1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * AMD Cryptographic Coprocessor (CCP) driver
4   *
5   * Copyright (C) 2013,2019 Advanced Micro Devices, Inc.
6   *
7   * Author: Tom Lendacky <thomas.lendacky@amd.com>
8   * Author: Gary R Hook <gary.hook@amd.com>
9   */
10  
11  #include <linux/module.h>
12  #include <linux/kernel.h>
13  #include <linux/kthread.h>
14  #include <linux/sched.h>
15  #include <linux/interrupt.h>
16  #include <linux/spinlock.h>
17  #include <linux/spinlock_types.h>
18  #include <linux/types.h>
19  #include <linux/mutex.h>
20  #include <linux/delay.h>
21  #include <linux/hw_random.h>
22  #include <linux/cpu.h>
23  #include <linux/atomic.h>
24  #ifdef CONFIG_X86
25  #include <asm/cpu_device_id.h>
26  #endif
27  #include <linux/ccp.h>
28  
29  #include "ccp-dev.h"
30  
31  #define MAX_CCPS 32
32  
33  /* Limit CCP use to a specifed number of queues per device */
34  static unsigned int nqueues;
35  module_param(nqueues, uint, 0444);
36  MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)");
37  
38  /* Limit the maximum number of configured CCPs */
39  static atomic_t dev_count = ATOMIC_INIT(0);
40  static unsigned int max_devs = MAX_CCPS;
41  module_param(max_devs, uint, 0444);
42  MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)");
43  
44  struct ccp_tasklet_data {
45  	struct completion completion;
46  	struct ccp_cmd *cmd;
47  };
48  
49  /* Human-readable error strings */
50  #define CCP_MAX_ERROR_CODE	64
51  static char *ccp_error_codes[] = {
52  	"",
53  	"ILLEGAL_ENGINE",
54  	"ILLEGAL_KEY_ID",
55  	"ILLEGAL_FUNCTION_TYPE",
56  	"ILLEGAL_FUNCTION_MODE",
57  	"ILLEGAL_FUNCTION_ENCRYPT",
58  	"ILLEGAL_FUNCTION_SIZE",
59  	"Zlib_MISSING_INIT_EOM",
60  	"ILLEGAL_FUNCTION_RSVD",
61  	"ILLEGAL_BUFFER_LENGTH",
62  	"VLSB_FAULT",
63  	"ILLEGAL_MEM_ADDR",
64  	"ILLEGAL_MEM_SEL",
65  	"ILLEGAL_CONTEXT_ID",
66  	"ILLEGAL_KEY_ADDR",
67  	"0xF Reserved",
68  	"Zlib_ILLEGAL_MULTI_QUEUE",
69  	"Zlib_ILLEGAL_JOBID_CHANGE",
70  	"CMD_TIMEOUT",
71  	"IDMA0_AXI_SLVERR",
72  	"IDMA0_AXI_DECERR",
73  	"0x15 Reserved",
74  	"IDMA1_AXI_SLAVE_FAULT",
75  	"IDMA1_AIXI_DECERR",
76  	"0x18 Reserved",
77  	"ZLIBVHB_AXI_SLVERR",
78  	"ZLIBVHB_AXI_DECERR",
79  	"0x1B Reserved",
80  	"ZLIB_UNEXPECTED_EOM",
81  	"ZLIB_EXTRA_DATA",
82  	"ZLIB_BTYPE",
83  	"ZLIB_UNDEFINED_SYMBOL",
84  	"ZLIB_UNDEFINED_DISTANCE_S",
85  	"ZLIB_CODE_LENGTH_SYMBOL",
86  	"ZLIB _VHB_ILLEGAL_FETCH",
87  	"ZLIB_UNCOMPRESSED_LEN",
88  	"ZLIB_LIMIT_REACHED",
89  	"ZLIB_CHECKSUM_MISMATCH0",
90  	"ODMA0_AXI_SLVERR",
91  	"ODMA0_AXI_DECERR",
92  	"0x28 Reserved",
93  	"ODMA1_AXI_SLVERR",
94  	"ODMA1_AXI_DECERR",
95  };
96  
ccp_log_error(struct ccp_device * d,unsigned int e)97  void ccp_log_error(struct ccp_device *d, unsigned int e)
98  {
99  	if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
100  		return;
101  
102  	if (e < ARRAY_SIZE(ccp_error_codes))
103  		dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
104  	else
105  		dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
106  }
107  
108  /* List of CCPs, CCP count, read-write access lock, and access functions
109   *
110   * Lock structure: get ccp_unit_lock for reading whenever we need to
111   * examine the CCP list. While holding it for reading we can acquire
112   * the RR lock to update the round-robin next-CCP pointer. The unit lock
113   * must be acquired before the RR lock.
114   *
115   * If the unit-lock is acquired for writing, we have total control over
116   * the list, so there's no value in getting the RR lock.
117   */
118  static DEFINE_RWLOCK(ccp_unit_lock);
119  static LIST_HEAD(ccp_units);
120  
121  /* Round-robin counter */
122  static DEFINE_SPINLOCK(ccp_rr_lock);
123  static struct ccp_device *ccp_rr;
124  
125  /**
126   * ccp_add_device - add a CCP device to the list
127   *
128   * @ccp: ccp_device struct pointer
129   *
130   * Put this CCP on the unit list, which makes it available
131   * for use.
132   *
133   * Returns zero if a CCP device is present, -ENODEV otherwise.
134   */
ccp_add_device(struct ccp_device * ccp)135  void ccp_add_device(struct ccp_device *ccp)
136  {
137  	unsigned long flags;
138  
139  	write_lock_irqsave(&ccp_unit_lock, flags);
140  	list_add_tail(&ccp->entry, &ccp_units);
141  	if (!ccp_rr)
142  		/* We already have the list lock (we're first) so this
143  		 * pointer can't change on us. Set its initial value.
144  		 */
145  		ccp_rr = ccp;
146  	write_unlock_irqrestore(&ccp_unit_lock, flags);
147  }
148  
149  /**
150   * ccp_del_device - remove a CCP device from the list
151   *
152   * @ccp: ccp_device struct pointer
153   *
154   * Remove this unit from the list of devices. If the next device
155   * up for use is this one, adjust the pointer. If this is the last
156   * device, NULL the pointer.
157   */
ccp_del_device(struct ccp_device * ccp)158  void ccp_del_device(struct ccp_device *ccp)
159  {
160  	unsigned long flags;
161  
162  	write_lock_irqsave(&ccp_unit_lock, flags);
163  	if (ccp_rr == ccp) {
164  		/* ccp_unit_lock is read/write; any read access
165  		 * will be suspended while we make changes to the
166  		 * list and RR pointer.
167  		 */
168  		if (list_is_last(&ccp_rr->entry, &ccp_units))
169  			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
170  						  entry);
171  		else
172  			ccp_rr = list_next_entry(ccp_rr, entry);
173  	}
174  	list_del(&ccp->entry);
175  	if (list_empty(&ccp_units))
176  		ccp_rr = NULL;
177  	write_unlock_irqrestore(&ccp_unit_lock, flags);
178  }
179  
180  
181  
ccp_register_rng(struct ccp_device * ccp)182  int ccp_register_rng(struct ccp_device *ccp)
183  {
184  	int ret = 0;
185  
186  	dev_dbg(ccp->dev, "Registering RNG...\n");
187  	/* Register an RNG */
188  	ccp->hwrng.name = ccp->rngname;
189  	ccp->hwrng.read = ccp_trng_read;
190  	ret = hwrng_register(&ccp->hwrng);
191  	if (ret)
192  		dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
193  
194  	return ret;
195  }
196  
ccp_unregister_rng(struct ccp_device * ccp)197  void ccp_unregister_rng(struct ccp_device *ccp)
198  {
199  	if (ccp->hwrng.name)
200  		hwrng_unregister(&ccp->hwrng);
201  }
202  
ccp_get_device(void)203  static struct ccp_device *ccp_get_device(void)
204  {
205  	unsigned long flags;
206  	struct ccp_device *dp = NULL;
207  
208  	/* We round-robin through the unit list.
209  	 * The (ccp_rr) pointer refers to the next unit to use.
210  	 */
211  	read_lock_irqsave(&ccp_unit_lock, flags);
212  	if (!list_empty(&ccp_units)) {
213  		spin_lock(&ccp_rr_lock);
214  		dp = ccp_rr;
215  		if (list_is_last(&ccp_rr->entry, &ccp_units))
216  			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
217  						  entry);
218  		else
219  			ccp_rr = list_next_entry(ccp_rr, entry);
220  		spin_unlock(&ccp_rr_lock);
221  	}
222  	read_unlock_irqrestore(&ccp_unit_lock, flags);
223  
224  	return dp;
225  }
226  
227  /**
228   * ccp_present - check if a CCP device is present
229   *
230   * Returns zero if a CCP device is present, -ENODEV otherwise.
231   */
ccp_present(void)232  int ccp_present(void)
233  {
234  	unsigned long flags;
235  	int ret;
236  
237  	read_lock_irqsave(&ccp_unit_lock, flags);
238  	ret = list_empty(&ccp_units);
239  	read_unlock_irqrestore(&ccp_unit_lock, flags);
240  
241  	return ret ? -ENODEV : 0;
242  }
243  EXPORT_SYMBOL_GPL(ccp_present);
244  
245  /**
246   * ccp_version - get the version of the CCP device
247   *
248   * Returns the version from the first unit on the list;
249   * otherwise a zero if no CCP device is present
250   */
ccp_version(void)251  unsigned int ccp_version(void)
252  {
253  	struct ccp_device *dp;
254  	unsigned long flags;
255  	int ret = 0;
256  
257  	read_lock_irqsave(&ccp_unit_lock, flags);
258  	if (!list_empty(&ccp_units)) {
259  		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
260  		ret = dp->vdata->version;
261  	}
262  	read_unlock_irqrestore(&ccp_unit_lock, flags);
263  
264  	return ret;
265  }
266  EXPORT_SYMBOL_GPL(ccp_version);
267  
268  /**
269   * ccp_enqueue_cmd - queue an operation for processing by the CCP
270   *
271   * @cmd: ccp_cmd struct to be processed
272   *
273   * Queue a cmd to be processed by the CCP. If queueing the cmd
274   * would exceed the defined length of the cmd queue the cmd will
275   * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
276   * result in a return code of -EBUSY.
277   *
278   * The callback routine specified in the ccp_cmd struct will be
279   * called to notify the caller of completion (if the cmd was not
280   * backlogged) or advancement out of the backlog. If the cmd has
281   * advanced out of the backlog the "err" value of the callback
282   * will be -EINPROGRESS. Any other "err" value during callback is
283   * the result of the operation.
284   *
285   * The cmd has been successfully queued if:
286   *   the return code is -EINPROGRESS or
287   *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
288   */
ccp_enqueue_cmd(struct ccp_cmd * cmd)289  int ccp_enqueue_cmd(struct ccp_cmd *cmd)
290  {
291  	struct ccp_device *ccp;
292  	unsigned long flags;
293  	unsigned int i;
294  	int ret;
295  
296  	/* Some commands might need to be sent to a specific device */
297  	ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
298  
299  	if (!ccp)
300  		return -ENODEV;
301  
302  	/* Caller must supply a callback routine */
303  	if (!cmd->callback)
304  		return -EINVAL;
305  
306  	cmd->ccp = ccp;
307  
308  	spin_lock_irqsave(&ccp->cmd_lock, flags);
309  
310  	i = ccp->cmd_q_count;
311  
312  	if (ccp->cmd_count >= MAX_CMD_QLEN) {
313  		if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
314  			ret = -EBUSY;
315  			list_add_tail(&cmd->entry, &ccp->backlog);
316  		} else {
317  			ret = -ENOSPC;
318  		}
319  	} else {
320  		ret = -EINPROGRESS;
321  		ccp->cmd_count++;
322  		list_add_tail(&cmd->entry, &ccp->cmd);
323  
324  		/* Find an idle queue */
325  		if (!ccp->suspending) {
326  			for (i = 0; i < ccp->cmd_q_count; i++) {
327  				if (ccp->cmd_q[i].active)
328  					continue;
329  
330  				break;
331  			}
332  		}
333  	}
334  
335  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
336  
337  	/* If we found an idle queue, wake it up */
338  	if (i < ccp->cmd_q_count)
339  		wake_up_process(ccp->cmd_q[i].kthread);
340  
341  	return ret;
342  }
343  EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
344  
ccp_do_cmd_backlog(struct work_struct * work)345  static void ccp_do_cmd_backlog(struct work_struct *work)
346  {
347  	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
348  	struct ccp_device *ccp = cmd->ccp;
349  	unsigned long flags;
350  	unsigned int i;
351  
352  	cmd->callback(cmd->data, -EINPROGRESS);
353  
354  	spin_lock_irqsave(&ccp->cmd_lock, flags);
355  
356  	ccp->cmd_count++;
357  	list_add_tail(&cmd->entry, &ccp->cmd);
358  
359  	/* Find an idle queue */
360  	for (i = 0; i < ccp->cmd_q_count; i++) {
361  		if (ccp->cmd_q[i].active)
362  			continue;
363  
364  		break;
365  	}
366  
367  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
368  
369  	/* If we found an idle queue, wake it up */
370  	if (i < ccp->cmd_q_count)
371  		wake_up_process(ccp->cmd_q[i].kthread);
372  }
373  
ccp_dequeue_cmd(struct ccp_cmd_queue * cmd_q)374  static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
375  {
376  	struct ccp_device *ccp = cmd_q->ccp;
377  	struct ccp_cmd *cmd = NULL;
378  	struct ccp_cmd *backlog = NULL;
379  	unsigned long flags;
380  
381  	spin_lock_irqsave(&ccp->cmd_lock, flags);
382  
383  	cmd_q->active = 0;
384  
385  	if (ccp->suspending) {
386  		cmd_q->suspended = 1;
387  
388  		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
389  		wake_up_interruptible(&ccp->suspend_queue);
390  
391  		return NULL;
392  	}
393  
394  	if (ccp->cmd_count) {
395  		cmd_q->active = 1;
396  
397  		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
398  		list_del(&cmd->entry);
399  
400  		ccp->cmd_count--;
401  	}
402  
403  	if (!list_empty(&ccp->backlog)) {
404  		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
405  					   entry);
406  		list_del(&backlog->entry);
407  	}
408  
409  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
410  
411  	if (backlog) {
412  		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
413  		schedule_work(&backlog->work);
414  	}
415  
416  	return cmd;
417  }
418  
ccp_do_cmd_complete(unsigned long data)419  static void ccp_do_cmd_complete(unsigned long data)
420  {
421  	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
422  	struct ccp_cmd *cmd = tdata->cmd;
423  
424  	cmd->callback(cmd->data, cmd->ret);
425  
426  	complete(&tdata->completion);
427  }
428  
429  /**
430   * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
431   *
432   * @data: thread-specific data
433   */
ccp_cmd_queue_thread(void * data)434  int ccp_cmd_queue_thread(void *data)
435  {
436  	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
437  	struct ccp_cmd *cmd;
438  	struct ccp_tasklet_data tdata;
439  	struct tasklet_struct tasklet;
440  
441  	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
442  
443  	set_current_state(TASK_INTERRUPTIBLE);
444  	while (!kthread_should_stop()) {
445  		schedule();
446  
447  		set_current_state(TASK_INTERRUPTIBLE);
448  
449  		cmd = ccp_dequeue_cmd(cmd_q);
450  		if (!cmd)
451  			continue;
452  
453  		__set_current_state(TASK_RUNNING);
454  
455  		/* Execute the command */
456  		cmd->ret = ccp_run_cmd(cmd_q, cmd);
457  
458  		/* Schedule the completion callback */
459  		tdata.cmd = cmd;
460  		init_completion(&tdata.completion);
461  		tasklet_schedule(&tasklet);
462  		wait_for_completion(&tdata.completion);
463  	}
464  
465  	__set_current_state(TASK_RUNNING);
466  
467  	return 0;
468  }
469  
470  /**
471   * ccp_alloc_struct - allocate and initialize the ccp_device struct
472   *
473   * @sp: sp_device struct of the CCP
474   */
ccp_alloc_struct(struct sp_device * sp)475  struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
476  {
477  	struct device *dev = sp->dev;
478  	struct ccp_device *ccp;
479  
480  	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
481  	if (!ccp)
482  		return NULL;
483  	ccp->dev = dev;
484  	ccp->sp = sp;
485  	ccp->axcache = sp->axcache;
486  
487  	INIT_LIST_HEAD(&ccp->cmd);
488  	INIT_LIST_HEAD(&ccp->backlog);
489  
490  	spin_lock_init(&ccp->cmd_lock);
491  	mutex_init(&ccp->req_mutex);
492  	mutex_init(&ccp->sb_mutex);
493  	ccp->sb_count = KSB_COUNT;
494  	ccp->sb_start = 0;
495  
496  	/* Initialize the wait queues */
497  	init_waitqueue_head(&ccp->sb_queue);
498  	init_waitqueue_head(&ccp->suspend_queue);
499  
500  	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
501  	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
502  
503  	return ccp;
504  }
505  
ccp_trng_read(struct hwrng * rng,void * data,size_t max,bool wait)506  int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
507  {
508  	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
509  	u32 trng_value;
510  	int len = min_t(int, sizeof(trng_value), max);
511  
512  	/* Locking is provided by the caller so we can update device
513  	 * hwrng-related fields safely
514  	 */
515  	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
516  	if (!trng_value) {
517  		/* Zero is returned if not data is available or if a
518  		 * bad-entropy error is present. Assume an error if
519  		 * we exceed TRNG_RETRIES reads of zero.
520  		 */
521  		if (ccp->hwrng_retries++ > TRNG_RETRIES)
522  			return -EIO;
523  
524  		return 0;
525  	}
526  
527  	/* Reset the counter and save the rng value */
528  	ccp->hwrng_retries = 0;
529  	memcpy(data, &trng_value, len);
530  
531  	return len;
532  }
533  
ccp_queues_suspended(struct ccp_device * ccp)534  bool ccp_queues_suspended(struct ccp_device *ccp)
535  {
536  	unsigned int suspended = 0;
537  	unsigned long flags;
538  	unsigned int i;
539  
540  	spin_lock_irqsave(&ccp->cmd_lock, flags);
541  
542  	for (i = 0; i < ccp->cmd_q_count; i++)
543  		if (ccp->cmd_q[i].suspended)
544  			suspended++;
545  
546  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
547  
548  	return ccp->cmd_q_count == suspended;
549  }
550  
ccp_dev_suspend(struct sp_device * sp)551  void ccp_dev_suspend(struct sp_device *sp)
552  {
553  	struct ccp_device *ccp = sp->ccp_data;
554  	unsigned long flags;
555  	unsigned int i;
556  
557  	/* If there's no device there's nothing to do */
558  	if (!ccp)
559  		return;
560  
561  	spin_lock_irqsave(&ccp->cmd_lock, flags);
562  
563  	ccp->suspending = 1;
564  
565  	/* Wake all the queue kthreads to prepare for suspend */
566  	for (i = 0; i < ccp->cmd_q_count; i++)
567  		wake_up_process(ccp->cmd_q[i].kthread);
568  
569  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
570  
571  	/* Wait for all queue kthreads to say they're done */
572  	while (!ccp_queues_suspended(ccp))
573  		wait_event_interruptible(ccp->suspend_queue,
574  					 ccp_queues_suspended(ccp));
575  }
576  
ccp_dev_resume(struct sp_device * sp)577  void ccp_dev_resume(struct sp_device *sp)
578  {
579  	struct ccp_device *ccp = sp->ccp_data;
580  	unsigned long flags;
581  	unsigned int i;
582  
583  	/* If there's no device there's nothing to do */
584  	if (!ccp)
585  		return;
586  
587  	spin_lock_irqsave(&ccp->cmd_lock, flags);
588  
589  	ccp->suspending = 0;
590  
591  	/* Wake up all the kthreads */
592  	for (i = 0; i < ccp->cmd_q_count; i++) {
593  		ccp->cmd_q[i].suspended = 0;
594  		wake_up_process(ccp->cmd_q[i].kthread);
595  	}
596  
597  	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
598  }
599  
ccp_dev_init(struct sp_device * sp)600  int ccp_dev_init(struct sp_device *sp)
601  {
602  	struct device *dev = sp->dev;
603  	struct ccp_device *ccp;
604  	int ret;
605  
606  	/*
607  	 * Check how many we have so far, and stop after reaching
608  	 * that number
609  	 */
610  	if (atomic_inc_return(&dev_count) > max_devs)
611  		return 0; /* don't fail the load */
612  
613  	ret = -ENOMEM;
614  	ccp = ccp_alloc_struct(sp);
615  	if (!ccp)
616  		goto e_err;
617  	sp->ccp_data = ccp;
618  
619  	if (!nqueues || (nqueues > MAX_HW_QUEUES))
620  		ccp->max_q_count = MAX_HW_QUEUES;
621  	else
622  		ccp->max_q_count = nqueues;
623  
624  	ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
625  	if (!ccp->vdata || !ccp->vdata->version) {
626  		ret = -ENODEV;
627  		dev_err(dev, "missing driver data\n");
628  		goto e_err;
629  	}
630  
631  	ccp->use_tasklet = sp->use_tasklet;
632  
633  	ccp->io_regs = sp->io_map + ccp->vdata->offset;
634  	if (ccp->vdata->setup)
635  		ccp->vdata->setup(ccp);
636  
637  	ret = ccp->vdata->perform->init(ccp);
638  	if (ret) {
639  		/* A positive number means that the device cannot be initialized,
640  		 * but no additional message is required.
641  		 */
642  		if (ret > 0)
643  			goto e_quiet;
644  
645  		/* An unexpected problem occurred, and should be reported in the log */
646  		goto e_err;
647  	}
648  
649  	dev_notice(dev, "ccp enabled\n");
650  
651  	return 0;
652  
653  e_err:
654  	dev_notice(dev, "ccp initialization failed\n");
655  
656  e_quiet:
657  	sp->ccp_data = NULL;
658  
659  	return ret;
660  }
661  
ccp_dev_destroy(struct sp_device * sp)662  void ccp_dev_destroy(struct sp_device *sp)
663  {
664  	struct ccp_device *ccp = sp->ccp_data;
665  
666  	if (!ccp)
667  		return;
668  
669  	ccp->vdata->perform->destroy(ccp);
670  }
671