1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* AVIC GATAG is encoded using VM and VCPU IDs */
31 #define AVIC_VCPU_ID_BITS 8
32 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
33
34 #define AVIC_VM_ID_BITS 24
35 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
36 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
37
38 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
39 (y & AVIC_VCPU_ID_MASK))
40 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
41 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
42
43 static bool force_avic;
44 module_param_unsafe(force_avic, bool, 0444);
45
46 /* Note:
47 * This hash table is used to map VM_ID to a struct kvm_svm,
48 * when handling AMD IOMMU GALOG notification to schedule in
49 * a particular vCPU.
50 */
51 #define SVM_VM_DATA_HASH_BITS 8
52 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
53 static u32 next_vm_id = 0;
54 static bool next_vm_id_wrapped = 0;
55 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
56 bool x2avic_enabled;
57
58 /*
59 * This is a wrapper of struct amd_iommu_ir_data.
60 */
61 struct amd_svm_iommu_ir {
62 struct list_head node; /* Used by SVM for per-vcpu ir_list */
63 void *data; /* Storing pointer to struct amd_ir_data */
64 };
65
avic_activate_vmcb(struct vcpu_svm * svm)66 static void avic_activate_vmcb(struct vcpu_svm *svm)
67 {
68 struct vmcb *vmcb = svm->vmcb01.ptr;
69
70 vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
71 vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
72
73 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
74
75 /*
76 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
77 * accesses, while interrupt injection to a running vCPU can be
78 * achieved using AVIC doorbell. KVM disables the APIC access page
79 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
80 * AVIC in hybrid mode activates only the doorbell mechanism.
81 */
82 if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
83 vmcb->control.int_ctl |= X2APIC_MODE_MASK;
84 vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
85 /* Disabling MSR intercept for x2APIC registers */
86 svm_set_x2apic_msr_interception(svm, false);
87 } else {
88 /*
89 * Flush the TLB, the guest may have inserted a non-APIC
90 * mapping into the TLB while AVIC was disabled.
91 */
92 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
93
94 /* For xAVIC and hybrid-xAVIC modes */
95 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
96 /* Enabling MSR intercept for x2APIC registers */
97 svm_set_x2apic_msr_interception(svm, true);
98 }
99 }
100
avic_deactivate_vmcb(struct vcpu_svm * svm)101 static void avic_deactivate_vmcb(struct vcpu_svm *svm)
102 {
103 struct vmcb *vmcb = svm->vmcb01.ptr;
104
105 vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
106 vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
107
108 /*
109 * If running nested and the guest uses its own MSR bitmap, there
110 * is no need to update L0's msr bitmap
111 */
112 if (is_guest_mode(&svm->vcpu) &&
113 vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
114 return;
115
116 /* Enabling MSR intercept for x2APIC registers */
117 svm_set_x2apic_msr_interception(svm, true);
118 }
119
120 /* Note:
121 * This function is called from IOMMU driver to notify
122 * SVM to schedule in a particular vCPU of a particular VM.
123 */
avic_ga_log_notifier(u32 ga_tag)124 int avic_ga_log_notifier(u32 ga_tag)
125 {
126 unsigned long flags;
127 struct kvm_svm *kvm_svm;
128 struct kvm_vcpu *vcpu = NULL;
129 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
130 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
131
132 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
133 trace_kvm_avic_ga_log(vm_id, vcpu_id);
134
135 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
136 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
137 if (kvm_svm->avic_vm_id != vm_id)
138 continue;
139 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
140 break;
141 }
142 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
143
144 /* Note:
145 * At this point, the IOMMU should have already set the pending
146 * bit in the vAPIC backing page. So, we just need to schedule
147 * in the vcpu.
148 */
149 if (vcpu)
150 kvm_vcpu_wake_up(vcpu);
151
152 return 0;
153 }
154
avic_vm_destroy(struct kvm * kvm)155 void avic_vm_destroy(struct kvm *kvm)
156 {
157 unsigned long flags;
158 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
159
160 if (!enable_apicv)
161 return;
162
163 if (kvm_svm->avic_logical_id_table_page)
164 __free_page(kvm_svm->avic_logical_id_table_page);
165 if (kvm_svm->avic_physical_id_table_page)
166 __free_page(kvm_svm->avic_physical_id_table_page);
167
168 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
169 hash_del(&kvm_svm->hnode);
170 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
171 }
172
avic_vm_init(struct kvm * kvm)173 int avic_vm_init(struct kvm *kvm)
174 {
175 unsigned long flags;
176 int err = -ENOMEM;
177 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178 struct kvm_svm *k2;
179 struct page *p_page;
180 struct page *l_page;
181 u32 vm_id;
182
183 if (!enable_apicv)
184 return 0;
185
186 /* Allocating physical APIC ID table (4KB) */
187 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
188 if (!p_page)
189 goto free_avic;
190
191 kvm_svm->avic_physical_id_table_page = p_page;
192
193 /* Allocating logical APIC ID table (4KB) */
194 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
195 if (!l_page)
196 goto free_avic;
197
198 kvm_svm->avic_logical_id_table_page = l_page;
199
200 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
201 again:
202 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
203 if (vm_id == 0) { /* id is 1-based, zero is not okay */
204 next_vm_id_wrapped = 1;
205 goto again;
206 }
207 /* Is it still in use? Only possible if wrapped at least once */
208 if (next_vm_id_wrapped) {
209 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
210 if (k2->avic_vm_id == vm_id)
211 goto again;
212 }
213 }
214 kvm_svm->avic_vm_id = vm_id;
215 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
216 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
217
218 return 0;
219
220 free_avic:
221 avic_vm_destroy(kvm);
222 return err;
223 }
224
avic_init_vmcb(struct vcpu_svm * svm,struct vmcb * vmcb)225 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
226 {
227 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
228 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
229 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
230 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
231
232 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
233 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
234 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
235 vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
236
237 if (kvm_apicv_activated(svm->vcpu.kvm))
238 avic_activate_vmcb(svm);
239 else
240 avic_deactivate_vmcb(svm);
241 }
242
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)243 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
244 unsigned int index)
245 {
246 u64 *avic_physical_id_table;
247 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
248
249 if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
250 (index > X2AVIC_MAX_PHYSICAL_ID))
251 return NULL;
252
253 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
254
255 return &avic_physical_id_table[index];
256 }
257
avic_init_backing_page(struct kvm_vcpu * vcpu)258 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
259 {
260 u64 *entry, new_entry;
261 int id = vcpu->vcpu_id;
262 struct vcpu_svm *svm = to_svm(vcpu);
263
264 if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
265 (id > X2AVIC_MAX_PHYSICAL_ID))
266 return -EINVAL;
267
268 if (!vcpu->arch.apic->regs)
269 return -EINVAL;
270
271 if (kvm_apicv_activated(vcpu->kvm)) {
272 int ret;
273
274 /*
275 * Note, AVIC hardware walks the nested page table to check
276 * permissions, but does not use the SPA address specified in
277 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
278 * pointer field of the VMCB.
279 */
280 ret = kvm_alloc_apic_access_page(vcpu->kvm);
281 if (ret)
282 return ret;
283 }
284
285 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
286
287 /* Setting AVIC backing page address in the phy APIC ID table */
288 entry = avic_get_physical_id_entry(vcpu, id);
289 if (!entry)
290 return -EINVAL;
291
292 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
293 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
294 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
295 WRITE_ONCE(*entry, new_entry);
296
297 svm->avic_physical_id_cache = entry;
298
299 return 0;
300 }
301
avic_ring_doorbell(struct kvm_vcpu * vcpu)302 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
303 {
304 /*
305 * Note, the vCPU could get migrated to a different pCPU at any point,
306 * which could result in signalling the wrong/previous pCPU. But if
307 * that happens the vCPU is guaranteed to do a VMRUN (after being
308 * migrated) and thus will process pending interrupts, i.e. a doorbell
309 * is not needed (and the spurious one is harmless).
310 */
311 int cpu = READ_ONCE(vcpu->cpu);
312
313 if (cpu != get_cpu()) {
314 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
315 trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
316 }
317 put_cpu();
318 }
319
320
avic_kick_vcpu(struct kvm_vcpu * vcpu,u32 icrl)321 static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
322 {
323 vcpu->arch.apic->irr_pending = true;
324 svm_complete_interrupt_delivery(vcpu,
325 icrl & APIC_MODE_MASK,
326 icrl & APIC_INT_LEVELTRIG,
327 icrl & APIC_VECTOR_MASK);
328 }
329
avic_kick_vcpu_by_physical_id(struct kvm * kvm,u32 physical_id,u32 icrl)330 static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
331 u32 icrl)
332 {
333 /*
334 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
335 * i.e. APIC ID == vCPU ID.
336 */
337 struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
338
339 /* Once again, nothing to do if the target vCPU doesn't exist. */
340 if (unlikely(!target_vcpu))
341 return;
342
343 avic_kick_vcpu(target_vcpu, icrl);
344 }
345
avic_kick_vcpu_by_logical_id(struct kvm * kvm,u32 * avic_logical_id_table,u32 logid_index,u32 icrl)346 static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
347 u32 logid_index, u32 icrl)
348 {
349 u32 physical_id;
350
351 if (avic_logical_id_table) {
352 u32 logid_entry = avic_logical_id_table[logid_index];
353
354 /* Nothing to do if the logical destination is invalid. */
355 if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
356 return;
357
358 physical_id = logid_entry &
359 AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
360 } else {
361 /*
362 * For x2APIC, the logical APIC ID is a read-only value that is
363 * derived from the x2APIC ID, thus the x2APIC ID can be found
364 * by reversing the calculation (stored in logid_index). Note,
365 * bits 31:20 of the x2APIC ID aren't propagated to the logical
366 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
367 */
368 physical_id = logid_index;
369 }
370
371 avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
372 }
373
374 /*
375 * A fast-path version of avic_kick_target_vcpus(), which attempts to match
376 * destination APIC ID to vCPU without looping through all vCPUs.
377 */
avic_kick_target_vcpus_fast(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)378 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
379 u32 icrl, u32 icrh, u32 index)
380 {
381 int dest_mode = icrl & APIC_DEST_MASK;
382 int shorthand = icrl & APIC_SHORT_MASK;
383 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
384 u32 dest;
385
386 if (shorthand != APIC_DEST_NOSHORT)
387 return -EINVAL;
388
389 if (apic_x2apic_mode(source))
390 dest = icrh;
391 else
392 dest = GET_XAPIC_DEST_FIELD(icrh);
393
394 if (dest_mode == APIC_DEST_PHYSICAL) {
395 /* broadcast destination, use slow path */
396 if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
397 return -EINVAL;
398 if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
399 return -EINVAL;
400
401 if (WARN_ON_ONCE(dest != index))
402 return -EINVAL;
403
404 avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
405 } else {
406 u32 *avic_logical_id_table;
407 unsigned long bitmap, i;
408 u32 cluster;
409
410 if (apic_x2apic_mode(source)) {
411 /* 16 bit dest mask, 16 bit cluster id */
412 bitmap = dest & 0xFFFF;
413 cluster = (dest >> 16) << 4;
414 } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
415 /* 8 bit dest mask*/
416 bitmap = dest;
417 cluster = 0;
418 } else {
419 /* 4 bit desk mask, 4 bit cluster id */
420 bitmap = dest & 0xF;
421 cluster = (dest >> 4) << 2;
422 }
423
424 /* Nothing to do if there are no destinations in the cluster. */
425 if (unlikely(!bitmap))
426 return 0;
427
428 if (apic_x2apic_mode(source))
429 avic_logical_id_table = NULL;
430 else
431 avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
432
433 /*
434 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
435 * IDs, thus each bit in the destination is guaranteed to map
436 * to at most one vCPU.
437 */
438 for_each_set_bit(i, &bitmap, 16)
439 avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
440 cluster + i, icrl);
441 }
442
443 return 0;
444 }
445
avic_kick_target_vcpus(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)446 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
447 u32 icrl, u32 icrh, u32 index)
448 {
449 u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
450 unsigned long i;
451 struct kvm_vcpu *vcpu;
452
453 if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
454 return;
455
456 trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
457
458 /*
459 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
460 * event. There's no need to signal doorbells, as hardware has handled
461 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
462 * since entered the guest will have processed pending IRQs at VMRUN.
463 */
464 kvm_for_each_vcpu(i, vcpu, kvm) {
465 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
466 dest, icrl & APIC_DEST_MASK))
467 avic_kick_vcpu(vcpu, icrl);
468 }
469 }
470
avic_incomplete_ipi_interception(struct kvm_vcpu * vcpu)471 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
472 {
473 struct vcpu_svm *svm = to_svm(vcpu);
474 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
475 u32 icrl = svm->vmcb->control.exit_info_1;
476 u32 id = svm->vmcb->control.exit_info_2 >> 32;
477 u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
478 struct kvm_lapic *apic = vcpu->arch.apic;
479
480 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
481
482 switch (id) {
483 case AVIC_IPI_FAILURE_INVALID_TARGET:
484 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
485 /*
486 * Emulate IPIs that are not handled by AVIC hardware, which
487 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
488 * if _any_ targets are invalid, e.g. if the logical mode mask
489 * is a superset of running vCPUs.
490 *
491 * The exit is a trap, e.g. ICR holds the correct value and RIP
492 * has been advanced, KVM is responsible only for emulating the
493 * IPI. Sadly, hardware may sometimes leave the BUSY flag set,
494 * in which case KVM needs to emulate the ICR write as well in
495 * order to clear the BUSY flag.
496 */
497 if (icrl & APIC_ICR_BUSY)
498 kvm_apic_write_nodecode(vcpu, APIC_ICR);
499 else
500 kvm_apic_send_ipi(apic, icrl, icrh);
501 break;
502 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
503 /*
504 * At this point, we expect that the AVIC HW has already
505 * set the appropriate IRR bits on the valid target
506 * vcpus. So, we just need to kick the appropriate vcpu.
507 */
508 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
509 break;
510 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
511 WARN_ONCE(1, "Invalid backing page\n");
512 break;
513 default:
514 pr_err("Unknown IPI interception\n");
515 }
516
517 return 1;
518 }
519
avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu * vcpu)520 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
521 {
522 if (is_guest_mode(vcpu))
523 return APICV_INHIBIT_REASON_NESTED;
524 return 0;
525 }
526
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)527 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
528 {
529 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
530 u32 *logical_apic_id_table;
531 u32 cluster, index;
532
533 ldr = GET_APIC_LOGICAL_ID(ldr);
534
535 if (flat) {
536 cluster = 0;
537 } else {
538 cluster = (ldr >> 4);
539 if (cluster >= 0xf)
540 return NULL;
541 ldr &= 0xf;
542 }
543 if (!ldr || !is_power_of_2(ldr))
544 return NULL;
545
546 index = __ffs(ldr);
547 if (WARN_ON_ONCE(index > 7))
548 return NULL;
549 index += (cluster << 2);
550
551 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
552
553 return &logical_apic_id_table[index];
554 }
555
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)556 static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
557 {
558 bool flat;
559 u32 *entry, new_entry;
560
561 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
562 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
563 if (!entry)
564 return;
565
566 new_entry = READ_ONCE(*entry);
567 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
568 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
569 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
570 WRITE_ONCE(*entry, new_entry);
571 }
572
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)573 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
574 {
575 struct vcpu_svm *svm = to_svm(vcpu);
576 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
577 u32 *entry;
578
579 /* Note: x2AVIC does not use logical APIC ID table */
580 if (apic_x2apic_mode(vcpu->arch.apic))
581 return;
582
583 entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
584 if (entry)
585 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
586 }
587
avic_handle_ldr_update(struct kvm_vcpu * vcpu)588 static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
589 {
590 struct vcpu_svm *svm = to_svm(vcpu);
591 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
592 u32 id = kvm_xapic_id(vcpu->arch.apic);
593
594 /* AVIC does not support LDR update for x2APIC */
595 if (apic_x2apic_mode(vcpu->arch.apic))
596 return;
597
598 if (ldr == svm->ldr_reg)
599 return;
600
601 avic_invalidate_logical_id_entry(vcpu);
602
603 svm->ldr_reg = ldr;
604 avic_ldr_write(vcpu, id, ldr);
605 }
606
avic_handle_dfr_update(struct kvm_vcpu * vcpu)607 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
608 {
609 struct vcpu_svm *svm = to_svm(vcpu);
610 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
611
612 if (svm->dfr_reg == dfr)
613 return;
614
615 avic_invalidate_logical_id_entry(vcpu);
616 svm->dfr_reg = dfr;
617 }
618
avic_unaccel_trap_write(struct kvm_vcpu * vcpu)619 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
620 {
621 u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
622 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
623
624 switch (offset) {
625 case APIC_LDR:
626 avic_handle_ldr_update(vcpu);
627 break;
628 case APIC_DFR:
629 avic_handle_dfr_update(vcpu);
630 break;
631 case APIC_RRR:
632 /* Ignore writes to Read Remote Data, it's read-only. */
633 return 1;
634 default:
635 break;
636 }
637
638 kvm_apic_write_nodecode(vcpu, offset);
639 return 1;
640 }
641
is_avic_unaccelerated_access_trap(u32 offset)642 static bool is_avic_unaccelerated_access_trap(u32 offset)
643 {
644 bool ret = false;
645
646 switch (offset) {
647 case APIC_ID:
648 case APIC_EOI:
649 case APIC_RRR:
650 case APIC_LDR:
651 case APIC_DFR:
652 case APIC_SPIV:
653 case APIC_ESR:
654 case APIC_ICR:
655 case APIC_LVTT:
656 case APIC_LVTTHMR:
657 case APIC_LVTPC:
658 case APIC_LVT0:
659 case APIC_LVT1:
660 case APIC_LVTERR:
661 case APIC_TMICT:
662 case APIC_TDCR:
663 ret = true;
664 break;
665 default:
666 break;
667 }
668 return ret;
669 }
670
avic_unaccelerated_access_interception(struct kvm_vcpu * vcpu)671 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
672 {
673 struct vcpu_svm *svm = to_svm(vcpu);
674 int ret = 0;
675 u32 offset = svm->vmcb->control.exit_info_1 &
676 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
677 u32 vector = svm->vmcb->control.exit_info_2 &
678 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
679 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
680 AVIC_UNACCEL_ACCESS_WRITE_MASK;
681 bool trap = is_avic_unaccelerated_access_trap(offset);
682
683 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
684 trap, write, vector);
685 if (trap) {
686 /* Handling Trap */
687 WARN_ONCE(!write, "svm: Handling trap read.\n");
688 ret = avic_unaccel_trap_write(vcpu);
689 } else {
690 /* Handling Fault */
691 ret = kvm_emulate_instruction(vcpu, 0);
692 }
693
694 return ret;
695 }
696
avic_init_vcpu(struct vcpu_svm * svm)697 int avic_init_vcpu(struct vcpu_svm *svm)
698 {
699 int ret;
700 struct kvm_vcpu *vcpu = &svm->vcpu;
701
702 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
703 return 0;
704
705 ret = avic_init_backing_page(vcpu);
706 if (ret)
707 return ret;
708
709 INIT_LIST_HEAD(&svm->ir_list);
710 spin_lock_init(&svm->ir_list_lock);
711 svm->dfr_reg = APIC_DFR_FLAT;
712
713 return ret;
714 }
715
avic_apicv_post_state_restore(struct kvm_vcpu * vcpu)716 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
717 {
718 avic_handle_dfr_update(vcpu);
719 avic_handle_ldr_update(vcpu);
720 }
721
avic_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)722 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
723 {
724 int ret = 0;
725 unsigned long flags;
726 struct amd_svm_iommu_ir *ir;
727 struct vcpu_svm *svm = to_svm(vcpu);
728
729 if (!kvm_arch_has_assigned_device(vcpu->kvm))
730 return 0;
731
732 /*
733 * Here, we go through the per-vcpu ir_list to update all existing
734 * interrupt remapping table entry targeting this vcpu.
735 */
736 spin_lock_irqsave(&svm->ir_list_lock, flags);
737
738 if (list_empty(&svm->ir_list))
739 goto out;
740
741 list_for_each_entry(ir, &svm->ir_list, node) {
742 if (activate)
743 ret = amd_iommu_activate_guest_mode(ir->data);
744 else
745 ret = amd_iommu_deactivate_guest_mode(ir->data);
746 if (ret)
747 break;
748 }
749 out:
750 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
751 return ret;
752 }
753
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)754 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
755 {
756 unsigned long flags;
757 struct amd_svm_iommu_ir *cur;
758
759 spin_lock_irqsave(&svm->ir_list_lock, flags);
760 list_for_each_entry(cur, &svm->ir_list, node) {
761 if (cur->data != pi->ir_data)
762 continue;
763 list_del(&cur->node);
764 kfree(cur);
765 break;
766 }
767 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
768 }
769
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)770 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
771 {
772 int ret = 0;
773 unsigned long flags;
774 struct amd_svm_iommu_ir *ir;
775
776 /**
777 * In some cases, the existing irte is updated and re-set,
778 * so we need to check here if it's already been * added
779 * to the ir_list.
780 */
781 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
782 struct kvm *kvm = svm->vcpu.kvm;
783 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
784 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
785 struct vcpu_svm *prev_svm;
786
787 if (!prev_vcpu) {
788 ret = -EINVAL;
789 goto out;
790 }
791
792 prev_svm = to_svm(prev_vcpu);
793 svm_ir_list_del(prev_svm, pi);
794 }
795
796 /**
797 * Allocating new amd_iommu_pi_data, which will get
798 * add to the per-vcpu ir_list.
799 */
800 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
801 if (!ir) {
802 ret = -ENOMEM;
803 goto out;
804 }
805 ir->data = pi->ir_data;
806
807 spin_lock_irqsave(&svm->ir_list_lock, flags);
808 list_add(&ir->node, &svm->ir_list);
809 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
810 out:
811 return ret;
812 }
813
814 /*
815 * Note:
816 * The HW cannot support posting multicast/broadcast
817 * interrupts to a vCPU. So, we still use legacy interrupt
818 * remapping for these kind of interrupts.
819 *
820 * For lowest-priority interrupts, we only support
821 * those with single CPU as the destination, e.g. user
822 * configures the interrupts via /proc/irq or uses
823 * irqbalance to make the interrupts single-CPU.
824 */
825 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)826 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
827 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
828 {
829 struct kvm_lapic_irq irq;
830 struct kvm_vcpu *vcpu = NULL;
831
832 kvm_set_msi_irq(kvm, e, &irq);
833
834 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
835 !kvm_irq_is_postable(&irq)) {
836 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
837 __func__, irq.vector);
838 return -1;
839 }
840
841 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
842 irq.vector);
843 *svm = to_svm(vcpu);
844 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
845 vcpu_info->vector = irq.vector;
846
847 return 0;
848 }
849
850 /*
851 * avic_pi_update_irte - set IRTE for Posted-Interrupts
852 *
853 * @kvm: kvm
854 * @host_irq: host irq of the interrupt
855 * @guest_irq: gsi of the interrupt
856 * @set: set or unset PI
857 * returns 0 on success, < 0 on failure
858 */
avic_pi_update_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)859 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
860 uint32_t guest_irq, bool set)
861 {
862 struct kvm_kernel_irq_routing_entry *e;
863 struct kvm_irq_routing_table *irq_rt;
864 int idx, ret = 0;
865
866 if (!kvm_arch_has_assigned_device(kvm) ||
867 !irq_remapping_cap(IRQ_POSTING_CAP))
868 return 0;
869
870 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
871 __func__, host_irq, guest_irq, set);
872
873 idx = srcu_read_lock(&kvm->irq_srcu);
874 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
875
876 if (guest_irq >= irq_rt->nr_rt_entries ||
877 hlist_empty(&irq_rt->map[guest_irq])) {
878 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
879 guest_irq, irq_rt->nr_rt_entries);
880 goto out;
881 }
882
883 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
884 struct vcpu_data vcpu_info;
885 struct vcpu_svm *svm = NULL;
886
887 if (e->type != KVM_IRQ_ROUTING_MSI)
888 continue;
889
890 /**
891 * Here, we setup with legacy mode in the following cases:
892 * 1. When cannot target interrupt to a specific vcpu.
893 * 2. Unsetting posted interrupt.
894 * 3. APIC virtualization is disabled for the vcpu.
895 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
896 */
897 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
898 kvm_vcpu_apicv_active(&svm->vcpu)) {
899 struct amd_iommu_pi_data pi;
900
901 /* Try to enable guest_mode in IRTE */
902 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
903 AVIC_HPA_MASK);
904 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
905 svm->vcpu.vcpu_id);
906 pi.is_guest_mode = true;
907 pi.vcpu_data = &vcpu_info;
908 ret = irq_set_vcpu_affinity(host_irq, &pi);
909
910 /**
911 * Here, we successfully setting up vcpu affinity in
912 * IOMMU guest mode. Now, we need to store the posted
913 * interrupt information in a per-vcpu ir_list so that
914 * we can reference to them directly when we update vcpu
915 * scheduling information in IOMMU irte.
916 */
917 if (!ret && pi.is_guest_mode)
918 svm_ir_list_add(svm, &pi);
919 } else {
920 /* Use legacy mode in IRTE */
921 struct amd_iommu_pi_data pi;
922
923 /**
924 * Here, pi is used to:
925 * - Tell IOMMU to use legacy mode for this interrupt.
926 * - Retrieve ga_tag of prior interrupt remapping data.
927 */
928 pi.prev_ga_tag = 0;
929 pi.is_guest_mode = false;
930 ret = irq_set_vcpu_affinity(host_irq, &pi);
931
932 /**
933 * Check if the posted interrupt was previously
934 * setup with the guest_mode by checking if the ga_tag
935 * was cached. If so, we need to clean up the per-vcpu
936 * ir_list.
937 */
938 if (!ret && pi.prev_ga_tag) {
939 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
940 struct kvm_vcpu *vcpu;
941
942 vcpu = kvm_get_vcpu_by_id(kvm, id);
943 if (vcpu)
944 svm_ir_list_del(to_svm(vcpu), &pi);
945 }
946 }
947
948 if (!ret && svm) {
949 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
950 e->gsi, vcpu_info.vector,
951 vcpu_info.pi_desc_addr, set);
952 }
953
954 if (ret < 0) {
955 pr_err("%s: failed to update PI IRTE\n", __func__);
956 goto out;
957 }
958 }
959
960 ret = 0;
961 out:
962 srcu_read_unlock(&kvm->irq_srcu, idx);
963 return ret;
964 }
965
966 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)967 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
968 {
969 int ret = 0;
970 unsigned long flags;
971 struct amd_svm_iommu_ir *ir;
972 struct vcpu_svm *svm = to_svm(vcpu);
973
974 if (!kvm_arch_has_assigned_device(vcpu->kvm))
975 return 0;
976
977 /*
978 * Here, we go through the per-vcpu ir_list to update all existing
979 * interrupt remapping table entry targeting this vcpu.
980 */
981 spin_lock_irqsave(&svm->ir_list_lock, flags);
982
983 if (list_empty(&svm->ir_list))
984 goto out;
985
986 list_for_each_entry(ir, &svm->ir_list, node) {
987 ret = amd_iommu_update_ga(cpu, r, ir->data);
988 if (ret)
989 break;
990 }
991 out:
992 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
993 return ret;
994 }
995
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)996 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
997 {
998 u64 entry;
999 int h_physical_id = kvm_cpu_get_apicid(cpu);
1000 struct vcpu_svm *svm = to_svm(vcpu);
1001
1002 lockdep_assert_preemption_disabled();
1003
1004 if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1005 return;
1006
1007 /*
1008 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1009 * is being scheduled in after being preempted. The CPU entries in the
1010 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1011 * If the vCPU was migrated, its new CPU value will be stuffed when the
1012 * vCPU unblocks.
1013 */
1014 if (kvm_vcpu_is_blocking(vcpu))
1015 return;
1016
1017 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1018 WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1019
1020 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1021 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1022 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1023
1024 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1025 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1026 }
1027
avic_vcpu_put(struct kvm_vcpu * vcpu)1028 void avic_vcpu_put(struct kvm_vcpu *vcpu)
1029 {
1030 u64 entry;
1031 struct vcpu_svm *svm = to_svm(vcpu);
1032
1033 lockdep_assert_preemption_disabled();
1034
1035 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1036
1037 /* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1038 if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1039 return;
1040
1041 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1042
1043 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1044 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1045 }
1046
avic_refresh_virtual_apic_mode(struct kvm_vcpu * vcpu)1047 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
1048 {
1049 struct vcpu_svm *svm = to_svm(vcpu);
1050 struct vmcb *vmcb = svm->vmcb01.ptr;
1051
1052 if (!lapic_in_kernel(vcpu) || !enable_apicv)
1053 return;
1054
1055 if (kvm_vcpu_apicv_active(vcpu)) {
1056 /**
1057 * During AVIC temporary deactivation, guest could update
1058 * APIC ID, DFR and LDR registers, which would not be trapped
1059 * by avic_unaccelerated_access_interception(). In this case,
1060 * we need to check and update the AVIC logical APIC ID table
1061 * accordingly before re-activating.
1062 */
1063 avic_apicv_post_state_restore(vcpu);
1064 avic_activate_vmcb(svm);
1065 } else {
1066 avic_deactivate_vmcb(svm);
1067 }
1068 vmcb_mark_dirty(vmcb, VMCB_AVIC);
1069 }
1070
avic_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)1071 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1072 {
1073 bool activated = kvm_vcpu_apicv_active(vcpu);
1074
1075 if (!enable_apicv)
1076 return;
1077
1078 avic_refresh_virtual_apic_mode(vcpu);
1079
1080 if (activated)
1081 avic_vcpu_load(vcpu, vcpu->cpu);
1082 else
1083 avic_vcpu_put(vcpu);
1084
1085 avic_set_pi_irte_mode(vcpu, activated);
1086 }
1087
avic_vcpu_blocking(struct kvm_vcpu * vcpu)1088 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1089 {
1090 if (!kvm_vcpu_apicv_active(vcpu))
1091 return;
1092
1093 /*
1094 * Unload the AVIC when the vCPU is about to block, _before_
1095 * the vCPU actually blocks.
1096 *
1097 * Any IRQs that arrive before IsRunning=0 will not cause an
1098 * incomplete IPI vmexit on the source, therefore vIRR will also
1099 * be checked by kvm_vcpu_check_block() before blocking. The
1100 * memory barrier implicit in set_current_state orders writing
1101 * IsRunning=0 before reading the vIRR. The processor needs a
1102 * matching memory barrier on interrupt delivery between writing
1103 * IRR and reading IsRunning; the lack of this barrier might be
1104 * the cause of errata #1235).
1105 */
1106 avic_vcpu_put(vcpu);
1107 }
1108
avic_vcpu_unblocking(struct kvm_vcpu * vcpu)1109 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1110 {
1111 if (!kvm_vcpu_apicv_active(vcpu))
1112 return;
1113
1114 avic_vcpu_load(vcpu, vcpu->cpu);
1115 }
1116
1117 /*
1118 * Note:
1119 * - The module param avic enable both xAPIC and x2APIC mode.
1120 * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1121 * - The mode can be switched at run-time.
1122 */
avic_hardware_setup(void)1123 bool avic_hardware_setup(void)
1124 {
1125 if (!npt_enabled)
1126 return false;
1127
1128 /* AVIC is a prerequisite for x2AVIC. */
1129 if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1130 if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1131 pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1132 pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1133 }
1134 return false;
1135 }
1136
1137 if (boot_cpu_has(X86_FEATURE_AVIC)) {
1138 pr_info("AVIC enabled\n");
1139 } else if (force_avic) {
1140 /*
1141 * Some older systems does not advertise AVIC support.
1142 * See Revision Guide for specific AMD processor for more detail.
1143 */
1144 pr_warn("AVIC is not supported in CPUID but force enabled");
1145 pr_warn("Your system might crash and burn");
1146 }
1147
1148 /* AVIC is a prerequisite for x2AVIC. */
1149 x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1150 if (x2avic_enabled)
1151 pr_info("x2AVIC enabled\n");
1152
1153 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1154
1155 return true;
1156 }
1157