1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * User-space Probes (UProbes) for sparc
4 *
5 * Copyright (C) 2013 Oracle Inc.
6 *
7 * Authors:
8 * Jose E. Marchesi <jose.marchesi@oracle.com>
9 * Eric Saint Etienne <eric.saint.etienne@oracle.com>
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/uprobes.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched.h> /* For struct task_struct */
17 #include <linux/kdebug.h>
18
19 #include <asm/cacheflush.h>
20
21 /* Compute the address of the breakpoint instruction and return it.
22 *
23 * Note that uprobe_get_swbp_addr is defined as a weak symbol in
24 * kernel/events/uprobe.c.
25 */
uprobe_get_swbp_addr(struct pt_regs * regs)26 unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
27 {
28 return instruction_pointer(regs);
29 }
30
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)31 static void copy_to_page(struct page *page, unsigned long vaddr,
32 const void *src, int len)
33 {
34 void *kaddr = kmap_atomic(page);
35
36 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
37 kunmap_atomic(kaddr);
38 }
39
40 /* Fill in the xol area with the probed instruction followed by the
41 * single-step trap. Some fixups in the copied instruction are
42 * performed at this point.
43 *
44 * Note that uprobe_xol_copy is defined as a weak symbol in
45 * kernel/events/uprobe.c.
46 */
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)47 void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
48 void *src, unsigned long len)
49 {
50 const u32 stp_insn = UPROBE_STP_INSN;
51 u32 insn = *(u32 *) src;
52
53 /* Branches annulling their delay slot must be fixed to not do
54 * so. Clearing the annul bit on these instructions we can be
55 * sure the single-step breakpoint in the XOL slot will be
56 * executed.
57 */
58
59 u32 op = (insn >> 30) & 0x3;
60 u32 op2 = (insn >> 22) & 0x7;
61
62 if (op == 0 &&
63 (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
64 (insn & ANNUL_BIT) == ANNUL_BIT)
65 insn &= ~ANNUL_BIT;
66
67 copy_to_page(page, vaddr, &insn, len);
68 copy_to_page(page, vaddr+len, &stp_insn, 4);
69 }
70
71
72 /* Instruction analysis/validity.
73 *
74 * This function returns 0 on success or a -ve number on error.
75 */
arch_uprobe_analyze_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long addr)76 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
77 struct mm_struct *mm, unsigned long addr)
78 {
79 /* Any unsupported instruction? Then return -EINVAL */
80 return 0;
81 }
82
83 /* If INSN is a relative control transfer instruction, return the
84 * corrected branch destination value.
85 *
86 * Note that regs->tpc and regs->tnpc still hold the values of the
87 * program counters at the time of the single-step trap due to the
88 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
89 *
90 */
relbranch_fixup(u32 insn,struct uprobe_task * utask,struct pt_regs * regs)91 static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
92 struct pt_regs *regs)
93 {
94 /* Branch not taken, no mods necessary. */
95 if (regs->tnpc == regs->tpc + 0x4UL)
96 return utask->autask.saved_tnpc + 0x4UL;
97
98 /* The three cases are call, branch w/prediction,
99 * and traditional branch.
100 */
101 if ((insn & 0xc0000000) == 0x40000000 ||
102 (insn & 0xc1c00000) == 0x00400000 ||
103 (insn & 0xc1c00000) == 0x00800000) {
104 unsigned long real_pc = (unsigned long) utask->vaddr;
105 unsigned long ixol_addr = utask->xol_vaddr;
106
107 /* The instruction did all the work for us
108 * already, just apply the offset to the correct
109 * instruction location.
110 */
111 return (real_pc + (regs->tnpc - ixol_addr));
112 }
113
114 /* It is jmpl or some other absolute PC modification instruction,
115 * leave NPC as-is.
116 */
117 return regs->tnpc;
118 }
119
120 /* If INSN is an instruction which writes its PC location
121 * into a destination register, fix that up.
122 */
retpc_fixup(struct pt_regs * regs,u32 insn,unsigned long real_pc)123 static int retpc_fixup(struct pt_regs *regs, u32 insn,
124 unsigned long real_pc)
125 {
126 unsigned long *slot = NULL;
127 int rc = 0;
128
129 /* Simplest case is 'call', which always uses %o7 */
130 if ((insn & 0xc0000000) == 0x40000000)
131 slot = ®s->u_regs[UREG_I7];
132
133 /* 'jmpl' encodes the register inside of the opcode */
134 if ((insn & 0xc1f80000) == 0x81c00000) {
135 unsigned long rd = ((insn >> 25) & 0x1f);
136
137 if (rd <= 15) {
138 slot = ®s->u_regs[rd];
139 } else {
140 unsigned long fp = regs->u_regs[UREG_FP];
141 /* Hard case, it goes onto the stack. */
142 flushw_all();
143
144 rd -= 16;
145 if (test_thread_64bit_stack(fp)) {
146 unsigned long __user *uslot =
147 (unsigned long __user *) (fp + STACK_BIAS) + rd;
148 rc = __put_user(real_pc, uslot);
149 } else {
150 unsigned int __user *uslot = (unsigned int
151 __user *) fp + rd;
152 rc = __put_user((u32) real_pc, uslot);
153 }
154 }
155 }
156 if (slot != NULL)
157 *slot = real_pc;
158 return rc;
159 }
160
161 /* Single-stepping can be avoided for certain instructions: NOPs and
162 * instructions that can be emulated. This function determines
163 * whether the instruction where the uprobe is installed falls in one
164 * of these cases and emulates it.
165 *
166 * This function returns true if the single-stepping can be skipped,
167 * false otherwise.
168 */
arch_uprobe_skip_sstep(struct arch_uprobe * auprobe,struct pt_regs * regs)169 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
170 {
171 /* We currently only emulate NOP instructions.
172 */
173
174 if (auprobe->ixol == (1 << 24)) {
175 regs->tnpc += 4;
176 regs->tpc += 4;
177 return true;
178 }
179
180 return false;
181 }
182
183 /* Prepare to execute out of line. At this point
184 * current->utask->xol_vaddr points to an allocated XOL slot properly
185 * initialized with the original instruction and the single-stepping
186 * trap instruction.
187 *
188 * This function returns 0 on success, any other number on error.
189 */
arch_uprobe_pre_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)190 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
191 {
192 struct uprobe_task *utask = current->utask;
193 struct arch_uprobe_task *autask = ¤t->utask->autask;
194
195 /* Save the current program counters so they can be restored
196 * later.
197 */
198 autask->saved_tpc = regs->tpc;
199 autask->saved_tnpc = regs->tnpc;
200
201 /* Adjust PC and NPC so the first instruction in the XOL slot
202 * will be executed by the user task.
203 */
204 instruction_pointer_set(regs, utask->xol_vaddr);
205
206 return 0;
207 }
208
209 /* Prepare to resume execution after the single-step. Called after
210 * single-stepping. To avoid the SMP problems that can occur when we
211 * temporarily put back the original opcode to single-step, we
212 * single-stepped a copy of the instruction.
213 *
214 * This function returns 0 on success, any other number on error.
215 */
arch_uprobe_post_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)216 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
217 {
218 struct uprobe_task *utask = current->utask;
219 struct arch_uprobe_task *autask = &utask->autask;
220 u32 insn = auprobe->ixol;
221 int rc = 0;
222
223 if (utask->state == UTASK_SSTEP_ACK) {
224 regs->tnpc = relbranch_fixup(insn, utask, regs);
225 regs->tpc = autask->saved_tnpc;
226 rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
227 } else {
228 regs->tnpc = utask->vaddr+4;
229 regs->tpc = autask->saved_tnpc+4;
230 }
231 return rc;
232 }
233
234 /* Handler for uprobe traps. This is called from the traps table and
235 * triggers the proper die notification.
236 */
uprobe_trap(struct pt_regs * regs,unsigned long trap_level)237 asmlinkage void uprobe_trap(struct pt_regs *regs,
238 unsigned long trap_level)
239 {
240 BUG_ON(trap_level != 0x173 && trap_level != 0x174);
241
242 /* We are only interested in user-mode code. Uprobe traps
243 * shall not be present in kernel code.
244 */
245 if (!user_mode(regs)) {
246 local_irq_enable();
247 bad_trap(regs, trap_level);
248 return;
249 }
250
251 /* trap_level == 0x173 --> ta 0x73
252 * trap_level == 0x174 --> ta 0x74
253 */
254 if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
255 (trap_level == 0x173) ? "bpt" : "sstep",
256 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
257 bad_trap(regs, trap_level);
258 }
259
260 /* Callback routine for handling die notifications.
261 */
arch_uprobe_exception_notify(struct notifier_block * self,unsigned long val,void * data)262 int arch_uprobe_exception_notify(struct notifier_block *self,
263 unsigned long val, void *data)
264 {
265 int ret = NOTIFY_DONE;
266 struct die_args *args = (struct die_args *)data;
267
268 /* We are only interested in userspace traps */
269 if (args->regs && !user_mode(args->regs))
270 return NOTIFY_DONE;
271
272 switch (val) {
273 case DIE_BPT:
274 if (uprobe_pre_sstep_notifier(args->regs))
275 ret = NOTIFY_STOP;
276 break;
277
278 case DIE_SSTEP:
279 if (uprobe_post_sstep_notifier(args->regs))
280 ret = NOTIFY_STOP;
281
282 default:
283 break;
284 }
285
286 return ret;
287 }
288
289 /* This function gets called when a XOL instruction either gets
290 * trapped or the thread has a fatal signal, so reset the instruction
291 * pointer to its probed address.
292 */
arch_uprobe_abort_xol(struct arch_uprobe * auprobe,struct pt_regs * regs)293 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
294 {
295 struct uprobe_task *utask = current->utask;
296
297 instruction_pointer_set(regs, utask->vaddr);
298 }
299
300 /* If xol insn itself traps and generates a signal(Say,
301 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
302 * instruction jumps back to its own address.
303 */
arch_uprobe_xol_was_trapped(struct task_struct * t)304 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
305 {
306 return false;
307 }
308
309 unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,struct pt_regs * regs)310 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
311 struct pt_regs *regs)
312 {
313 unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
314
315 regs->u_regs[UREG_I7] = trampoline_vaddr-8;
316
317 return orig_ret_vaddr + 8;
318 }
319