1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Symmetric key cipher operations.
4 *
5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6 * multiple page boundaries by using temporary blocks. In user context,
7 * the kernel is given a chance to schedule us once per page.
8 *
9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10 */
11
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/compiler.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/seq_file.h>
23 #include <net/netlink.h>
24
25 #include "internal.h"
26
27 enum {
28 SKCIPHER_WALK_PHYS = 1 << 0,
29 SKCIPHER_WALK_SLOW = 1 << 1,
30 SKCIPHER_WALK_COPY = 1 << 2,
31 SKCIPHER_WALK_DIFF = 1 << 3,
32 SKCIPHER_WALK_SLEEP = 1 << 4,
33 };
34
35 struct skcipher_walk_buffer {
36 struct list_head entry;
37 struct scatter_walk dst;
38 unsigned int len;
39 u8 *data;
40 u8 buffer[];
41 };
42
43 static int skcipher_walk_next(struct skcipher_walk *walk);
44
skcipher_map_src(struct skcipher_walk * walk)45 static inline void skcipher_map_src(struct skcipher_walk *walk)
46 {
47 walk->src.virt.addr = scatterwalk_map(&walk->in);
48 }
49
skcipher_map_dst(struct skcipher_walk * walk)50 static inline void skcipher_map_dst(struct skcipher_walk *walk)
51 {
52 walk->dst.virt.addr = scatterwalk_map(&walk->out);
53 }
54
skcipher_unmap_src(struct skcipher_walk * walk)55 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
56 {
57 scatterwalk_unmap(walk->src.virt.addr);
58 }
59
skcipher_unmap_dst(struct skcipher_walk * walk)60 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
61 {
62 scatterwalk_unmap(walk->dst.virt.addr);
63 }
64
skcipher_walk_gfp(struct skcipher_walk * walk)65 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
66 {
67 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
68 }
69
70 /* Get a spot of the specified length that does not straddle a page.
71 * The caller needs to ensure that there is enough space for this operation.
72 */
skcipher_get_spot(u8 * start,unsigned int len)73 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
74 {
75 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
76
77 return max(start, end_page);
78 }
79
skcipher_done_slow(struct skcipher_walk * walk,unsigned int bsize)80 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
81 {
82 u8 *addr;
83
84 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
85 addr = skcipher_get_spot(addr, bsize);
86 scatterwalk_copychunks(addr, &walk->out, bsize,
87 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
88 return 0;
89 }
90
skcipher_walk_done(struct skcipher_walk * walk,int err)91 int skcipher_walk_done(struct skcipher_walk *walk, int err)
92 {
93 unsigned int n = walk->nbytes;
94 unsigned int nbytes = 0;
95
96 if (!n)
97 goto finish;
98
99 if (likely(err >= 0)) {
100 n -= err;
101 nbytes = walk->total - n;
102 }
103
104 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
105 SKCIPHER_WALK_SLOW |
106 SKCIPHER_WALK_COPY |
107 SKCIPHER_WALK_DIFF)))) {
108 unmap_src:
109 skcipher_unmap_src(walk);
110 } else if (walk->flags & SKCIPHER_WALK_DIFF) {
111 skcipher_unmap_dst(walk);
112 goto unmap_src;
113 } else if (walk->flags & SKCIPHER_WALK_COPY) {
114 skcipher_map_dst(walk);
115 memcpy(walk->dst.virt.addr, walk->page, n);
116 skcipher_unmap_dst(walk);
117 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
118 if (err > 0) {
119 /*
120 * Didn't process all bytes. Either the algorithm is
121 * broken, or this was the last step and it turned out
122 * the message wasn't evenly divisible into blocks but
123 * the algorithm requires it.
124 */
125 err = -EINVAL;
126 nbytes = 0;
127 } else
128 n = skcipher_done_slow(walk, n);
129 }
130
131 if (err > 0)
132 err = 0;
133
134 walk->total = nbytes;
135 walk->nbytes = 0;
136
137 scatterwalk_advance(&walk->in, n);
138 scatterwalk_advance(&walk->out, n);
139 scatterwalk_done(&walk->in, 0, nbytes);
140 scatterwalk_done(&walk->out, 1, nbytes);
141
142 if (nbytes) {
143 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
144 CRYPTO_TFM_REQ_MAY_SLEEP : 0);
145 return skcipher_walk_next(walk);
146 }
147
148 finish:
149 /* Short-circuit for the common/fast path. */
150 if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
151 goto out;
152
153 if (walk->flags & SKCIPHER_WALK_PHYS)
154 goto out;
155
156 if (walk->iv != walk->oiv)
157 memcpy(walk->oiv, walk->iv, walk->ivsize);
158 if (walk->buffer != walk->page)
159 kfree(walk->buffer);
160 if (walk->page)
161 free_page((unsigned long)walk->page);
162
163 out:
164 return err;
165 }
166 EXPORT_SYMBOL_GPL(skcipher_walk_done);
167
skcipher_walk_complete(struct skcipher_walk * walk,int err)168 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
169 {
170 struct skcipher_walk_buffer *p, *tmp;
171
172 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
173 u8 *data;
174
175 if (err)
176 goto done;
177
178 data = p->data;
179 if (!data) {
180 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
181 data = skcipher_get_spot(data, walk->stride);
182 }
183
184 scatterwalk_copychunks(data, &p->dst, p->len, 1);
185
186 if (offset_in_page(p->data) + p->len + walk->stride >
187 PAGE_SIZE)
188 free_page((unsigned long)p->data);
189
190 done:
191 list_del(&p->entry);
192 kfree(p);
193 }
194
195 if (!err && walk->iv != walk->oiv)
196 memcpy(walk->oiv, walk->iv, walk->ivsize);
197 if (walk->buffer != walk->page)
198 kfree(walk->buffer);
199 if (walk->page)
200 free_page((unsigned long)walk->page);
201 }
202 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
203
skcipher_queue_write(struct skcipher_walk * walk,struct skcipher_walk_buffer * p)204 static void skcipher_queue_write(struct skcipher_walk *walk,
205 struct skcipher_walk_buffer *p)
206 {
207 p->dst = walk->out;
208 list_add_tail(&p->entry, &walk->buffers);
209 }
210
skcipher_next_slow(struct skcipher_walk * walk,unsigned int bsize)211 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
212 {
213 bool phys = walk->flags & SKCIPHER_WALK_PHYS;
214 unsigned alignmask = walk->alignmask;
215 struct skcipher_walk_buffer *p;
216 unsigned a;
217 unsigned n;
218 u8 *buffer;
219 void *v;
220
221 if (!phys) {
222 if (!walk->buffer)
223 walk->buffer = walk->page;
224 buffer = walk->buffer;
225 if (buffer)
226 goto ok;
227 }
228
229 /* Start with the minimum alignment of kmalloc. */
230 a = crypto_tfm_ctx_alignment() - 1;
231 n = bsize;
232
233 if (phys) {
234 /* Calculate the minimum alignment of p->buffer. */
235 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
236 n += sizeof(*p);
237 }
238
239 /* Minimum size to align p->buffer by alignmask. */
240 n += alignmask & ~a;
241
242 /* Minimum size to ensure p->buffer does not straddle a page. */
243 n += (bsize - 1) & ~(alignmask | a);
244
245 v = kzalloc(n, skcipher_walk_gfp(walk));
246 if (!v)
247 return skcipher_walk_done(walk, -ENOMEM);
248
249 if (phys) {
250 p = v;
251 p->len = bsize;
252 skcipher_queue_write(walk, p);
253 buffer = p->buffer;
254 } else {
255 walk->buffer = v;
256 buffer = v;
257 }
258
259 ok:
260 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
261 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
262 walk->src.virt.addr = walk->dst.virt.addr;
263
264 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
265
266 walk->nbytes = bsize;
267 walk->flags |= SKCIPHER_WALK_SLOW;
268
269 return 0;
270 }
271
skcipher_next_copy(struct skcipher_walk * walk)272 static int skcipher_next_copy(struct skcipher_walk *walk)
273 {
274 struct skcipher_walk_buffer *p;
275 u8 *tmp = walk->page;
276
277 skcipher_map_src(walk);
278 memcpy(tmp, walk->src.virt.addr, walk->nbytes);
279 skcipher_unmap_src(walk);
280
281 walk->src.virt.addr = tmp;
282 walk->dst.virt.addr = tmp;
283
284 if (!(walk->flags & SKCIPHER_WALK_PHYS))
285 return 0;
286
287 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
288 if (!p)
289 return -ENOMEM;
290
291 p->data = walk->page;
292 p->len = walk->nbytes;
293 skcipher_queue_write(walk, p);
294
295 if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
296 PAGE_SIZE)
297 walk->page = NULL;
298 else
299 walk->page += walk->nbytes;
300
301 return 0;
302 }
303
skcipher_next_fast(struct skcipher_walk * walk)304 static int skcipher_next_fast(struct skcipher_walk *walk)
305 {
306 unsigned long diff;
307
308 walk->src.phys.page = scatterwalk_page(&walk->in);
309 walk->src.phys.offset = offset_in_page(walk->in.offset);
310 walk->dst.phys.page = scatterwalk_page(&walk->out);
311 walk->dst.phys.offset = offset_in_page(walk->out.offset);
312
313 if (walk->flags & SKCIPHER_WALK_PHYS)
314 return 0;
315
316 diff = walk->src.phys.offset - walk->dst.phys.offset;
317 diff |= walk->src.virt.page - walk->dst.virt.page;
318
319 skcipher_map_src(walk);
320 walk->dst.virt.addr = walk->src.virt.addr;
321
322 if (diff) {
323 walk->flags |= SKCIPHER_WALK_DIFF;
324 skcipher_map_dst(walk);
325 }
326
327 return 0;
328 }
329
skcipher_walk_next(struct skcipher_walk * walk)330 static int skcipher_walk_next(struct skcipher_walk *walk)
331 {
332 unsigned int bsize;
333 unsigned int n;
334 int err;
335
336 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
337 SKCIPHER_WALK_DIFF);
338
339 n = walk->total;
340 bsize = min(walk->stride, max(n, walk->blocksize));
341 n = scatterwalk_clamp(&walk->in, n);
342 n = scatterwalk_clamp(&walk->out, n);
343
344 if (unlikely(n < bsize)) {
345 if (unlikely(walk->total < walk->blocksize))
346 return skcipher_walk_done(walk, -EINVAL);
347
348 slow_path:
349 err = skcipher_next_slow(walk, bsize);
350 goto set_phys_lowmem;
351 }
352
353 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
354 if (!walk->page) {
355 gfp_t gfp = skcipher_walk_gfp(walk);
356
357 walk->page = (void *)__get_free_page(gfp);
358 if (!walk->page)
359 goto slow_path;
360 }
361
362 walk->nbytes = min_t(unsigned, n,
363 PAGE_SIZE - offset_in_page(walk->page));
364 walk->flags |= SKCIPHER_WALK_COPY;
365 err = skcipher_next_copy(walk);
366 goto set_phys_lowmem;
367 }
368
369 walk->nbytes = n;
370
371 return skcipher_next_fast(walk);
372
373 set_phys_lowmem:
374 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
375 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
376 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
377 walk->src.phys.offset &= PAGE_SIZE - 1;
378 walk->dst.phys.offset &= PAGE_SIZE - 1;
379 }
380 return err;
381 }
382
skcipher_copy_iv(struct skcipher_walk * walk)383 static int skcipher_copy_iv(struct skcipher_walk *walk)
384 {
385 unsigned a = crypto_tfm_ctx_alignment() - 1;
386 unsigned alignmask = walk->alignmask;
387 unsigned ivsize = walk->ivsize;
388 unsigned bs = walk->stride;
389 unsigned aligned_bs;
390 unsigned size;
391 u8 *iv;
392
393 aligned_bs = ALIGN(bs, alignmask + 1);
394
395 /* Minimum size to align buffer by alignmask. */
396 size = alignmask & ~a;
397
398 if (walk->flags & SKCIPHER_WALK_PHYS)
399 size += ivsize;
400 else {
401 size += aligned_bs + ivsize;
402
403 /* Minimum size to ensure buffer does not straddle a page. */
404 size += (bs - 1) & ~(alignmask | a);
405 }
406
407 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
408 if (!walk->buffer)
409 return -ENOMEM;
410
411 iv = PTR_ALIGN(walk->buffer, alignmask + 1);
412 iv = skcipher_get_spot(iv, bs) + aligned_bs;
413
414 walk->iv = memcpy(iv, walk->iv, walk->ivsize);
415 return 0;
416 }
417
skcipher_walk_first(struct skcipher_walk * walk)418 static int skcipher_walk_first(struct skcipher_walk *walk)
419 {
420 if (WARN_ON_ONCE(in_hardirq()))
421 return -EDEADLK;
422
423 walk->buffer = NULL;
424 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
425 int err = skcipher_copy_iv(walk);
426 if (err)
427 return err;
428 }
429
430 walk->page = NULL;
431
432 return skcipher_walk_next(walk);
433 }
434
skcipher_walk_skcipher(struct skcipher_walk * walk,struct skcipher_request * req)435 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
436 struct skcipher_request *req)
437 {
438 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439
440 walk->total = req->cryptlen;
441 walk->nbytes = 0;
442 walk->iv = req->iv;
443 walk->oiv = req->iv;
444
445 if (unlikely(!walk->total))
446 return 0;
447
448 scatterwalk_start(&walk->in, req->src);
449 scatterwalk_start(&walk->out, req->dst);
450
451 walk->flags &= ~SKCIPHER_WALK_SLEEP;
452 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
453 SKCIPHER_WALK_SLEEP : 0;
454
455 walk->blocksize = crypto_skcipher_blocksize(tfm);
456 walk->stride = crypto_skcipher_walksize(tfm);
457 walk->ivsize = crypto_skcipher_ivsize(tfm);
458 walk->alignmask = crypto_skcipher_alignmask(tfm);
459
460 return skcipher_walk_first(walk);
461 }
462
skcipher_walk_virt(struct skcipher_walk * walk,struct skcipher_request * req,bool atomic)463 int skcipher_walk_virt(struct skcipher_walk *walk,
464 struct skcipher_request *req, bool atomic)
465 {
466 int err;
467
468 might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
469
470 walk->flags &= ~SKCIPHER_WALK_PHYS;
471
472 err = skcipher_walk_skcipher(walk, req);
473
474 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
475
476 return err;
477 }
478 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
479
skcipher_walk_async(struct skcipher_walk * walk,struct skcipher_request * req)480 int skcipher_walk_async(struct skcipher_walk *walk,
481 struct skcipher_request *req)
482 {
483 walk->flags |= SKCIPHER_WALK_PHYS;
484
485 INIT_LIST_HEAD(&walk->buffers);
486
487 return skcipher_walk_skcipher(walk, req);
488 }
489 EXPORT_SYMBOL_GPL(skcipher_walk_async);
490
skcipher_walk_aead_common(struct skcipher_walk * walk,struct aead_request * req,bool atomic)491 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
492 struct aead_request *req, bool atomic)
493 {
494 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
495 int err;
496
497 walk->nbytes = 0;
498 walk->iv = req->iv;
499 walk->oiv = req->iv;
500
501 if (unlikely(!walk->total))
502 return 0;
503
504 walk->flags &= ~SKCIPHER_WALK_PHYS;
505
506 scatterwalk_start(&walk->in, req->src);
507 scatterwalk_start(&walk->out, req->dst);
508
509 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
510 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
511
512 scatterwalk_done(&walk->in, 0, walk->total);
513 scatterwalk_done(&walk->out, 0, walk->total);
514
515 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
516 walk->flags |= SKCIPHER_WALK_SLEEP;
517 else
518 walk->flags &= ~SKCIPHER_WALK_SLEEP;
519
520 walk->blocksize = crypto_aead_blocksize(tfm);
521 walk->stride = crypto_aead_chunksize(tfm);
522 walk->ivsize = crypto_aead_ivsize(tfm);
523 walk->alignmask = crypto_aead_alignmask(tfm);
524
525 err = skcipher_walk_first(walk);
526
527 if (atomic)
528 walk->flags &= ~SKCIPHER_WALK_SLEEP;
529
530 return err;
531 }
532
skcipher_walk_aead_encrypt(struct skcipher_walk * walk,struct aead_request * req,bool atomic)533 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
534 struct aead_request *req, bool atomic)
535 {
536 walk->total = req->cryptlen;
537
538 return skcipher_walk_aead_common(walk, req, atomic);
539 }
540 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
541
skcipher_walk_aead_decrypt(struct skcipher_walk * walk,struct aead_request * req,bool atomic)542 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
543 struct aead_request *req, bool atomic)
544 {
545 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
546
547 walk->total = req->cryptlen - crypto_aead_authsize(tfm);
548
549 return skcipher_walk_aead_common(walk, req, atomic);
550 }
551 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
552
skcipher_set_needkey(struct crypto_skcipher * tfm)553 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
554 {
555 if (crypto_skcipher_max_keysize(tfm) != 0)
556 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
557 }
558
skcipher_setkey_unaligned(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)559 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
560 const u8 *key, unsigned int keylen)
561 {
562 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
563 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
564 u8 *buffer, *alignbuffer;
565 unsigned long absize;
566 int ret;
567
568 absize = keylen + alignmask;
569 buffer = kmalloc(absize, GFP_ATOMIC);
570 if (!buffer)
571 return -ENOMEM;
572
573 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
574 memcpy(alignbuffer, key, keylen);
575 ret = cipher->setkey(tfm, alignbuffer, keylen);
576 kfree_sensitive(buffer);
577 return ret;
578 }
579
crypto_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)580 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
581 unsigned int keylen)
582 {
583 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
584 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
585 int err;
586
587 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
588 return -EINVAL;
589
590 if ((unsigned long)key & alignmask)
591 err = skcipher_setkey_unaligned(tfm, key, keylen);
592 else
593 err = cipher->setkey(tfm, key, keylen);
594
595 if (unlikely(err)) {
596 skcipher_set_needkey(tfm);
597 return err;
598 }
599
600 crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
601 return 0;
602 }
603 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
604
crypto_skcipher_encrypt(struct skcipher_request * req)605 int crypto_skcipher_encrypt(struct skcipher_request *req)
606 {
607 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
608 struct crypto_alg *alg = tfm->base.__crt_alg;
609 unsigned int cryptlen = req->cryptlen;
610 int ret;
611
612 crypto_stats_get(alg);
613 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
614 ret = -ENOKEY;
615 else
616 ret = crypto_skcipher_alg(tfm)->encrypt(req);
617 crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
618 return ret;
619 }
620 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
621
crypto_skcipher_decrypt(struct skcipher_request * req)622 int crypto_skcipher_decrypt(struct skcipher_request *req)
623 {
624 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
625 struct crypto_alg *alg = tfm->base.__crt_alg;
626 unsigned int cryptlen = req->cryptlen;
627 int ret;
628
629 crypto_stats_get(alg);
630 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
631 ret = -ENOKEY;
632 else
633 ret = crypto_skcipher_alg(tfm)->decrypt(req);
634 crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
635 return ret;
636 }
637 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
638
crypto_skcipher_exit_tfm(struct crypto_tfm * tfm)639 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
640 {
641 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
642 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
643
644 alg->exit(skcipher);
645 }
646
crypto_skcipher_init_tfm(struct crypto_tfm * tfm)647 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
648 {
649 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
650 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
651
652 skcipher_set_needkey(skcipher);
653
654 if (alg->exit)
655 skcipher->base.exit = crypto_skcipher_exit_tfm;
656
657 if (alg->init)
658 return alg->init(skcipher);
659
660 return 0;
661 }
662
crypto_skcipher_free_instance(struct crypto_instance * inst)663 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
664 {
665 struct skcipher_instance *skcipher =
666 container_of(inst, struct skcipher_instance, s.base);
667
668 skcipher->free(skcipher);
669 }
670
671 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
672 __maybe_unused;
crypto_skcipher_show(struct seq_file * m,struct crypto_alg * alg)673 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
674 {
675 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
676 base);
677
678 seq_printf(m, "type : skcipher\n");
679 seq_printf(m, "async : %s\n",
680 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
681 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
682 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
683 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
684 seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
685 seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
686 seq_printf(m, "walksize : %u\n", skcipher->walksize);
687 }
688
689 #ifdef CONFIG_NET
crypto_skcipher_report(struct sk_buff * skb,struct crypto_alg * alg)690 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
691 {
692 struct crypto_report_blkcipher rblkcipher;
693 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
694 base);
695
696 memset(&rblkcipher, 0, sizeof(rblkcipher));
697
698 strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
699 strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
700
701 rblkcipher.blocksize = alg->cra_blocksize;
702 rblkcipher.min_keysize = skcipher->min_keysize;
703 rblkcipher.max_keysize = skcipher->max_keysize;
704 rblkcipher.ivsize = skcipher->ivsize;
705
706 return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
707 sizeof(rblkcipher), &rblkcipher);
708 }
709 #else
crypto_skcipher_report(struct sk_buff * skb,struct crypto_alg * alg)710 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
711 {
712 return -ENOSYS;
713 }
714 #endif
715
716 static const struct crypto_type crypto_skcipher_type = {
717 .extsize = crypto_alg_extsize,
718 .init_tfm = crypto_skcipher_init_tfm,
719 .free = crypto_skcipher_free_instance,
720 #ifdef CONFIG_PROC_FS
721 .show = crypto_skcipher_show,
722 #endif
723 .report = crypto_skcipher_report,
724 .maskclear = ~CRYPTO_ALG_TYPE_MASK,
725 .maskset = CRYPTO_ALG_TYPE_MASK,
726 .type = CRYPTO_ALG_TYPE_SKCIPHER,
727 .tfmsize = offsetof(struct crypto_skcipher, base),
728 };
729
crypto_grab_skcipher(struct crypto_skcipher_spawn * spawn,struct crypto_instance * inst,const char * name,u32 type,u32 mask)730 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
731 struct crypto_instance *inst,
732 const char *name, u32 type, u32 mask)
733 {
734 spawn->base.frontend = &crypto_skcipher_type;
735 return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
736 }
737 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
738
crypto_alloc_skcipher(const char * alg_name,u32 type,u32 mask)739 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
740 u32 type, u32 mask)
741 {
742 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
743 }
744 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
745
crypto_alloc_sync_skcipher(const char * alg_name,u32 type,u32 mask)746 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
747 const char *alg_name, u32 type, u32 mask)
748 {
749 struct crypto_skcipher *tfm;
750
751 /* Only sync algorithms allowed. */
752 mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
753
754 tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
755
756 /*
757 * Make sure we do not allocate something that might get used with
758 * an on-stack request: check the request size.
759 */
760 if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
761 MAX_SYNC_SKCIPHER_REQSIZE)) {
762 crypto_free_skcipher(tfm);
763 return ERR_PTR(-EINVAL);
764 }
765
766 return (struct crypto_sync_skcipher *)tfm;
767 }
768 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
769
crypto_has_skcipher(const char * alg_name,u32 type,u32 mask)770 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
771 {
772 return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
773 }
774 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
775
skcipher_prepare_alg(struct skcipher_alg * alg)776 static int skcipher_prepare_alg(struct skcipher_alg *alg)
777 {
778 struct crypto_alg *base = &alg->base;
779
780 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
781 alg->walksize > PAGE_SIZE / 8)
782 return -EINVAL;
783
784 if (!alg->chunksize)
785 alg->chunksize = base->cra_blocksize;
786 if (!alg->walksize)
787 alg->walksize = alg->chunksize;
788
789 base->cra_type = &crypto_skcipher_type;
790 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
791 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
792
793 return 0;
794 }
795
crypto_register_skcipher(struct skcipher_alg * alg)796 int crypto_register_skcipher(struct skcipher_alg *alg)
797 {
798 struct crypto_alg *base = &alg->base;
799 int err;
800
801 err = skcipher_prepare_alg(alg);
802 if (err)
803 return err;
804
805 return crypto_register_alg(base);
806 }
807 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
808
crypto_unregister_skcipher(struct skcipher_alg * alg)809 void crypto_unregister_skcipher(struct skcipher_alg *alg)
810 {
811 crypto_unregister_alg(&alg->base);
812 }
813 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
814
crypto_register_skciphers(struct skcipher_alg * algs,int count)815 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
816 {
817 int i, ret;
818
819 for (i = 0; i < count; i++) {
820 ret = crypto_register_skcipher(&algs[i]);
821 if (ret)
822 goto err;
823 }
824
825 return 0;
826
827 err:
828 for (--i; i >= 0; --i)
829 crypto_unregister_skcipher(&algs[i]);
830
831 return ret;
832 }
833 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
834
crypto_unregister_skciphers(struct skcipher_alg * algs,int count)835 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
836 {
837 int i;
838
839 for (i = count - 1; i >= 0; --i)
840 crypto_unregister_skcipher(&algs[i]);
841 }
842 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
843
skcipher_register_instance(struct crypto_template * tmpl,struct skcipher_instance * inst)844 int skcipher_register_instance(struct crypto_template *tmpl,
845 struct skcipher_instance *inst)
846 {
847 int err;
848
849 if (WARN_ON(!inst->free))
850 return -EINVAL;
851
852 err = skcipher_prepare_alg(&inst->alg);
853 if (err)
854 return err;
855
856 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
857 }
858 EXPORT_SYMBOL_GPL(skcipher_register_instance);
859
skcipher_setkey_simple(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)860 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
861 unsigned int keylen)
862 {
863 struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
864
865 crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
866 crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
867 CRYPTO_TFM_REQ_MASK);
868 return crypto_cipher_setkey(cipher, key, keylen);
869 }
870
skcipher_init_tfm_simple(struct crypto_skcipher * tfm)871 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
872 {
873 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
874 struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
875 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
876 struct crypto_cipher *cipher;
877
878 cipher = crypto_spawn_cipher(spawn);
879 if (IS_ERR(cipher))
880 return PTR_ERR(cipher);
881
882 ctx->cipher = cipher;
883 return 0;
884 }
885
skcipher_exit_tfm_simple(struct crypto_skcipher * tfm)886 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
887 {
888 struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
889
890 crypto_free_cipher(ctx->cipher);
891 }
892
skcipher_free_instance_simple(struct skcipher_instance * inst)893 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
894 {
895 crypto_drop_cipher(skcipher_instance_ctx(inst));
896 kfree(inst);
897 }
898
899 /**
900 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
901 *
902 * Allocate an skcipher_instance for a simple block cipher mode of operation,
903 * e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
904 * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
905 * alignmask, and priority are set from the underlying cipher but can be
906 * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and
907 * default ->setkey(), ->init(), and ->exit() methods are installed.
908 *
909 * @tmpl: the template being instantiated
910 * @tb: the template parameters
911 *
912 * Return: a pointer to the new instance, or an ERR_PTR(). The caller still
913 * needs to register the instance.
914 */
skcipher_alloc_instance_simple(struct crypto_template * tmpl,struct rtattr ** tb)915 struct skcipher_instance *skcipher_alloc_instance_simple(
916 struct crypto_template *tmpl, struct rtattr **tb)
917 {
918 u32 mask;
919 struct skcipher_instance *inst;
920 struct crypto_cipher_spawn *spawn;
921 struct crypto_alg *cipher_alg;
922 int err;
923
924 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
925 if (err)
926 return ERR_PTR(err);
927
928 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
929 if (!inst)
930 return ERR_PTR(-ENOMEM);
931 spawn = skcipher_instance_ctx(inst);
932
933 err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
934 crypto_attr_alg_name(tb[1]), 0, mask);
935 if (err)
936 goto err_free_inst;
937 cipher_alg = crypto_spawn_cipher_alg(spawn);
938
939 err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
940 cipher_alg);
941 if (err)
942 goto err_free_inst;
943
944 inst->free = skcipher_free_instance_simple;
945
946 /* Default algorithm properties, can be overridden */
947 inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
948 inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
949 inst->alg.base.cra_priority = cipher_alg->cra_priority;
950 inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
951 inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
952 inst->alg.ivsize = cipher_alg->cra_blocksize;
953
954 /* Use skcipher_ctx_simple by default, can be overridden */
955 inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
956 inst->alg.setkey = skcipher_setkey_simple;
957 inst->alg.init = skcipher_init_tfm_simple;
958 inst->alg.exit = skcipher_exit_tfm_simple;
959
960 return inst;
961
962 err_free_inst:
963 skcipher_free_instance_simple(inst);
964 return ERR_PTR(err);
965 }
966 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
967
968 MODULE_LICENSE("GPL");
969 MODULE_DESCRIPTION("Symmetric key cipher type");
970 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
971