1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /*******************************************************************************
3  *
4  * Module Name: utmath - Integer math support routines
5  *
6  ******************************************************************************/
7 
8 #include <acpi/acpi.h>
9 #include "accommon.h"
10 
11 #define _COMPONENT          ACPI_UTILITIES
12 ACPI_MODULE_NAME("utmath")
13 
14 /* Structures used only for 64-bit divide */
15 typedef struct uint64_struct {
16 	u32 lo;
17 	u32 hi;
18 
19 } uint64_struct;
20 
21 typedef union uint64_overlay {
22 	u64 full;
23 	struct uint64_struct part;
24 
25 } uint64_overlay;
26 
27 /*
28  * Optional support for 64-bit double-precision integer multiply and shift.
29  * This code is configurable and is implemented in order to support 32-bit
30  * kernel environments where a 64-bit double-precision math library is not
31  * available.
32  */
33 #ifndef ACPI_USE_NATIVE_MATH64
34 
35 /*******************************************************************************
36  *
37  * FUNCTION:    acpi_ut_short_multiply
38  *
39  * PARAMETERS:  multiplicand        - 64-bit multiplicand
40  *              multiplier          - 32-bit multiplier
41  *              out_product         - Pointer to where the product is returned
42  *
43  * DESCRIPTION: Perform a short multiply.
44  *
45  ******************************************************************************/
46 
47 acpi_status
acpi_ut_short_multiply(u64 multiplicand,u32 multiplier,u64 * out_product)48 acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
49 {
50 	union uint64_overlay multiplicand_ovl;
51 	union uint64_overlay product;
52 	u32 carry32;
53 
54 	ACPI_FUNCTION_TRACE(ut_short_multiply);
55 
56 	multiplicand_ovl.full = multiplicand;
57 
58 	/*
59 	 * The Product is 64 bits, the carry is always 32 bits,
60 	 * and is generated by the second multiply.
61 	 */
62 	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier,
63 			  product.part.hi, carry32);
64 
65 	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier,
66 			  product.part.lo, carry32);
67 
68 	product.part.hi += carry32;
69 
70 	/* Return only what was requested */
71 
72 	if (out_product) {
73 		*out_product = product.full;
74 	}
75 
76 	return_ACPI_STATUS(AE_OK);
77 }
78 
79 /*******************************************************************************
80  *
81  * FUNCTION:    acpi_ut_short_shift_left
82  *
83  * PARAMETERS:  operand             - 64-bit shift operand
84  *              count               - 32-bit shift count
85  *              out_result          - Pointer to where the result is returned
86  *
87  * DESCRIPTION: Perform a short left shift.
88  *
89  ******************************************************************************/
90 
acpi_ut_short_shift_left(u64 operand,u32 count,u64 * out_result)91 acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
92 {
93 	union uint64_overlay operand_ovl;
94 
95 	ACPI_FUNCTION_TRACE(ut_short_shift_left);
96 
97 	operand_ovl.full = operand;
98 
99 	if ((count & 63) >= 32) {
100 		operand_ovl.part.hi = operand_ovl.part.lo;
101 		operand_ovl.part.lo = 0;
102 		count = (count & 63) - 32;
103 	}
104 	ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi,
105 				 operand_ovl.part.lo, count);
106 
107 	/* Return only what was requested */
108 
109 	if (out_result) {
110 		*out_result = operand_ovl.full;
111 	}
112 
113 	return_ACPI_STATUS(AE_OK);
114 }
115 
116 /*******************************************************************************
117  *
118  * FUNCTION:    acpi_ut_short_shift_right
119  *
120  * PARAMETERS:  operand             - 64-bit shift operand
121  *              count               - 32-bit shift count
122  *              out_result          - Pointer to where the result is returned
123  *
124  * DESCRIPTION: Perform a short right shift.
125  *
126  ******************************************************************************/
127 
acpi_ut_short_shift_right(u64 operand,u32 count,u64 * out_result)128 acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
129 {
130 	union uint64_overlay operand_ovl;
131 
132 	ACPI_FUNCTION_TRACE(ut_short_shift_right);
133 
134 	operand_ovl.full = operand;
135 
136 	if ((count & 63) >= 32) {
137 		operand_ovl.part.lo = operand_ovl.part.hi;
138 		operand_ovl.part.hi = 0;
139 		count = (count & 63) - 32;
140 	}
141 	ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi,
142 				  operand_ovl.part.lo, count);
143 
144 	/* Return only what was requested */
145 
146 	if (out_result) {
147 		*out_result = operand_ovl.full;
148 	}
149 
150 	return_ACPI_STATUS(AE_OK);
151 }
152 #else
153 
154 /*******************************************************************************
155  *
156  * FUNCTION:    acpi_ut_short_multiply
157  *
158  * PARAMETERS:  See function headers above
159  *
160  * DESCRIPTION: Native version of the ut_short_multiply function.
161  *
162  ******************************************************************************/
163 
164 acpi_status
acpi_ut_short_multiply(u64 multiplicand,u32 multiplier,u64 * out_product)165 acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
166 {
167 
168 	ACPI_FUNCTION_TRACE(ut_short_multiply);
169 
170 	/* Return only what was requested */
171 
172 	if (out_product) {
173 		*out_product = multiplicand * multiplier;
174 	}
175 
176 	return_ACPI_STATUS(AE_OK);
177 }
178 
179 /*******************************************************************************
180  *
181  * FUNCTION:    acpi_ut_short_shift_left
182  *
183  * PARAMETERS:  See function headers above
184  *
185  * DESCRIPTION: Native version of the ut_short_shift_left function.
186  *
187  ******************************************************************************/
188 
acpi_ut_short_shift_left(u64 operand,u32 count,u64 * out_result)189 acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
190 {
191 
192 	ACPI_FUNCTION_TRACE(ut_short_shift_left);
193 
194 	/* Return only what was requested */
195 
196 	if (out_result) {
197 		*out_result = operand << count;
198 	}
199 
200 	return_ACPI_STATUS(AE_OK);
201 }
202 
203 /*******************************************************************************
204  *
205  * FUNCTION:    acpi_ut_short_shift_right
206  *
207  * PARAMETERS:  See function headers above
208  *
209  * DESCRIPTION: Native version of the ut_short_shift_right function.
210  *
211  ******************************************************************************/
212 
acpi_ut_short_shift_right(u64 operand,u32 count,u64 * out_result)213 acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
214 {
215 
216 	ACPI_FUNCTION_TRACE(ut_short_shift_right);
217 
218 	/* Return only what was requested */
219 
220 	if (out_result) {
221 		*out_result = operand >> count;
222 	}
223 
224 	return_ACPI_STATUS(AE_OK);
225 }
226 #endif
227 
228 /*
229  * Optional support for 64-bit double-precision integer divide. This code
230  * is configurable and is implemented in order to support 32-bit kernel
231  * environments where a 64-bit double-precision math library is not available.
232  *
233  * Support for a more normal 64-bit divide/modulo (with check for a divide-
234  * by-zero) appears after this optional section of code.
235  */
236 #ifndef ACPI_USE_NATIVE_DIVIDE
237 
238 /*******************************************************************************
239  *
240  * FUNCTION:    acpi_ut_short_divide
241  *
242  * PARAMETERS:  dividend            - 64-bit dividend
243  *              divisor             - 32-bit divisor
244  *              out_quotient        - Pointer to where the quotient is returned
245  *              out_remainder       - Pointer to where the remainder is returned
246  *
247  * RETURN:      Status (Checks for divide-by-zero)
248  *
249  * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
250  *              divide and modulo. The result is a 64-bit quotient and a
251  *              32-bit remainder.
252  *
253  ******************************************************************************/
254 
255 acpi_status
acpi_ut_short_divide(u64 dividend,u32 divisor,u64 * out_quotient,u32 * out_remainder)256 acpi_ut_short_divide(u64 dividend,
257 		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
258 {
259 	union uint64_overlay dividend_ovl;
260 	union uint64_overlay quotient;
261 	u32 remainder32;
262 
263 	ACPI_FUNCTION_TRACE(ut_short_divide);
264 
265 	/* Always check for a zero divisor */
266 
267 	if (divisor == 0) {
268 		ACPI_ERROR((AE_INFO, "Divide by zero"));
269 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
270 	}
271 
272 	dividend_ovl.full = dividend;
273 
274 	/*
275 	 * The quotient is 64 bits, the remainder is always 32 bits,
276 	 * and is generated by the second divide.
277 	 */
278 	ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
279 			  quotient.part.hi, remainder32);
280 
281 	ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
282 			  quotient.part.lo, remainder32);
283 
284 	/* Return only what was requested */
285 
286 	if (out_quotient) {
287 		*out_quotient = quotient.full;
288 	}
289 	if (out_remainder) {
290 		*out_remainder = remainder32;
291 	}
292 
293 	return_ACPI_STATUS(AE_OK);
294 }
295 
296 /*******************************************************************************
297  *
298  * FUNCTION:    acpi_ut_divide
299  *
300  * PARAMETERS:  in_dividend         - Dividend
301  *              in_divisor          - Divisor
302  *              out_quotient        - Pointer to where the quotient is returned
303  *              out_remainder       - Pointer to where the remainder is returned
304  *
305  * RETURN:      Status (Checks for divide-by-zero)
306  *
307  * DESCRIPTION: Perform a divide and modulo.
308  *
309  ******************************************************************************/
310 
311 acpi_status
acpi_ut_divide(u64 in_dividend,u64 in_divisor,u64 * out_quotient,u64 * out_remainder)312 acpi_ut_divide(u64 in_dividend,
313 	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
314 {
315 	union uint64_overlay dividend;
316 	union uint64_overlay divisor;
317 	union uint64_overlay quotient;
318 	union uint64_overlay remainder;
319 	union uint64_overlay normalized_dividend;
320 	union uint64_overlay normalized_divisor;
321 	u32 partial1;
322 	union uint64_overlay partial2;
323 	union uint64_overlay partial3;
324 
325 	ACPI_FUNCTION_TRACE(ut_divide);
326 
327 	/* Always check for a zero divisor */
328 
329 	if (in_divisor == 0) {
330 		ACPI_ERROR((AE_INFO, "Divide by zero"));
331 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
332 	}
333 
334 	divisor.full = in_divisor;
335 	dividend.full = in_dividend;
336 	if (divisor.part.hi == 0) {
337 		/*
338 		 * 1) Simplest case is where the divisor is 32 bits, we can
339 		 * just do two divides
340 		 */
341 		remainder.part.hi = 0;
342 
343 		/*
344 		 * The quotient is 64 bits, the remainder is always 32 bits,
345 		 * and is generated by the second divide.
346 		 */
347 		ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
348 				  quotient.part.hi, partial1);
349 
350 		ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
351 				  quotient.part.lo, remainder.part.lo);
352 	}
353 
354 	else {
355 		/*
356 		 * 2) The general case where the divisor is a full 64 bits
357 		 * is more difficult
358 		 */
359 		quotient.part.hi = 0;
360 		normalized_dividend = dividend;
361 		normalized_divisor = divisor;
362 
363 		/* Normalize the operands (shift until the divisor is < 32 bits) */
364 
365 		do {
366 			ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
367 					    normalized_divisor.part.lo);
368 			ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
369 					    normalized_dividend.part.lo);
370 
371 		} while (normalized_divisor.part.hi != 0);
372 
373 		/* Partial divide */
374 
375 		ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
376 				  normalized_dividend.part.lo,
377 				  normalized_divisor.part.lo, quotient.part.lo,
378 				  partial1);
379 
380 		/*
381 		 * The quotient is always 32 bits, and simply requires
382 		 * adjustment. The 64-bit remainder must be generated.
383 		 */
384 		partial1 = quotient.part.lo * divisor.part.hi;
385 		partial2.full = (u64) quotient.part.lo * divisor.part.lo;
386 		partial3.full = (u64) partial2.part.hi + partial1;
387 
388 		remainder.part.hi = partial3.part.lo;
389 		remainder.part.lo = partial2.part.lo;
390 
391 		if (partial3.part.hi == 0) {
392 			if (partial3.part.lo >= dividend.part.hi) {
393 				if (partial3.part.lo == dividend.part.hi) {
394 					if (partial2.part.lo > dividend.part.lo) {
395 						quotient.part.lo--;
396 						remainder.full -= divisor.full;
397 					}
398 				} else {
399 					quotient.part.lo--;
400 					remainder.full -= divisor.full;
401 				}
402 			}
403 
404 			remainder.full = remainder.full - dividend.full;
405 			remainder.part.hi = (u32)-((s32)remainder.part.hi);
406 			remainder.part.lo = (u32)-((s32)remainder.part.lo);
407 
408 			if (remainder.part.lo) {
409 				remainder.part.hi--;
410 			}
411 		}
412 	}
413 
414 	/* Return only what was requested */
415 
416 	if (out_quotient) {
417 		*out_quotient = quotient.full;
418 	}
419 	if (out_remainder) {
420 		*out_remainder = remainder.full;
421 	}
422 
423 	return_ACPI_STATUS(AE_OK);
424 }
425 
426 #else
427 
428 /*******************************************************************************
429  *
430  * FUNCTION:    acpi_ut_short_divide, acpi_ut_divide
431  *
432  * PARAMETERS:  See function headers above
433  *
434  * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
435  *              1) The target is a 64-bit platform and therefore 64-bit
436  *                 integer math is supported directly by the machine.
437  *              2) The target is a 32-bit or 16-bit platform, and the
438  *                 double-precision integer math library is available to
439  *                 perform the divide.
440  *
441  ******************************************************************************/
442 
443 acpi_status
acpi_ut_short_divide(u64 in_dividend,u32 divisor,u64 * out_quotient,u32 * out_remainder)444 acpi_ut_short_divide(u64 in_dividend,
445 		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
446 {
447 
448 	ACPI_FUNCTION_TRACE(ut_short_divide);
449 
450 	/* Always check for a zero divisor */
451 
452 	if (divisor == 0) {
453 		ACPI_ERROR((AE_INFO, "Divide by zero"));
454 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
455 	}
456 
457 	/* Return only what was requested */
458 
459 	if (out_quotient) {
460 		*out_quotient = in_dividend / divisor;
461 	}
462 	if (out_remainder) {
463 		*out_remainder = (u32) (in_dividend % divisor);
464 	}
465 
466 	return_ACPI_STATUS(AE_OK);
467 }
468 
469 acpi_status
acpi_ut_divide(u64 in_dividend,u64 in_divisor,u64 * out_quotient,u64 * out_remainder)470 acpi_ut_divide(u64 in_dividend,
471 	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
472 {
473 	ACPI_FUNCTION_TRACE(ut_divide);
474 
475 	/* Always check for a zero divisor */
476 
477 	if (in_divisor == 0) {
478 		ACPI_ERROR((AE_INFO, "Divide by zero"));
479 		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
480 	}
481 
482 	/* Return only what was requested */
483 
484 	if (out_quotient) {
485 		*out_quotient = in_dividend / in_divisor;
486 	}
487 	if (out_remainder) {
488 		*out_remainder = in_dividend % in_divisor;
489 	}
490 
491 	return_ACPI_STATUS(AE_OK);
492 }
493 
494 #endif
495