1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/crash_dump.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmi.h>
13 #include <linux/efi.h>
14 #include <linux/ima.h>
15 #include <linux/init_ohci1394_dma.h>
16 #include <linux/initrd.h>
17 #include <linux/iscsi_ibft.h>
18 #include <linux/memblock.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/pci.h>
21 #include <linux/root_dev.h>
22 #include <linux/hugetlb.h>
23 #include <linux/tboot.h>
24 #include <linux/usb/xhci-dbgp.h>
25 #include <linux/static_call.h>
26 #include <linux/swiotlb.h>
27 #include <linux/random.h>
28
29 #include <uapi/linux/mount.h>
30
31 #include <xen/xen.h>
32
33 #include <asm/apic.h>
34 #include <asm/efi.h>
35 #include <asm/numa.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bugs.h>
38 #include <asm/cacheinfo.h>
39 #include <asm/cpu.h>
40 #include <asm/efi.h>
41 #include <asm/gart.h>
42 #include <asm/hypervisor.h>
43 #include <asm/io_apic.h>
44 #include <asm/kasan.h>
45 #include <asm/kaslr.h>
46 #include <asm/mce.h>
47 #include <asm/memtype.h>
48 #include <asm/mtrr.h>
49 #include <asm/realmode.h>
50 #include <asm/olpc_ofw.h>
51 #include <asm/pci-direct.h>
52 #include <asm/prom.h>
53 #include <asm/proto.h>
54 #include <asm/thermal.h>
55 #include <asm/unwind.h>
56 #include <asm/vsyscall.h>
57 #include <linux/vmalloc.h>
58
59 /*
60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61 * max_pfn_mapped: highest directly mapped pfn > 4 GB
62 *
63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64 * represented by pfn_mapped[].
65 */
66 unsigned long max_low_pfn_mapped;
67 unsigned long max_pfn_mapped;
68
69 #ifdef CONFIG_DMI
70 RESERVE_BRK(dmi_alloc, 65536);
71 #endif
72
73
74 unsigned long _brk_start = (unsigned long)__brk_base;
75 unsigned long _brk_end = (unsigned long)__brk_base;
76
77 struct boot_params boot_params;
78
79 /*
80 * These are the four main kernel memory regions, we put them into
81 * the resource tree so that kdump tools and other debugging tools
82 * recover it:
83 */
84
85 static struct resource rodata_resource = {
86 .name = "Kernel rodata",
87 .start = 0,
88 .end = 0,
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91
92 static struct resource data_resource = {
93 .name = "Kernel data",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98
99 static struct resource code_resource = {
100 .name = "Kernel code",
101 .start = 0,
102 .end = 0,
103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 };
105
106 static struct resource bss_resource = {
107 .name = "Kernel bss",
108 .start = 0,
109 .end = 0,
110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111 };
112
113
114 #ifdef CONFIG_X86_32
115 /* CPU data as detected by the assembly code in head_32.S */
116 struct cpuinfo_x86 new_cpu_data;
117 unsigned int def_to_bigsmp;
118
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
121
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
129
130 #endif
131
132 struct cpuinfo_x86 boot_cpu_data __read_mostly;
133 EXPORT_SYMBOL(boot_cpu_data);
134
135 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136 __visible unsigned long mmu_cr4_features __ro_after_init;
137 #else
138 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139 #endif
140
141 #ifdef CONFIG_IMA
142 static phys_addr_t ima_kexec_buffer_phys;
143 static size_t ima_kexec_buffer_size;
144 #endif
145
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type, bootloader_version;
148
149 /*
150 * Setup options
151 */
152 struct screen_info screen_info;
153 EXPORT_SYMBOL(screen_info);
154 struct edid_info edid_info;
155 EXPORT_SYMBOL_GPL(edid_info);
156
157 extern int root_mountflags;
158
159 unsigned long saved_video_mode;
160
161 #define RAMDISK_IMAGE_START_MASK 0x07FF
162 #define RAMDISK_PROMPT_FLAG 0x8000
163 #define RAMDISK_LOAD_FLAG 0x4000
164
165 static char __initdata command_line[COMMAND_LINE_SIZE];
166 #ifdef CONFIG_CMDLINE_BOOL
167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168 #endif
169
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
copy_edd(void)180 static inline void __init copy_edd(void)
181 {
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
copy_edd(void)189 static inline void __init copy_edd(void)
190 {
191 }
192 #endif
193
extend_brk(size_t size,size_t align)194 void * __init extend_brk(size_t size, size_t align)
195 {
196 size_t mask = align - 1;
197 void *ret;
198
199 BUG_ON(_brk_start == 0);
200 BUG_ON(align & mask);
201
202 _brk_end = (_brk_end + mask) & ~mask;
203 BUG_ON((char *)(_brk_end + size) > __brk_limit);
204
205 ret = (void *)_brk_end;
206 _brk_end += size;
207
208 memset(ret, 0, size);
209
210 return ret;
211 }
212
213 #ifdef CONFIG_X86_32
cleanup_highmap(void)214 static void __init cleanup_highmap(void)
215 {
216 }
217 #endif
218
reserve_brk(void)219 static void __init reserve_brk(void)
220 {
221 if (_brk_end > _brk_start)
222 memblock_reserve(__pa_symbol(_brk_start),
223 _brk_end - _brk_start);
224
225 /* Mark brk area as locked down and no longer taking any
226 new allocations */
227 _brk_start = 0;
228 }
229
230 u64 relocated_ramdisk;
231
232 #ifdef CONFIG_BLK_DEV_INITRD
233
get_ramdisk_image(void)234 static u64 __init get_ramdisk_image(void)
235 {
236 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237
238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239
240 if (ramdisk_image == 0)
241 ramdisk_image = phys_initrd_start;
242
243 return ramdisk_image;
244 }
get_ramdisk_size(void)245 static u64 __init get_ramdisk_size(void)
246 {
247 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248
249 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250
251 if (ramdisk_size == 0)
252 ramdisk_size = phys_initrd_size;
253
254 return ramdisk_size;
255 }
256
relocate_initrd(void)257 static void __init relocate_initrd(void)
258 {
259 /* Assume only end is not page aligned */
260 u64 ramdisk_image = get_ramdisk_image();
261 u64 ramdisk_size = get_ramdisk_size();
262 u64 area_size = PAGE_ALIGN(ramdisk_size);
263
264 /* We need to move the initrd down into directly mapped mem */
265 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
266 PFN_PHYS(max_pfn_mapped));
267 if (!relocated_ramdisk)
268 panic("Cannot find place for new RAMDISK of size %lld\n",
269 ramdisk_size);
270
271 initrd_start = relocated_ramdisk + PAGE_OFFSET;
272 initrd_end = initrd_start + ramdisk_size;
273 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
274 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275
276 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277
278 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
279 " [mem %#010llx-%#010llx]\n",
280 ramdisk_image, ramdisk_image + ramdisk_size - 1,
281 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
282 }
283
early_reserve_initrd(void)284 static void __init early_reserve_initrd(void)
285 {
286 /* Assume only end is not page aligned */
287 u64 ramdisk_image = get_ramdisk_image();
288 u64 ramdisk_size = get_ramdisk_size();
289 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290
291 if (!boot_params.hdr.type_of_loader ||
292 !ramdisk_image || !ramdisk_size)
293 return; /* No initrd provided by bootloader */
294
295 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
296 }
297
reserve_initrd(void)298 static void __init reserve_initrd(void)
299 {
300 /* Assume only end is not page aligned */
301 u64 ramdisk_image = get_ramdisk_image();
302 u64 ramdisk_size = get_ramdisk_size();
303 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304
305 if (!boot_params.hdr.type_of_loader ||
306 !ramdisk_image || !ramdisk_size)
307 return; /* No initrd provided by bootloader */
308
309 initrd_start = 0;
310
311 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
312 ramdisk_end - 1);
313
314 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
315 PFN_DOWN(ramdisk_end))) {
316 /* All are mapped, easy case */
317 initrd_start = ramdisk_image + PAGE_OFFSET;
318 initrd_end = initrd_start + ramdisk_size;
319 return;
320 }
321
322 relocate_initrd();
323
324 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
325 }
326
327 #else
early_reserve_initrd(void)328 static void __init early_reserve_initrd(void)
329 {
330 }
reserve_initrd(void)331 static void __init reserve_initrd(void)
332 {
333 }
334 #endif /* CONFIG_BLK_DEV_INITRD */
335
add_early_ima_buffer(u64 phys_addr)336 static void __init add_early_ima_buffer(u64 phys_addr)
337 {
338 #ifdef CONFIG_IMA
339 struct ima_setup_data *data;
340
341 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
342 if (!data) {
343 pr_warn("setup: failed to memremap ima_setup_data entry\n");
344 return;
345 }
346
347 if (data->size) {
348 memblock_reserve(data->addr, data->size);
349 ima_kexec_buffer_phys = data->addr;
350 ima_kexec_buffer_size = data->size;
351 }
352
353 early_memunmap(data, sizeof(*data));
354 #else
355 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
356 #endif
357 }
358
359 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
ima_free_kexec_buffer(void)360 int __init ima_free_kexec_buffer(void)
361 {
362 int rc;
363
364 if (!ima_kexec_buffer_size)
365 return -ENOENT;
366
367 rc = memblock_phys_free(ima_kexec_buffer_phys,
368 ima_kexec_buffer_size);
369 if (rc)
370 return rc;
371
372 ima_kexec_buffer_phys = 0;
373 ima_kexec_buffer_size = 0;
374
375 return 0;
376 }
377
ima_get_kexec_buffer(void ** addr,size_t * size)378 int __init ima_get_kexec_buffer(void **addr, size_t *size)
379 {
380 if (!ima_kexec_buffer_size)
381 return -ENOENT;
382
383 *addr = __va(ima_kexec_buffer_phys);
384 *size = ima_kexec_buffer_size;
385
386 return 0;
387 }
388 #endif
389
parse_setup_data(void)390 static void __init parse_setup_data(void)
391 {
392 struct setup_data *data;
393 u64 pa_data, pa_next;
394
395 pa_data = boot_params.hdr.setup_data;
396 while (pa_data) {
397 u32 data_len, data_type;
398
399 data = early_memremap(pa_data, sizeof(*data));
400 data_len = data->len + sizeof(struct setup_data);
401 data_type = data->type;
402 pa_next = data->next;
403 early_memunmap(data, sizeof(*data));
404
405 switch (data_type) {
406 case SETUP_E820_EXT:
407 e820__memory_setup_extended(pa_data, data_len);
408 break;
409 case SETUP_DTB:
410 add_dtb(pa_data);
411 break;
412 case SETUP_EFI:
413 parse_efi_setup(pa_data, data_len);
414 break;
415 case SETUP_IMA:
416 add_early_ima_buffer(pa_data);
417 break;
418 case SETUP_RNG_SEED:
419 data = early_memremap(pa_data, data_len);
420 add_bootloader_randomness(data->data, data->len);
421 /* Zero seed for forward secrecy. */
422 memzero_explicit(data->data, data->len);
423 /* Zero length in case we find ourselves back here by accident. */
424 memzero_explicit(&data->len, sizeof(data->len));
425 early_memunmap(data, data_len);
426 break;
427 default:
428 break;
429 }
430 pa_data = pa_next;
431 }
432 }
433
memblock_x86_reserve_range_setup_data(void)434 static void __init memblock_x86_reserve_range_setup_data(void)
435 {
436 struct setup_indirect *indirect;
437 struct setup_data *data;
438 u64 pa_data, pa_next;
439 u32 len;
440
441 pa_data = boot_params.hdr.setup_data;
442 while (pa_data) {
443 data = early_memremap(pa_data, sizeof(*data));
444 if (!data) {
445 pr_warn("setup: failed to memremap setup_data entry\n");
446 return;
447 }
448
449 len = sizeof(*data);
450 pa_next = data->next;
451
452 memblock_reserve(pa_data, sizeof(*data) + data->len);
453
454 if (data->type == SETUP_INDIRECT) {
455 len += data->len;
456 early_memunmap(data, sizeof(*data));
457 data = early_memremap(pa_data, len);
458 if (!data) {
459 pr_warn("setup: failed to memremap indirect setup_data\n");
460 return;
461 }
462
463 indirect = (struct setup_indirect *)data->data;
464
465 if (indirect->type != SETUP_INDIRECT)
466 memblock_reserve(indirect->addr, indirect->len);
467 }
468
469 pa_data = pa_next;
470 early_memunmap(data, len);
471 }
472 }
473
474 /*
475 * --------- Crashkernel reservation ------------------------------
476 */
477
478 /* 16M alignment for crash kernel regions */
479 #define CRASH_ALIGN SZ_16M
480
481 /*
482 * Keep the crash kernel below this limit.
483 *
484 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
485 * due to mapping restrictions.
486 *
487 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
488 * the upper limit of system RAM in 4-level paging mode. Since the kdump
489 * jump could be from 5-level paging to 4-level paging, the jump will fail if
490 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
491 * no good way to detect the paging mode of the target kernel which will be
492 * loaded for dumping.
493 */
494 #ifdef CONFIG_X86_32
495 # define CRASH_ADDR_LOW_MAX SZ_512M
496 # define CRASH_ADDR_HIGH_MAX SZ_512M
497 #else
498 # define CRASH_ADDR_LOW_MAX SZ_4G
499 # define CRASH_ADDR_HIGH_MAX SZ_64T
500 #endif
501
reserve_crashkernel_low(void)502 static int __init reserve_crashkernel_low(void)
503 {
504 #ifdef CONFIG_X86_64
505 unsigned long long base, low_base = 0, low_size = 0;
506 unsigned long low_mem_limit;
507 int ret;
508
509 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
510
511 /* crashkernel=Y,low */
512 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
513 if (ret) {
514 /*
515 * two parts from kernel/dma/swiotlb.c:
516 * -swiotlb size: user-specified with swiotlb= or default.
517 *
518 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
519 * to 8M for other buffers that may need to stay low too. Also
520 * make sure we allocate enough extra low memory so that we
521 * don't run out of DMA buffers for 32-bit devices.
522 */
523 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
524 } else {
525 /* passed with crashkernel=0,low ? */
526 if (!low_size)
527 return 0;
528 }
529
530 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
531 if (!low_base) {
532 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
533 (unsigned long)(low_size >> 20));
534 return -ENOMEM;
535 }
536
537 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
538 (unsigned long)(low_size >> 20),
539 (unsigned long)(low_base >> 20),
540 (unsigned long)(low_mem_limit >> 20));
541
542 crashk_low_res.start = low_base;
543 crashk_low_res.end = low_base + low_size - 1;
544 insert_resource(&iomem_resource, &crashk_low_res);
545 #endif
546 return 0;
547 }
548
reserve_crashkernel(void)549 static void __init reserve_crashkernel(void)
550 {
551 unsigned long long crash_size, crash_base, total_mem;
552 bool high = false;
553 int ret;
554
555 if (!IS_ENABLED(CONFIG_KEXEC_CORE))
556 return;
557
558 total_mem = memblock_phys_mem_size();
559
560 /* crashkernel=XM */
561 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
562 if (ret != 0 || crash_size <= 0) {
563 /* crashkernel=X,high */
564 ret = parse_crashkernel_high(boot_command_line, total_mem,
565 &crash_size, &crash_base);
566 if (ret != 0 || crash_size <= 0)
567 return;
568 high = true;
569 }
570
571 if (xen_pv_domain()) {
572 pr_info("Ignoring crashkernel for a Xen PV domain\n");
573 return;
574 }
575
576 /* 0 means: find the address automatically */
577 if (!crash_base) {
578 /*
579 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
580 * crashkernel=x,high reserves memory over 4G, also allocates
581 * 256M extra low memory for DMA buffers and swiotlb.
582 * But the extra memory is not required for all machines.
583 * So try low memory first and fall back to high memory
584 * unless "crashkernel=size[KMG],high" is specified.
585 */
586 if (!high)
587 crash_base = memblock_phys_alloc_range(crash_size,
588 CRASH_ALIGN, CRASH_ALIGN,
589 CRASH_ADDR_LOW_MAX);
590 if (!crash_base)
591 crash_base = memblock_phys_alloc_range(crash_size,
592 CRASH_ALIGN, CRASH_ALIGN,
593 CRASH_ADDR_HIGH_MAX);
594 if (!crash_base) {
595 pr_info("crashkernel reservation failed - No suitable area found.\n");
596 return;
597 }
598 } else {
599 unsigned long long start;
600
601 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
602 crash_base + crash_size);
603 if (start != crash_base) {
604 pr_info("crashkernel reservation failed - memory is in use.\n");
605 return;
606 }
607 }
608
609 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
610 memblock_phys_free(crash_base, crash_size);
611 return;
612 }
613
614 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
615 (unsigned long)(crash_size >> 20),
616 (unsigned long)(crash_base >> 20),
617 (unsigned long)(total_mem >> 20));
618
619 crashk_res.start = crash_base;
620 crashk_res.end = crash_base + crash_size - 1;
621 insert_resource(&iomem_resource, &crashk_res);
622 }
623
624 static struct resource standard_io_resources[] = {
625 { .name = "dma1", .start = 0x00, .end = 0x1f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic1", .start = 0x20, .end = 0x21,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "timer0", .start = 0x40, .end = 0x43,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "timer1", .start = 0x50, .end = 0x53,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "keyboard", .start = 0x60, .end = 0x60,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "keyboard", .start = 0x64, .end = 0x64,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "pic2", .start = 0xa0, .end = 0xa1,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "dma2", .start = 0xc0, .end = 0xdf,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "fpu", .start = 0xf0, .end = 0xff,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
645 };
646
reserve_standard_io_resources(void)647 void __init reserve_standard_io_resources(void)
648 {
649 int i;
650
651 /* request I/O space for devices used on all i[345]86 PCs */
652 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
653 request_resource(&ioport_resource, &standard_io_resources[i]);
654
655 }
656
snb_gfx_workaround_needed(void)657 static bool __init snb_gfx_workaround_needed(void)
658 {
659 #ifdef CONFIG_PCI
660 int i;
661 u16 vendor, devid;
662 static const __initconst u16 snb_ids[] = {
663 0x0102,
664 0x0112,
665 0x0122,
666 0x0106,
667 0x0116,
668 0x0126,
669 0x010a,
670 };
671
672 /* Assume no if something weird is going on with PCI */
673 if (!early_pci_allowed())
674 return false;
675
676 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
677 if (vendor != 0x8086)
678 return false;
679
680 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
681 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
682 if (devid == snb_ids[i])
683 return true;
684 #endif
685
686 return false;
687 }
688
689 /*
690 * Sandy Bridge graphics has trouble with certain ranges, exclude
691 * them from allocation.
692 */
trim_snb_memory(void)693 static void __init trim_snb_memory(void)
694 {
695 static const __initconst unsigned long bad_pages[] = {
696 0x20050000,
697 0x20110000,
698 0x20130000,
699 0x20138000,
700 0x40004000,
701 };
702 int i;
703
704 if (!snb_gfx_workaround_needed())
705 return;
706
707 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
708
709 /*
710 * SandyBridge integrated graphics devices have a bug that prevents
711 * them from accessing certain memory ranges, namely anything below
712 * 1M and in the pages listed in bad_pages[] above.
713 *
714 * To avoid these pages being ever accessed by SNB gfx devices reserve
715 * bad_pages that have not already been reserved at boot time.
716 * All memory below the 1 MB mark is anyway reserved later during
717 * setup_arch(), so there is no need to reserve it here.
718 */
719
720 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
721 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
722 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
723 bad_pages[i]);
724 }
725 }
726
trim_bios_range(void)727 static void __init trim_bios_range(void)
728 {
729 /*
730 * A special case is the first 4Kb of memory;
731 * This is a BIOS owned area, not kernel ram, but generally
732 * not listed as such in the E820 table.
733 *
734 * This typically reserves additional memory (64KiB by default)
735 * since some BIOSes are known to corrupt low memory. See the
736 * Kconfig help text for X86_RESERVE_LOW.
737 */
738 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
739
740 /*
741 * special case: Some BIOSes report the PC BIOS
742 * area (640Kb -> 1Mb) as RAM even though it is not.
743 * take them out.
744 */
745 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
746
747 e820__update_table(e820_table);
748 }
749
750 /* called before trim_bios_range() to spare extra sanitize */
e820_add_kernel_range(void)751 static void __init e820_add_kernel_range(void)
752 {
753 u64 start = __pa_symbol(_text);
754 u64 size = __pa_symbol(_end) - start;
755
756 /*
757 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
758 * attempt to fix it by adding the range. We may have a confused BIOS,
759 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
760 * exclude kernel range. If we really are running on top non-RAM,
761 * we will crash later anyways.
762 */
763 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
764 return;
765
766 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
767 e820__range_remove(start, size, E820_TYPE_RAM, 0);
768 e820__range_add(start, size, E820_TYPE_RAM);
769 }
770
early_reserve_memory(void)771 static void __init early_reserve_memory(void)
772 {
773 /*
774 * Reserve the memory occupied by the kernel between _text and
775 * __end_of_kernel_reserve symbols. Any kernel sections after the
776 * __end_of_kernel_reserve symbol must be explicitly reserved with a
777 * separate memblock_reserve() or they will be discarded.
778 */
779 memblock_reserve(__pa_symbol(_text),
780 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
781
782 /*
783 * The first 4Kb of memory is a BIOS owned area, but generally it is
784 * not listed as such in the E820 table.
785 *
786 * Reserve the first 64K of memory since some BIOSes are known to
787 * corrupt low memory. After the real mode trampoline is allocated the
788 * rest of the memory below 640k is reserved.
789 *
790 * In addition, make sure page 0 is always reserved because on
791 * systems with L1TF its contents can be leaked to user processes.
792 */
793 memblock_reserve(0, SZ_64K);
794
795 early_reserve_initrd();
796
797 memblock_x86_reserve_range_setup_data();
798
799 reserve_ibft_region();
800 reserve_bios_regions();
801 trim_snb_memory();
802 }
803
804 /*
805 * Dump out kernel offset information on panic.
806 */
807 static int
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)808 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
809 {
810 if (kaslr_enabled()) {
811 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
812 kaslr_offset(),
813 __START_KERNEL,
814 __START_KERNEL_map,
815 MODULES_VADDR-1);
816 } else {
817 pr_emerg("Kernel Offset: disabled\n");
818 }
819
820 return 0;
821 }
822
x86_configure_nx(void)823 void x86_configure_nx(void)
824 {
825 if (boot_cpu_has(X86_FEATURE_NX))
826 __supported_pte_mask |= _PAGE_NX;
827 else
828 __supported_pte_mask &= ~_PAGE_NX;
829 }
830
x86_report_nx(void)831 static void __init x86_report_nx(void)
832 {
833 if (!boot_cpu_has(X86_FEATURE_NX)) {
834 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
835 "missing in CPU!\n");
836 } else {
837 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
838 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
839 #else
840 /* 32bit non-PAE kernel, NX cannot be used */
841 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
842 "cannot be enabled: non-PAE kernel!\n");
843 #endif
844 }
845 }
846
847 /*
848 * Determine if we were loaded by an EFI loader. If so, then we have also been
849 * passed the efi memmap, systab, etc., so we should use these data structures
850 * for initialization. Note, the efi init code path is determined by the
851 * global efi_enabled. This allows the same kernel image to be used on existing
852 * systems (with a traditional BIOS) as well as on EFI systems.
853 */
854 /*
855 * setup_arch - architecture-specific boot-time initializations
856 *
857 * Note: On x86_64, fixmaps are ready for use even before this is called.
858 */
859
setup_arch(char ** cmdline_p)860 void __init setup_arch(char **cmdline_p)
861 {
862 #ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the CPU quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884 #else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
887 #endif
888
889 /*
890 * If we have OLPC OFW, we might end up relocating the fixmap due to
891 * reserve_top(), so do this before touching the ioremap area.
892 */
893 olpc_ofw_detect();
894
895 idt_setup_early_traps();
896 early_cpu_init();
897 jump_label_init();
898 static_call_init();
899 early_ioremap_init();
900
901 setup_olpc_ofw_pgd();
902
903 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
904 screen_info = boot_params.screen_info;
905 edid_info = boot_params.edid_info;
906 #ifdef CONFIG_X86_32
907 apm_info.bios = boot_params.apm_bios_info;
908 ist_info = boot_params.ist_info;
909 #endif
910 saved_video_mode = boot_params.hdr.vid_mode;
911 bootloader_type = boot_params.hdr.type_of_loader;
912 if ((bootloader_type >> 4) == 0xe) {
913 bootloader_type &= 0xf;
914 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
915 }
916 bootloader_version = bootloader_type & 0xf;
917 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
918
919 #ifdef CONFIG_BLK_DEV_RAM
920 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
921 #endif
922 #ifdef CONFIG_EFI
923 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
924 EFI32_LOADER_SIGNATURE, 4)) {
925 set_bit(EFI_BOOT, &efi.flags);
926 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
927 EFI64_LOADER_SIGNATURE, 4)) {
928 set_bit(EFI_BOOT, &efi.flags);
929 set_bit(EFI_64BIT, &efi.flags);
930 }
931 #endif
932
933 x86_init.oem.arch_setup();
934
935 /*
936 * Do some memory reservations *before* memory is added to memblock, so
937 * memblock allocations won't overwrite it.
938 *
939 * After this point, everything still needed from the boot loader or
940 * firmware or kernel text should be early reserved or marked not RAM in
941 * e820. All other memory is free game.
942 *
943 * This call needs to happen before e820__memory_setup() which calls the
944 * xen_memory_setup() on Xen dom0 which relies on the fact that those
945 * early reservations have happened already.
946 */
947 early_reserve_memory();
948
949 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
950 e820__memory_setup();
951 parse_setup_data();
952
953 copy_edd();
954
955 if (!boot_params.hdr.root_flags)
956 root_mountflags &= ~MS_RDONLY;
957 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
958
959 code_resource.start = __pa_symbol(_text);
960 code_resource.end = __pa_symbol(_etext)-1;
961 rodata_resource.start = __pa_symbol(__start_rodata);
962 rodata_resource.end = __pa_symbol(__end_rodata)-1;
963 data_resource.start = __pa_symbol(_sdata);
964 data_resource.end = __pa_symbol(_edata)-1;
965 bss_resource.start = __pa_symbol(__bss_start);
966 bss_resource.end = __pa_symbol(__bss_stop)-1;
967
968 #ifdef CONFIG_CMDLINE_BOOL
969 #ifdef CONFIG_CMDLINE_OVERRIDE
970 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
971 #else
972 if (builtin_cmdline[0]) {
973 /* append boot loader cmdline to builtin */
974 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
975 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
976 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977 }
978 #endif
979 #endif
980
981 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
982 *cmdline_p = command_line;
983
984 /*
985 * x86_configure_nx() is called before parse_early_param() to detect
986 * whether hardware doesn't support NX (so that the early EHCI debug
987 * console setup can safely call set_fixmap()).
988 */
989 x86_configure_nx();
990
991 parse_early_param();
992
993 if (efi_enabled(EFI_BOOT))
994 efi_memblock_x86_reserve_range();
995
996 #ifdef CONFIG_MEMORY_HOTPLUG
997 /*
998 * Memory used by the kernel cannot be hot-removed because Linux
999 * cannot migrate the kernel pages. When memory hotplug is
1000 * enabled, we should prevent memblock from allocating memory
1001 * for the kernel.
1002 *
1003 * ACPI SRAT records all hotpluggable memory ranges. But before
1004 * SRAT is parsed, we don't know about it.
1005 *
1006 * The kernel image is loaded into memory at very early time. We
1007 * cannot prevent this anyway. So on NUMA system, we set any
1008 * node the kernel resides in as un-hotpluggable.
1009 *
1010 * Since on modern servers, one node could have double-digit
1011 * gigabytes memory, we can assume the memory around the kernel
1012 * image is also un-hotpluggable. So before SRAT is parsed, just
1013 * allocate memory near the kernel image to try the best to keep
1014 * the kernel away from hotpluggable memory.
1015 */
1016 if (movable_node_is_enabled())
1017 memblock_set_bottom_up(true);
1018 #endif
1019
1020 x86_report_nx();
1021
1022 if (acpi_mps_check()) {
1023 #ifdef CONFIG_X86_LOCAL_APIC
1024 disable_apic = 1;
1025 #endif
1026 setup_clear_cpu_cap(X86_FEATURE_APIC);
1027 }
1028
1029 e820__reserve_setup_data();
1030 e820__finish_early_params();
1031
1032 if (efi_enabled(EFI_BOOT))
1033 efi_init();
1034
1035 dmi_setup();
1036
1037 /*
1038 * VMware detection requires dmi to be available, so this
1039 * needs to be done after dmi_setup(), for the boot CPU.
1040 */
1041 init_hypervisor_platform();
1042
1043 tsc_early_init();
1044 x86_init.resources.probe_roms();
1045
1046 /* after parse_early_param, so could debug it */
1047 insert_resource(&iomem_resource, &code_resource);
1048 insert_resource(&iomem_resource, &rodata_resource);
1049 insert_resource(&iomem_resource, &data_resource);
1050 insert_resource(&iomem_resource, &bss_resource);
1051
1052 e820_add_kernel_range();
1053 trim_bios_range();
1054 #ifdef CONFIG_X86_32
1055 if (ppro_with_ram_bug()) {
1056 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1057 E820_TYPE_RESERVED);
1058 e820__update_table(e820_table);
1059 printk(KERN_INFO "fixed physical RAM map:\n");
1060 e820__print_table("bad_ppro");
1061 }
1062 #else
1063 early_gart_iommu_check();
1064 #endif
1065
1066 /*
1067 * partially used pages are not usable - thus
1068 * we are rounding upwards:
1069 */
1070 max_pfn = e820__end_of_ram_pfn();
1071
1072 /* update e820 for memory not covered by WB MTRRs */
1073 cache_bp_init();
1074 if (mtrr_trim_uncached_memory(max_pfn))
1075 max_pfn = e820__end_of_ram_pfn();
1076
1077 max_possible_pfn = max_pfn;
1078
1079 /*
1080 * Define random base addresses for memory sections after max_pfn is
1081 * defined and before each memory section base is used.
1082 */
1083 kernel_randomize_memory();
1084
1085 #ifdef CONFIG_X86_32
1086 /* max_low_pfn get updated here */
1087 find_low_pfn_range();
1088 #else
1089 check_x2apic();
1090
1091 /* How many end-of-memory variables you have, grandma! */
1092 /* need this before calling reserve_initrd */
1093 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1094 max_low_pfn = e820__end_of_low_ram_pfn();
1095 else
1096 max_low_pfn = max_pfn;
1097
1098 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1099 #endif
1100
1101 /*
1102 * Find and reserve possible boot-time SMP configuration:
1103 */
1104 find_smp_config();
1105
1106 early_alloc_pgt_buf();
1107
1108 /*
1109 * Need to conclude brk, before e820__memblock_setup()
1110 * it could use memblock_find_in_range, could overlap with
1111 * brk area.
1112 */
1113 reserve_brk();
1114
1115 cleanup_highmap();
1116
1117 memblock_set_current_limit(ISA_END_ADDRESS);
1118 e820__memblock_setup();
1119
1120 /*
1121 * Needs to run after memblock setup because it needs the physical
1122 * memory size.
1123 */
1124 sev_setup_arch();
1125
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129 efi_mokvar_table_init();
1130
1131 /*
1132 * The EFI specification says that boot service code won't be
1133 * called after ExitBootServices(). This is, in fact, a lie.
1134 */
1135 efi_reserve_boot_services();
1136
1137 /* preallocate 4k for mptable mpc */
1138 e820__memblock_alloc_reserved_mpc_new();
1139
1140 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142 #endif
1143
1144 #ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147 #endif
1148
1149 /*
1150 * Find free memory for the real mode trampoline and place it there. If
1151 * there is not enough free memory under 1M, on EFI-enabled systems
1152 * there will be additional attempt to reclaim the memory for the real
1153 * mode trampoline at efi_free_boot_services().
1154 *
1155 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1156 * are known to corrupt low memory and several hundred kilobytes are not
1157 * worth complex detection what memory gets clobbered. Windows does the
1158 * same thing for very similar reasons.
1159 *
1160 * Moreover, on machines with SandyBridge graphics or in setups that use
1161 * crashkernel the entire 1M is reserved anyway.
1162 */
1163 x86_platform.realmode_reserve();
1164
1165 init_mem_mapping();
1166
1167 idt_setup_early_pf();
1168
1169 /*
1170 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1171 * with the current CR4 value. This may not be necessary, but
1172 * auditing all the early-boot CR4 manipulation would be needed to
1173 * rule it out.
1174 *
1175 * Mask off features that don't work outside long mode (just
1176 * PCIDE for now).
1177 */
1178 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1179
1180 memblock_set_current_limit(get_max_mapped());
1181
1182 /*
1183 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1184 */
1185
1186 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1187 if (init_ohci1394_dma_early)
1188 init_ohci1394_dma_on_all_controllers();
1189 #endif
1190 /* Allocate bigger log buffer */
1191 setup_log_buf(1);
1192
1193 if (efi_enabled(EFI_BOOT)) {
1194 switch (boot_params.secure_boot) {
1195 case efi_secureboot_mode_disabled:
1196 pr_info("Secure boot disabled\n");
1197 break;
1198 case efi_secureboot_mode_enabled:
1199 pr_info("Secure boot enabled\n");
1200 break;
1201 default:
1202 pr_info("Secure boot could not be determined\n");
1203 break;
1204 }
1205 }
1206
1207 reserve_initrd();
1208
1209 acpi_table_upgrade();
1210 /* Look for ACPI tables and reserve memory occupied by them. */
1211 acpi_boot_table_init();
1212
1213 vsmp_init();
1214
1215 io_delay_init();
1216
1217 early_platform_quirks();
1218
1219 early_acpi_boot_init();
1220
1221 initmem_init();
1222 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1223
1224 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1225 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1226
1227 /*
1228 * Reserve memory for crash kernel after SRAT is parsed so that it
1229 * won't consume hotpluggable memory.
1230 */
1231 reserve_crashkernel();
1232
1233 memblock_find_dma_reserve();
1234
1235 if (!early_xdbc_setup_hardware())
1236 early_xdbc_register_console();
1237
1238 x86_init.paging.pagetable_init();
1239
1240 kasan_init();
1241
1242 /*
1243 * Sync back kernel address range.
1244 *
1245 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1246 * this call?
1247 */
1248 sync_initial_page_table();
1249
1250 tboot_probe();
1251
1252 map_vsyscall();
1253
1254 generic_apic_probe();
1255
1256 early_quirks();
1257
1258 /*
1259 * Read APIC and some other early information from ACPI tables.
1260 */
1261 acpi_boot_init();
1262 x86_dtb_init();
1263
1264 /*
1265 * get boot-time SMP configuration:
1266 */
1267 get_smp_config();
1268
1269 /*
1270 * Systems w/o ACPI and mptables might not have it mapped the local
1271 * APIC yet, but prefill_possible_map() might need to access it.
1272 */
1273 init_apic_mappings();
1274
1275 prefill_possible_map();
1276
1277 init_cpu_to_node();
1278 init_gi_nodes();
1279
1280 io_apic_init_mappings();
1281
1282 x86_init.hyper.guest_late_init();
1283
1284 e820__reserve_resources();
1285 e820__register_nosave_regions(max_pfn);
1286
1287 x86_init.resources.reserve_resources();
1288
1289 e820__setup_pci_gap();
1290
1291 #ifdef CONFIG_VT
1292 #if defined(CONFIG_VGA_CONSOLE)
1293 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1294 conswitchp = &vga_con;
1295 #endif
1296 #endif
1297 x86_init.oem.banner();
1298
1299 x86_init.timers.wallclock_init();
1300
1301 /*
1302 * This needs to run before setup_local_APIC() which soft-disables the
1303 * local APIC temporarily and that masks the thermal LVT interrupt,
1304 * leading to softlockups on machines which have configured SMI
1305 * interrupt delivery.
1306 */
1307 therm_lvt_init();
1308
1309 mcheck_init();
1310
1311 register_refined_jiffies(CLOCK_TICK_RATE);
1312
1313 #ifdef CONFIG_EFI
1314 if (efi_enabled(EFI_BOOT))
1315 efi_apply_memmap_quirks();
1316 #endif
1317
1318 unwind_init();
1319 }
1320
1321 #ifdef CONFIG_X86_32
1322
1323 static struct resource video_ram_resource = {
1324 .name = "Video RAM area",
1325 .start = 0xa0000,
1326 .end = 0xbffff,
1327 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1328 };
1329
i386_reserve_resources(void)1330 void __init i386_reserve_resources(void)
1331 {
1332 request_resource(&iomem_resource, &video_ram_resource);
1333 reserve_standard_io_resources();
1334 }
1335
1336 #endif /* CONFIG_X86_32 */
1337
1338 static struct notifier_block kernel_offset_notifier = {
1339 .notifier_call = dump_kernel_offset
1340 };
1341
register_kernel_offset_dumper(void)1342 static int __init register_kernel_offset_dumper(void)
1343 {
1344 atomic_notifier_chain_register(&panic_notifier_list,
1345 &kernel_offset_notifier);
1346 return 0;
1347 }
1348 __initcall(register_kernel_offset_dumper);
1349