1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 struct request_queue *queue;
29 struct blk_mq_ctxs *ctxs;
30 struct kobject kobj;
31 } ____cacheline_aligned_in_smp;
32
33 void blk_mq_submit_bio(struct bio *bio);
34 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
35 unsigned int flags);
36 void blk_mq_exit_queue(struct request_queue *q);
37 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
38 void blk_mq_wake_waiters(struct request_queue *q);
39 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
40 unsigned int);
41 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
42 bool kick_requeue_list);
43 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
44 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
45 struct blk_mq_ctx *start);
46 void blk_mq_put_rq_ref(struct request *rq);
47
48 /*
49 * Internal helpers for allocating/freeing the request map
50 */
51 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
52 unsigned int hctx_idx);
53 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
54 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
55 unsigned int hctx_idx, unsigned int depth);
56 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
57 struct blk_mq_tags *tags,
58 unsigned int hctx_idx);
59 /*
60 * Internal helpers for request insertion into sw queues
61 */
62 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
63 bool at_head);
64 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
65 bool run_queue);
66 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
67 struct list_head *list);
68 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
69 struct list_head *list);
70
71 /*
72 * CPU -> queue mappings
73 */
74 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
75
76 /*
77 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
78 * @q: request queue
79 * @type: the hctx type index
80 * @cpu: CPU
81 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)82 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
83 enum hctx_type type,
84 unsigned int cpu)
85 {
86 return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
87 }
88
blk_mq_get_hctx_type(blk_opf_t opf)89 static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
90 {
91 enum hctx_type type = HCTX_TYPE_DEFAULT;
92
93 /*
94 * The caller ensure that if REQ_POLLED, poll must be enabled.
95 */
96 if (opf & REQ_POLLED)
97 type = HCTX_TYPE_POLL;
98 else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
99 type = HCTX_TYPE_READ;
100 return type;
101 }
102
103 /*
104 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
105 * @q: request queue
106 * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
107 * @ctx: software queue cpu ctx
108 */
blk_mq_map_queue(struct request_queue * q,blk_opf_t opf,struct blk_mq_ctx * ctx)109 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
110 blk_opf_t opf,
111 struct blk_mq_ctx *ctx)
112 {
113 return ctx->hctxs[blk_mq_get_hctx_type(opf)];
114 }
115
116 /*
117 * sysfs helpers
118 */
119 extern void blk_mq_sysfs_init(struct request_queue *q);
120 extern void blk_mq_sysfs_deinit(struct request_queue *q);
121 int blk_mq_sysfs_register(struct gendisk *disk);
122 void blk_mq_sysfs_unregister(struct gendisk *disk);
123 int blk_mq_sysfs_register_hctxs(struct request_queue *q);
124 void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
125 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
126 void blk_mq_free_plug_rqs(struct blk_plug *plug);
127 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
128
129 void blk_mq_cancel_work_sync(struct request_queue *q);
130
131 void blk_mq_release(struct request_queue *q);
132
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)133 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
134 unsigned int cpu)
135 {
136 return per_cpu_ptr(q->queue_ctx, cpu);
137 }
138
139 /*
140 * This assumes per-cpu software queueing queues. They could be per-node
141 * as well, for instance. For now this is hardcoded as-is. Note that we don't
142 * care about preemption, since we know the ctx's are persistent. This does
143 * mean that we can't rely on ctx always matching the currently running CPU.
144 */
blk_mq_get_ctx(struct request_queue * q)145 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
146 {
147 return __blk_mq_get_ctx(q, raw_smp_processor_id());
148 }
149
150 struct blk_mq_alloc_data {
151 /* input parameter */
152 struct request_queue *q;
153 blk_mq_req_flags_t flags;
154 unsigned int shallow_depth;
155 blk_opf_t cmd_flags;
156 req_flags_t rq_flags;
157
158 /* allocate multiple requests/tags in one go */
159 unsigned int nr_tags;
160 struct request **cached_rq;
161
162 /* input & output parameter */
163 struct blk_mq_ctx *ctx;
164 struct blk_mq_hw_ctx *hctx;
165 };
166
blk_mq_is_shared_tags(unsigned int flags)167 static inline bool blk_mq_is_shared_tags(unsigned int flags)
168 {
169 return flags & BLK_MQ_F_TAG_HCTX_SHARED;
170 }
171
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)172 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
173 {
174 if (!(data->rq_flags & RQF_ELV))
175 return data->hctx->tags;
176 return data->hctx->sched_tags;
177 }
178
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)179 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
180 {
181 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
182 }
183
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)184 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
185 {
186 return hctx->nr_ctx && hctx->tags;
187 }
188
189 unsigned int blk_mq_in_flight(struct request_queue *q,
190 struct block_device *part);
191 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
192 unsigned int inflight[2]);
193
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)194 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
195 int budget_token)
196 {
197 if (q->mq_ops->put_budget)
198 q->mq_ops->put_budget(q, budget_token);
199 }
200
blk_mq_get_dispatch_budget(struct request_queue * q)201 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
202 {
203 if (q->mq_ops->get_budget)
204 return q->mq_ops->get_budget(q);
205 return 0;
206 }
207
blk_mq_set_rq_budget_token(struct request * rq,int token)208 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
209 {
210 if (token < 0)
211 return;
212
213 if (rq->q->mq_ops->set_rq_budget_token)
214 rq->q->mq_ops->set_rq_budget_token(rq, token);
215 }
216
blk_mq_get_rq_budget_token(struct request * rq)217 static inline int blk_mq_get_rq_budget_token(struct request *rq)
218 {
219 if (rq->q->mq_ops->get_rq_budget_token)
220 return rq->q->mq_ops->get_rq_budget_token(rq);
221 return -1;
222 }
223
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)224 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
225 {
226 if (blk_mq_is_shared_tags(hctx->flags))
227 atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
228 else
229 atomic_inc(&hctx->nr_active);
230 }
231
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)232 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
233 int val)
234 {
235 if (blk_mq_is_shared_tags(hctx->flags))
236 atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
237 else
238 atomic_sub(val, &hctx->nr_active);
239 }
240
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)241 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
242 {
243 __blk_mq_sub_active_requests(hctx, 1);
244 }
245
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)246 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
247 {
248 if (blk_mq_is_shared_tags(hctx->flags))
249 return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
250 return atomic_read(&hctx->nr_active);
251 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)252 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
253 struct request *rq)
254 {
255 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
256 rq->tag = BLK_MQ_NO_TAG;
257
258 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
259 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
260 __blk_mq_dec_active_requests(hctx);
261 }
262 }
263
blk_mq_put_driver_tag(struct request * rq)264 static inline void blk_mq_put_driver_tag(struct request *rq)
265 {
266 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
267 return;
268
269 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
270 }
271
272 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
273
blk_mq_get_driver_tag(struct request * rq)274 static inline bool blk_mq_get_driver_tag(struct request *rq)
275 {
276 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
277
278 if (rq->tag != BLK_MQ_NO_TAG &&
279 !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
280 hctx->tags->rqs[rq->tag] = rq;
281 return true;
282 }
283
284 return __blk_mq_get_driver_tag(hctx, rq);
285 }
286
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)287 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
288 {
289 int cpu;
290
291 for_each_possible_cpu(cpu)
292 qmap->mq_map[cpu] = 0;
293 }
294
295 /*
296 * blk_mq_plug() - Get caller context plug
297 * @bio : the bio being submitted by the caller context
298 *
299 * Plugging, by design, may delay the insertion of BIOs into the elevator in
300 * order to increase BIO merging opportunities. This however can cause BIO
301 * insertion order to change from the order in which submit_bio() is being
302 * executed in the case of multiple contexts concurrently issuing BIOs to a
303 * device, even if these context are synchronized to tightly control BIO issuing
304 * order. While this is not a problem with regular block devices, this ordering
305 * change can cause write BIO failures with zoned block devices as these
306 * require sequential write patterns to zones. Prevent this from happening by
307 * ignoring the plug state of a BIO issuing context if it is for a zoned block
308 * device and the BIO to plug is a write operation.
309 *
310 * Return current->plug if the bio can be plugged and NULL otherwise
311 */
blk_mq_plug(struct bio * bio)312 static inline struct blk_plug *blk_mq_plug( struct bio *bio)
313 {
314 /* Zoned block device write operation case: do not plug the BIO */
315 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
316 bdev_op_is_zoned_write(bio->bi_bdev, bio_op(bio)))
317 return NULL;
318
319 /*
320 * For regular block devices or read operations, use the context plug
321 * which may be NULL if blk_start_plug() was not executed.
322 */
323 return current->plug;
324 }
325
326 /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)327 static inline void blk_mq_free_requests(struct list_head *list)
328 {
329 while (!list_empty(list)) {
330 struct request *rq = list_entry_rq(list->next);
331
332 list_del_init(&rq->queuelist);
333 blk_mq_free_request(rq);
334 }
335 }
336
337 /*
338 * For shared tag users, we track the number of currently active users
339 * and attempt to provide a fair share of the tag depth for each of them.
340 */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)341 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
342 struct sbitmap_queue *bt)
343 {
344 unsigned int depth, users;
345
346 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
347 return true;
348
349 /*
350 * Don't try dividing an ant
351 */
352 if (bt->sb.depth == 1)
353 return true;
354
355 if (blk_mq_is_shared_tags(hctx->flags)) {
356 struct request_queue *q = hctx->queue;
357
358 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
359 return true;
360 } else {
361 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
362 return true;
363 }
364
365 users = atomic_read(&hctx->tags->active_queues);
366
367 if (!users)
368 return true;
369
370 /*
371 * Allow at least some tags
372 */
373 depth = max((bt->sb.depth + users - 1) / users, 4U);
374 return __blk_mq_active_requests(hctx) < depth;
375 }
376
377 /* run the code block in @dispatch_ops with rcu/srcu read lock held */
378 #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
379 do { \
380 if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
381 int srcu_idx; \
382 \
383 might_sleep_if(check_sleep); \
384 srcu_idx = srcu_read_lock((q)->tag_set->srcu); \
385 (dispatch_ops); \
386 srcu_read_unlock((q)->tag_set->srcu, srcu_idx); \
387 } else { \
388 rcu_read_lock(); \
389 (dispatch_ops); \
390 rcu_read_unlock(); \
391 } \
392 } while (0)
393
394 #define blk_mq_run_dispatch_ops(q, dispatch_ops) \
395 __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
396
397 #endif
398