block ppc_panic_block = {
778 	.notifier_call = ppc_panic_platform_handler,
779 	.priority = INT_MIN, /* may not return; must be done last */
780 };
781 
setup_panic(void)782 void __init setup_panic(void)
783 {
784 	/* Hard-disables IRQs + deal with FW-assisted dump (fadump) */
785 	atomic_notifier_chain_register(&panic_notifier_list,
786 				       &ppc_fadump_block);
787 
788 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0)
789 		atomic_notifier_chain_register(&panic_notifier_list,
790 					       &kernel_offset_notifier);
791 
792 	/* Low-level platform-specific routines that should run on panic */
793 	if (ppc_md.panic)
794 		atomic_notifier_chain_register(&panic_notifier_list,
795 					       &ppc_panic_block);
796 }
797 
798 #ifdef CONFIG_CHECK_CACHE_COHERENCY
799 /*
800  * For platforms that have configurable cache-coherency.  This function
801  * checks that the cache coherency setting of the kernel matches the setting
802  * left by the firmware, as indicated in the device tree.  Since a mismatch
803  * will eventually result in DMA failures, we print * and error and call
804  * BUG() in that case.
805  */
806 
807 #define KERNEL_COHERENCY	(!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE))
808 
check_cache_coherency(void)809 static int __init check_cache_coherency(void)
810 {
811 	struct device_node *np;
812 	const void *prop;
813 	bool devtree_coherency;
814 
815 	np = of_find_node_by_path("/");
816 	prop = of_get_property(np, "coherency-off", NULL);
817 	of_node_put(np);
818 
819 	devtree_coherency = prop ? false : true;
820 
821 	if (devtree_coherency != KERNEL_COHERENCY) {
822 		printk(KERN_ERR
823 			"kernel coherency:%s != device tree_coherency:%s\n",
824 			KERNEL_COHERENCY ? "on" : "off",
825 			devtree_coherency ? "on" : "off");
826 		BUG();
827 	}
828 
829 	return 0;
830 }
831 
832 late_initcall(check_cache_coherency);
833 #endif /* CONFIG_CHECK_CACHE_COHERENCY */
834 
ppc_printk_progress(char * s,unsigned short hex)835 void ppc_printk_progress(char *s, unsigned short hex)
836 {
837 	pr_info("%s\n", s);
838 }
839 
print_system_info(void)840 static __init void print_system_info(void)
841 {
842 	pr_info("-----------------------------------------------------\n");
843 	pr_info("phys_mem_size     = 0x%llx\n",
844 		(unsigned long long)memblock_phys_mem_size());
845 
846 	pr_info("dcache_bsize      = 0x%x\n", dcache_bsize);
847 	pr_info("icache_bsize      = 0x%x\n", icache_bsize);
848 
849 	pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
850 	pr_info("  possible        = 0x%016lx\n",
851 		(unsigned long)CPU_FTRS_POSSIBLE);
852 	pr_info("  always          = 0x%016lx\n",
853 		(unsigned long)CPU_FTRS_ALWAYS);
854 	pr_info("cpu_user_features = 0x%08x 0x%08x\n",
855 		cur_cpu_spec->cpu_user_features,
856 		cur_cpu_spec->cpu_user_features2);
857 	pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
858 #ifdef CONFIG_PPC64
859 	pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
860 #ifdef CONFIG_PPC_BOOK3S
861 	pr_info("vmalloc start     = 0x%lx\n", KERN_VIRT_START);
862 	pr_info("IO start          = 0x%lx\n", KERN_IO_START);
863 	pr_info("vmemmap start     = 0x%lx\n", (unsigned long)vmemmap);
864 #endif
865 #endif
866 
867 	if (!early_radix_enabled())
868 		print_system_hash_info();
869 
870 	if (PHYSICAL_START > 0)
871 		pr_info("physical_start    = 0x%llx\n",
872 		       (unsigned long long)PHYSICAL_START);
873 	pr_info("-----------------------------------------------------\n");
874 }
875 
876 #ifdef CONFIG_SMP
smp_setup_pacas(void)877 static void __init smp_setup_pacas(void)
878 {
879 	int cpu;
880 
881 	for_each_possible_cpu(cpu) {
882 		if (cpu == smp_processor_id())
883 			continue;
884 		allocate_paca(cpu);
885 		set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]);
886 	}
887 
888 	memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32));
889 	cpu_to_phys_id = NULL;
890 }
891 #endif
892 
893 /*
894  * Called into from start_kernel this initializes memblock, which is used
895  * to manage page allocation until mem_init is called.
896  */
setup_arch(char ** cmdline_p)897 void __init setup_arch(char **cmdline_p)
898 {
899 	kasan_init();
900 
901 	*cmdline_p = boot_command_line;
902 
903 	/* Set a half-reasonable default so udelay does something sensible */
904 	loops_per_jiffy = 500000000 / HZ;
905 
906 	/* Unflatten the device-tree passed by prom_init or kexec */
907 	unflatten_device_tree();
908 
909 	/*
910 	 * Initialize cache line/block info from device-tree (on ppc64) or
911 	 * just cputable (on ppc32).
912 	 */
913 	initialize_cache_info();
914 
915 	/* Initialize RTAS if available. */
916 	rtas_initialize();
917 
918 	/* Check if we have an initrd provided via the device-tree. */
919 	check_for_initrd();
920 
921 	/* Probe the machine type, establish ppc_md. */
922 	probe_machine();
923 
924 	/* Setup panic notifier if requested by the platform. */
925 	setup_panic();
926 
927 	/*
928 	 * Configure ppc_md.power_save (ppc32 only, 64-bit machines do
929 	 * it from their respective probe() function.
930 	 */
931 	setup_power_save();
932 
933 	/* Discover standard serial ports. */
934 	find_legacy_serial_ports();
935 
936 	/* Register early console with the printk subsystem. */
937 	register_early_udbg_console();
938 
939 	/* Setup the various CPU maps based on the device-tree. */
940 	smp_setup_cpu_maps();
941 
942 	/* Initialize xmon. */
943 	xmon_setup();
944 
945 	/* Check the SMT related command line arguments (ppc64). */
946 	check_smt_enabled();
947 
948 	/* Parse memory topology */
949 	mem_topology_setup();
950 
951 	/*
952 	 * Release secondary cpus out of their spinloops at 0x60 now that
953 	 * we can map physical -> logical CPU ids.
954 	 *
955 	 * Freescale Book3e parts spin in a loop provided by firmware,
956 	 * so smp_release_cpus() does nothing for them.
957 	 */
958 #ifdef CONFIG_SMP
959 	smp_setup_pacas();
960 
961 	/* On BookE, setup per-core TLB data structures. */
962 	setup_tlb_core_data();
963 #endif
964 
965 	/* Print various info about the machine that has been gathered so far. */
966 	print_system_info();
967 
968 	klp_init_thread_info(&init_task);
969 
970 	setup_initial_init_mm(_stext, _etext, _edata, _end);
971 
972 	mm_iommu_init(&init_mm);
973 	irqstack_early_init();
974 	exc_lvl_early_init();
975 	emergency_stack_init();
976 
977 	mce_init();
978 	smp_release_cpus();
979 
980 	initmem_init();
981 
982 	/*
983 	 * Reserve large chunks of memory for use by CMA for KVM and hugetlb. These must
984 	 * be called after initmem_init(), so that pageblock_order is initialised.
985 	 */
986 	kvm_cma_reserve();
987 	gigantic_hugetlb_cma_reserve();
988 
989 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
990 
991 	if (ppc_md.setup_arch)
992 		ppc_md.setup_arch();
993 
994 	setup_barrier_nospec();
995 	setup_spectre_v2();
996 
997 	paging_init();
998 
999 	/* Initialize the MMU context management stuff. */
1000 	mmu_context_init();
1001 
1002 	/* Interrupt code needs to be 64K-aligned. */
1003 	if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff)
1004 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
1005 		      (unsigned long)_stext);
1006 }
1007