1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
5 *
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017, 2019-2020 NXP
8 */
9
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/kernel.h>
14 #include <linux/kthread.h>
15 #include <linux/netdevice.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <soc/fsl/qman.h>
19
20 #include "debugfs.h"
21 #include "regs.h"
22 #include "qi.h"
23 #include "desc.h"
24 #include "intern.h"
25 #include "desc_constr.h"
26
27 #define PREHDR_RSLS_SHIFT 31
28 #define PREHDR_ABS BIT(25)
29
30 /*
31 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
32 * so that resources used by the in-flight buffers do not become a memory hog.
33 */
34 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256
35
36 #define CAAM_QI_ENQUEUE_RETRIES 10000
37
38 #define CAAM_NAPI_WEIGHT 63
39
40 /*
41 * caam_napi - struct holding CAAM NAPI-related params
42 * @irqtask: IRQ task for QI backend
43 * @p: QMan portal
44 */
45 struct caam_napi {
46 struct napi_struct irqtask;
47 struct qman_portal *p;
48 };
49
50 /*
51 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
52 * responses expected on each cpu.
53 * @caam_napi: CAAM NAPI params
54 * @net_dev: netdev used by NAPI
55 * @rsp_fq: response FQ from CAAM
56 */
57 struct caam_qi_pcpu_priv {
58 struct caam_napi caam_napi;
59 struct net_device net_dev;
60 struct qman_fq *rsp_fq;
61 } ____cacheline_aligned;
62
63 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
64 static DEFINE_PER_CPU(int, last_cpu);
65
66 /*
67 * caam_qi_priv - CAAM QI backend private params
68 * @cgr: QMan congestion group
69 */
70 struct caam_qi_priv {
71 struct qman_cgr cgr;
72 };
73
74 static struct caam_qi_priv qipriv ____cacheline_aligned;
75
76 /*
77 * This is written by only one core - the one that initialized the CGR - and
78 * read by multiple cores (all the others).
79 */
80 bool caam_congested __read_mostly;
81 EXPORT_SYMBOL(caam_congested);
82
83 /*
84 * This is a cache of buffers, from which the users of CAAM QI driver
85 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
86 * doing malloc on the hotpath.
87 * NOTE: A more elegant solution would be to have some headroom in the frames
88 * being processed. This could be added by the dpaa-ethernet driver.
89 * This would pose a problem for userspace application processing which
90 * cannot know of this limitation. So for now, this will work.
91 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
92 */
93 static struct kmem_cache *qi_cache;
94
caam_iova_to_virt(struct iommu_domain * domain,dma_addr_t iova_addr)95 static void *caam_iova_to_virt(struct iommu_domain *domain,
96 dma_addr_t iova_addr)
97 {
98 phys_addr_t phys_addr;
99
100 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
101
102 return phys_to_virt(phys_addr);
103 }
104
caam_qi_enqueue(struct device * qidev,struct caam_drv_req * req)105 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
106 {
107 struct qm_fd fd;
108 dma_addr_t addr;
109 int ret;
110 int num_retries = 0;
111
112 qm_fd_clear_fd(&fd);
113 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
114
115 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
116 DMA_BIDIRECTIONAL);
117 if (dma_mapping_error(qidev, addr)) {
118 dev_err(qidev, "DMA mapping error for QI enqueue request\n");
119 return -EIO;
120 }
121 qm_fd_addr_set64(&fd, addr);
122
123 do {
124 ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
125 if (likely(!ret)) {
126 refcount_inc(&req->drv_ctx->refcnt);
127 return 0;
128 }
129
130 if (ret != -EBUSY)
131 break;
132 num_retries++;
133 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
134
135 dev_err(qidev, "qman_enqueue failed: %d\n", ret);
136
137 return ret;
138 }
139 EXPORT_SYMBOL(caam_qi_enqueue);
140
caam_fq_ern_cb(struct qman_portal * qm,struct qman_fq * fq,const union qm_mr_entry * msg)141 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
142 const union qm_mr_entry *msg)
143 {
144 const struct qm_fd *fd;
145 struct caam_drv_req *drv_req;
146 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
147 struct caam_drv_private *priv = dev_get_drvdata(qidev);
148
149 fd = &msg->ern.fd;
150
151 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
152 if (!drv_req) {
153 dev_err(qidev,
154 "Can't find original request for CAAM response\n");
155 return;
156 }
157
158 refcount_dec(&drv_req->drv_ctx->refcnt);
159
160 if (qm_fd_get_format(fd) != qm_fd_compound) {
161 dev_err(qidev, "Non-compound FD from CAAM\n");
162 return;
163 }
164
165 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
166 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
167
168 if (fd->status)
169 drv_req->cbk(drv_req, be32_to_cpu(fd->status));
170 else
171 drv_req->cbk(drv_req, JRSTA_SSRC_QI);
172 }
173
create_caam_req_fq(struct device * qidev,struct qman_fq * rsp_fq,dma_addr_t hwdesc,int fq_sched_flag)174 static struct qman_fq *create_caam_req_fq(struct device *qidev,
175 struct qman_fq *rsp_fq,
176 dma_addr_t hwdesc,
177 int fq_sched_flag)
178 {
179 int ret;
180 struct qman_fq *req_fq;
181 struct qm_mcc_initfq opts;
182
183 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
184 if (!req_fq)
185 return ERR_PTR(-ENOMEM);
186
187 req_fq->cb.ern = caam_fq_ern_cb;
188 req_fq->cb.fqs = NULL;
189
190 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
191 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
192 if (ret) {
193 dev_err(qidev, "Failed to create session req FQ\n");
194 goto create_req_fq_fail;
195 }
196
197 memset(&opts, 0, sizeof(opts));
198 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
199 QM_INITFQ_WE_CONTEXTB |
200 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
201 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
202 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
203 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
204 qm_fqd_context_a_set64(&opts.fqd, hwdesc);
205 opts.fqd.cgid = qipriv.cgr.cgrid;
206
207 ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
208 if (ret) {
209 dev_err(qidev, "Failed to init session req FQ\n");
210 goto init_req_fq_fail;
211 }
212
213 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
214 smp_processor_id());
215 return req_fq;
216
217 init_req_fq_fail:
218 qman_destroy_fq(req_fq);
219 create_req_fq_fail:
220 kfree(req_fq);
221 return ERR_PTR(ret);
222 }
223
empty_retired_fq(struct device * qidev,struct qman_fq * fq)224 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
225 {
226 int ret;
227
228 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
229 QMAN_VOLATILE_FLAG_FINISH,
230 QM_VDQCR_PRECEDENCE_VDQCR |
231 QM_VDQCR_NUMFRAMES_TILLEMPTY);
232 if (ret) {
233 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
234 return ret;
235 }
236
237 do {
238 struct qman_portal *p;
239
240 p = qman_get_affine_portal(smp_processor_id());
241 qman_p_poll_dqrr(p, 16);
242 } while (fq->flags & QMAN_FQ_STATE_NE);
243
244 return 0;
245 }
246
kill_fq(struct device * qidev,struct qman_fq * fq)247 static int kill_fq(struct device *qidev, struct qman_fq *fq)
248 {
249 u32 flags;
250 int ret;
251
252 ret = qman_retire_fq(fq, &flags);
253 if (ret < 0) {
254 dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
255 return ret;
256 }
257
258 if (!ret)
259 goto empty_fq;
260
261 /* Async FQ retirement condition */
262 if (ret == 1) {
263 /* Retry till FQ gets in retired state */
264 do {
265 msleep(20);
266 } while (fq->state != qman_fq_state_retired);
267
268 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
269 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
270 }
271
272 empty_fq:
273 if (fq->flags & QMAN_FQ_STATE_NE) {
274 ret = empty_retired_fq(qidev, fq);
275 if (ret) {
276 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
277 fq->fqid);
278 return ret;
279 }
280 }
281
282 ret = qman_oos_fq(fq);
283 if (ret)
284 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
285
286 qman_destroy_fq(fq);
287 kfree(fq);
288
289 return ret;
290 }
291
empty_caam_fq(struct qman_fq * fq,struct caam_drv_ctx * drv_ctx)292 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
293 {
294 int ret;
295 int retries = 10;
296 struct qm_mcr_queryfq_np np;
297
298 /* Wait till the older CAAM FQ get empty */
299 do {
300 ret = qman_query_fq_np(fq, &np);
301 if (ret)
302 return ret;
303
304 if (!qm_mcr_np_get(&np, frm_cnt))
305 break;
306
307 msleep(20);
308 } while (1);
309
310 /* Wait until pending jobs from this FQ are processed by CAAM */
311 do {
312 if (refcount_read(&drv_ctx->refcnt) == 1)
313 break;
314
315 msleep(20);
316 } while (--retries);
317
318 if (!retries)
319 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
320 refcount_read(&drv_ctx->refcnt), fq->fqid);
321
322 return 0;
323 }
324
caam_drv_ctx_update(struct caam_drv_ctx * drv_ctx,u32 * sh_desc)325 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
326 {
327 int ret;
328 u32 num_words;
329 struct qman_fq *new_fq, *old_fq;
330 struct device *qidev = drv_ctx->qidev;
331
332 num_words = desc_len(sh_desc);
333 if (num_words > MAX_SDLEN) {
334 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
335 return -EINVAL;
336 }
337
338 /* Note down older req FQ */
339 old_fq = drv_ctx->req_fq;
340
341 /* Create a new req FQ in parked state */
342 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
343 drv_ctx->context_a, 0);
344 if (IS_ERR(new_fq)) {
345 dev_err(qidev, "FQ allocation for shdesc update failed\n");
346 return PTR_ERR(new_fq);
347 }
348
349 /* Hook up new FQ to context so that new requests keep queuing */
350 drv_ctx->req_fq = new_fq;
351
352 /* Empty and remove the older FQ */
353 ret = empty_caam_fq(old_fq, drv_ctx);
354 if (ret) {
355 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
356
357 /* We can revert to older FQ */
358 drv_ctx->req_fq = old_fq;
359
360 if (kill_fq(qidev, new_fq))
361 dev_warn(qidev, "New CAAM FQ kill failed\n");
362
363 return ret;
364 }
365
366 /*
367 * Re-initialise pre-header. Set RSLS and SDLEN.
368 * Update the shared descriptor for driver context.
369 */
370 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
371 num_words);
372 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
373 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
374 dma_sync_single_for_device(qidev, drv_ctx->context_a,
375 sizeof(drv_ctx->sh_desc) +
376 sizeof(drv_ctx->prehdr),
377 DMA_BIDIRECTIONAL);
378
379 /* Put the new FQ in scheduled state */
380 ret = qman_schedule_fq(new_fq);
381 if (ret) {
382 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
383
384 /*
385 * We can kill new FQ and revert to old FQ.
386 * Since the desc is already modified, it is success case
387 */
388
389 drv_ctx->req_fq = old_fq;
390
391 if (kill_fq(qidev, new_fq))
392 dev_warn(qidev, "New CAAM FQ kill failed\n");
393 } else if (kill_fq(qidev, old_fq)) {
394 dev_warn(qidev, "Old CAAM FQ kill failed\n");
395 }
396
397 return 0;
398 }
399 EXPORT_SYMBOL(caam_drv_ctx_update);
400
caam_drv_ctx_init(struct device * qidev,int * cpu,u32 * sh_desc)401 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
402 int *cpu,
403 u32 *sh_desc)
404 {
405 size_t size;
406 u32 num_words;
407 dma_addr_t hwdesc;
408 struct caam_drv_ctx *drv_ctx;
409 const cpumask_t *cpus = qman_affine_cpus();
410
411 num_words = desc_len(sh_desc);
412 if (num_words > MAX_SDLEN) {
413 dev_err(qidev, "Invalid descriptor len: %d words\n",
414 num_words);
415 return ERR_PTR(-EINVAL);
416 }
417
418 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
419 if (!drv_ctx)
420 return ERR_PTR(-ENOMEM);
421
422 /*
423 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
424 * and dma-map them.
425 */
426 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
427 num_words);
428 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
429 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
430 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
431 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
432 DMA_BIDIRECTIONAL);
433 if (dma_mapping_error(qidev, hwdesc)) {
434 dev_err(qidev, "DMA map error for preheader + shdesc\n");
435 kfree(drv_ctx);
436 return ERR_PTR(-ENOMEM);
437 }
438 drv_ctx->context_a = hwdesc;
439
440 /* If given CPU does not own the portal, choose another one that does */
441 if (!cpumask_test_cpu(*cpu, cpus)) {
442 int *pcpu = &get_cpu_var(last_cpu);
443
444 *pcpu = cpumask_next(*pcpu, cpus);
445 if (*pcpu >= nr_cpu_ids)
446 *pcpu = cpumask_first(cpus);
447 *cpu = *pcpu;
448
449 put_cpu_var(last_cpu);
450 }
451 drv_ctx->cpu = *cpu;
452
453 /* Find response FQ hooked with this CPU */
454 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
455
456 /* Attach request FQ */
457 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
458 QMAN_INITFQ_FLAG_SCHED);
459 if (IS_ERR(drv_ctx->req_fq)) {
460 dev_err(qidev, "create_caam_req_fq failed\n");
461 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
462 kfree(drv_ctx);
463 return ERR_PTR(-ENOMEM);
464 }
465
466 /* init reference counter used to track references to request FQ */
467 refcount_set(&drv_ctx->refcnt, 1);
468
469 drv_ctx->qidev = qidev;
470 return drv_ctx;
471 }
472 EXPORT_SYMBOL(caam_drv_ctx_init);
473
qi_cache_alloc(gfp_t flags)474 void *qi_cache_alloc(gfp_t flags)
475 {
476 return kmem_cache_alloc(qi_cache, flags);
477 }
478 EXPORT_SYMBOL(qi_cache_alloc);
479
qi_cache_free(void * obj)480 void qi_cache_free(void *obj)
481 {
482 kmem_cache_free(qi_cache, obj);
483 }
484 EXPORT_SYMBOL(qi_cache_free);
485
caam_qi_poll(struct napi_struct * napi,int budget)486 static int caam_qi_poll(struct napi_struct *napi, int budget)
487 {
488 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
489
490 int cleaned = qman_p_poll_dqrr(np->p, budget);
491
492 if (cleaned < budget) {
493 napi_complete(napi);
494 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
495 }
496
497 return cleaned;
498 }
499
caam_drv_ctx_rel(struct caam_drv_ctx * drv_ctx)500 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
501 {
502 if (IS_ERR_OR_NULL(drv_ctx))
503 return;
504
505 /* Remove request FQ */
506 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
507 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
508
509 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
510 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
511 DMA_BIDIRECTIONAL);
512 kfree(drv_ctx);
513 }
514 EXPORT_SYMBOL(caam_drv_ctx_rel);
515
caam_qi_shutdown(void * data)516 static void caam_qi_shutdown(void *data)
517 {
518 int i;
519 struct device *qidev = data;
520 struct caam_qi_priv *priv = &qipriv;
521 const cpumask_t *cpus = qman_affine_cpus();
522
523 for_each_cpu(i, cpus) {
524 struct napi_struct *irqtask;
525
526 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
527 napi_disable(irqtask);
528 netif_napi_del(irqtask);
529
530 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
531 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
532 }
533
534 qman_delete_cgr_safe(&priv->cgr);
535 qman_release_cgrid(priv->cgr.cgrid);
536
537 kmem_cache_destroy(qi_cache);
538 }
539
cgr_cb(struct qman_portal * qm,struct qman_cgr * cgr,int congested)540 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
541 {
542 caam_congested = congested;
543
544 if (congested) {
545 caam_debugfs_qi_congested();
546
547 pr_debug_ratelimited("CAAM entered congestion\n");
548
549 } else {
550 pr_debug_ratelimited("CAAM exited congestion\n");
551 }
552 }
553
caam_qi_napi_schedule(struct qman_portal * p,struct caam_napi * np,bool sched_napi)554 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
555 bool sched_napi)
556 {
557 if (sched_napi) {
558 /* Disable QMan IRQ source and invoke NAPI */
559 qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
560 np->p = p;
561 napi_schedule(&np->irqtask);
562 return 1;
563 }
564 return 0;
565 }
566
caam_rsp_fq_dqrr_cb(struct qman_portal * p,struct qman_fq * rsp_fq,const struct qm_dqrr_entry * dqrr,bool sched_napi)567 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
568 struct qman_fq *rsp_fq,
569 const struct qm_dqrr_entry *dqrr,
570 bool sched_napi)
571 {
572 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
573 struct caam_drv_req *drv_req;
574 const struct qm_fd *fd;
575 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
576 struct caam_drv_private *priv = dev_get_drvdata(qidev);
577 u32 status;
578
579 if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
580 return qman_cb_dqrr_stop;
581
582 fd = &dqrr->fd;
583
584 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
585 if (unlikely(!drv_req)) {
586 dev_err(qidev,
587 "Can't find original request for caam response\n");
588 return qman_cb_dqrr_consume;
589 }
590
591 refcount_dec(&drv_req->drv_ctx->refcnt);
592
593 status = be32_to_cpu(fd->status);
594 if (unlikely(status)) {
595 u32 ssrc = status & JRSTA_SSRC_MASK;
596 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
597
598 if (ssrc != JRSTA_SSRC_CCB_ERROR ||
599 err_id != JRSTA_CCBERR_ERRID_ICVCHK)
600 dev_err_ratelimited(qidev,
601 "Error: %#x in CAAM response FD\n",
602 status);
603 }
604
605 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
606 dev_err(qidev, "Non-compound FD from CAAM\n");
607 return qman_cb_dqrr_consume;
608 }
609
610 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
611 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
612
613 drv_req->cbk(drv_req, status);
614 return qman_cb_dqrr_consume;
615 }
616
alloc_rsp_fq_cpu(struct device * qidev,unsigned int cpu)617 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
618 {
619 struct qm_mcc_initfq opts;
620 struct qman_fq *fq;
621 int ret;
622
623 fq = kzalloc(sizeof(*fq), GFP_KERNEL);
624 if (!fq)
625 return -ENOMEM;
626
627 fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
628
629 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
630 QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
631 if (ret) {
632 dev_err(qidev, "Rsp FQ create failed\n");
633 kfree(fq);
634 return -ENODEV;
635 }
636
637 memset(&opts, 0, sizeof(opts));
638 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
639 QM_INITFQ_WE_CONTEXTB |
640 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
641 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
642 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
643 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
644 opts.fqd.cgid = qipriv.cgr.cgrid;
645 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
646 QM_STASHING_EXCL_DATA;
647 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
648
649 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
650 if (ret) {
651 dev_err(qidev, "Rsp FQ init failed\n");
652 kfree(fq);
653 return -ENODEV;
654 }
655
656 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
657
658 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
659 return 0;
660 }
661
init_cgr(struct device * qidev)662 static int init_cgr(struct device *qidev)
663 {
664 int ret;
665 struct qm_mcc_initcgr opts;
666 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
667 MAX_RSP_FQ_BACKLOG_PER_CPU;
668
669 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
670 if (ret) {
671 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
672 return ret;
673 }
674
675 qipriv.cgr.cb = cgr_cb;
676 memset(&opts, 0, sizeof(opts));
677 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
678 QM_CGR_WE_MODE);
679 opts.cgr.cscn_en = QM_CGR_EN;
680 opts.cgr.mode = QMAN_CGR_MODE_FRAME;
681 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
682
683 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
684 if (ret) {
685 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
686 qipriv.cgr.cgrid);
687 return ret;
688 }
689
690 dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
691 return 0;
692 }
693
alloc_rsp_fqs(struct device * qidev)694 static int alloc_rsp_fqs(struct device *qidev)
695 {
696 int ret, i;
697 const cpumask_t *cpus = qman_affine_cpus();
698
699 /*Now create response FQs*/
700 for_each_cpu(i, cpus) {
701 ret = alloc_rsp_fq_cpu(qidev, i);
702 if (ret) {
703 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
704 return ret;
705 }
706 }
707
708 return 0;
709 }
710
free_rsp_fqs(void)711 static void free_rsp_fqs(void)
712 {
713 int i;
714 const cpumask_t *cpus = qman_affine_cpus();
715
716 for_each_cpu(i, cpus)
717 kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
718 }
719
caam_qi_init(struct platform_device * caam_pdev)720 int caam_qi_init(struct platform_device *caam_pdev)
721 {
722 int err, i;
723 struct device *ctrldev = &caam_pdev->dev, *qidev;
724 struct caam_drv_private *ctrlpriv;
725 const cpumask_t *cpus = qman_affine_cpus();
726
727 ctrlpriv = dev_get_drvdata(ctrldev);
728 qidev = ctrldev;
729
730 /* Initialize the congestion detection */
731 err = init_cgr(qidev);
732 if (err) {
733 dev_err(qidev, "CGR initialization failed: %d\n", err);
734 return err;
735 }
736
737 /* Initialise response FQs */
738 err = alloc_rsp_fqs(qidev);
739 if (err) {
740 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
741 free_rsp_fqs();
742 return err;
743 }
744
745 /*
746 * Enable the NAPI contexts on each of the core which has an affine
747 * portal.
748 */
749 for_each_cpu(i, cpus) {
750 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
751 struct caam_napi *caam_napi = &priv->caam_napi;
752 struct napi_struct *irqtask = &caam_napi->irqtask;
753 struct net_device *net_dev = &priv->net_dev;
754
755 net_dev->dev = *qidev;
756 INIT_LIST_HEAD(&net_dev->napi_list);
757
758 netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
759 CAAM_NAPI_WEIGHT);
760
761 napi_enable(irqtask);
762 }
763
764 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
765 dma_get_cache_alignment(), 0, NULL);
766 if (!qi_cache) {
767 dev_err(qidev, "Can't allocate CAAM cache\n");
768 free_rsp_fqs();
769 return -ENOMEM;
770 }
771
772 caam_debugfs_qi_init(ctrlpriv);
773
774 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
775 if (err)
776 return err;
777
778 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
779 return 0;
780 }
781