1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/skcipher.h>
8 #include <crypto/internal/des.h>
9 #include <crypto/xts.h>
10 #include <crypto/sm4.h>
11 #include <crypto/scatterwalk.h>
12
13 #include "cc_driver.h"
14 #include "cc_lli_defs.h"
15 #include "cc_buffer_mgr.h"
16 #include "cc_cipher.h"
17 #include "cc_request_mgr.h"
18
19 #define MAX_SKCIPHER_SEQ_LEN 6
20
21 #define template_skcipher template_u.skcipher
22
23 struct cc_user_key_info {
24 u8 *key;
25 dma_addr_t key_dma_addr;
26 };
27
28 struct cc_hw_key_info {
29 enum cc_hw_crypto_key key1_slot;
30 enum cc_hw_crypto_key key2_slot;
31 };
32
33 struct cc_cpp_key_info {
34 u8 slot;
35 enum cc_cpp_alg alg;
36 };
37
38 enum cc_key_type {
39 CC_UNPROTECTED_KEY, /* User key */
40 CC_HW_PROTECTED_KEY, /* HW (FDE) key */
41 CC_POLICY_PROTECTED_KEY, /* CPP key */
42 CC_INVALID_PROTECTED_KEY /* Invalid key */
43 };
44
45 struct cc_cipher_ctx {
46 struct cc_drvdata *drvdata;
47 int keylen;
48 int cipher_mode;
49 int flow_mode;
50 unsigned int flags;
51 enum cc_key_type key_type;
52 struct cc_user_key_info user;
53 union {
54 struct cc_hw_key_info hw;
55 struct cc_cpp_key_info cpp;
56 };
57 struct crypto_shash *shash_tfm;
58 struct crypto_skcipher *fallback_tfm;
59 bool fallback_on;
60 };
61
62 static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63
cc_key_type(struct crypto_tfm * tfm)64 static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65 {
66 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67
68 return ctx_p->key_type;
69 }
70
validate_keys_sizes(struct cc_cipher_ctx * ctx_p,u32 size)71 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72 {
73 switch (ctx_p->flow_mode) {
74 case S_DIN_to_AES:
75 switch (size) {
76 case CC_AES_128_BIT_KEY_SIZE:
77 case CC_AES_192_BIT_KEY_SIZE:
78 if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79 return 0;
80 break;
81 case CC_AES_256_BIT_KEY_SIZE:
82 return 0;
83 case (CC_AES_192_BIT_KEY_SIZE * 2):
84 case (CC_AES_256_BIT_KEY_SIZE * 2):
85 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86 ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87 return 0;
88 break;
89 default:
90 break;
91 }
92 break;
93 case S_DIN_to_DES:
94 if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95 return 0;
96 break;
97 case S_DIN_to_SM4:
98 if (size == SM4_KEY_SIZE)
99 return 0;
100 break;
101 default:
102 break;
103 }
104 return -EINVAL;
105 }
106
validate_data_size(struct cc_cipher_ctx * ctx_p,unsigned int size)107 static int validate_data_size(struct cc_cipher_ctx *ctx_p,
108 unsigned int size)
109 {
110 switch (ctx_p->flow_mode) {
111 case S_DIN_to_AES:
112 switch (ctx_p->cipher_mode) {
113 case DRV_CIPHER_XTS:
114 case DRV_CIPHER_CBC_CTS:
115 if (size >= AES_BLOCK_SIZE)
116 return 0;
117 break;
118 case DRV_CIPHER_OFB:
119 case DRV_CIPHER_CTR:
120 return 0;
121 case DRV_CIPHER_ECB:
122 case DRV_CIPHER_CBC:
123 case DRV_CIPHER_ESSIV:
124 if (IS_ALIGNED(size, AES_BLOCK_SIZE))
125 return 0;
126 break;
127 default:
128 break;
129 }
130 break;
131 case S_DIN_to_DES:
132 if (IS_ALIGNED(size, DES_BLOCK_SIZE))
133 return 0;
134 break;
135 case S_DIN_to_SM4:
136 switch (ctx_p->cipher_mode) {
137 case DRV_CIPHER_CTR:
138 return 0;
139 case DRV_CIPHER_ECB:
140 case DRV_CIPHER_CBC:
141 if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
142 return 0;
143 break;
144 default:
145 break;
146 }
147 break;
148 default:
149 break;
150 }
151 return -EINVAL;
152 }
153
cc_cipher_init(struct crypto_tfm * tfm)154 static int cc_cipher_init(struct crypto_tfm *tfm)
155 {
156 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
157 struct cc_crypto_alg *cc_alg =
158 container_of(tfm->__crt_alg, struct cc_crypto_alg,
159 skcipher_alg.base);
160 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
161 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
162 unsigned int fallback_req_size = 0;
163
164 dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
165 crypto_tfm_alg_name(tfm));
166
167 ctx_p->cipher_mode = cc_alg->cipher_mode;
168 ctx_p->flow_mode = cc_alg->flow_mode;
169 ctx_p->drvdata = cc_alg->drvdata;
170
171 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
172 const char *name = crypto_tfm_alg_name(tfm);
173
174 /* Alloc hash tfm for essiv */
175 ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
176 if (IS_ERR(ctx_p->shash_tfm)) {
177 dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
178 return PTR_ERR(ctx_p->shash_tfm);
179 }
180 max_key_buf_size <<= 1;
181
182 /* Alloc fallabck tfm or essiv when key size != 256 bit */
183 ctx_p->fallback_tfm =
184 crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
185
186 if (IS_ERR(ctx_p->fallback_tfm)) {
187 /* Note we're still allowing registration with no fallback since it's
188 * better to have most modes supported than none at all.
189 */
190 dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
191 name);
192 ctx_p->fallback_tfm = NULL;
193 } else {
194 fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
195 }
196 }
197
198 crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
199 sizeof(struct cipher_req_ctx) + fallback_req_size);
200
201 /* Allocate key buffer, cache line aligned */
202 ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
203 if (!ctx_p->user.key)
204 goto free_fallback;
205
206 dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
207 ctx_p->user.key);
208
209 /* Map key buffer */
210 ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
211 max_key_buf_size,
212 DMA_TO_DEVICE);
213 if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
214 dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
215 max_key_buf_size, ctx_p->user.key);
216 goto free_key;
217 }
218 dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
219 max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
220
221 return 0;
222
223 free_key:
224 kfree(ctx_p->user.key);
225 free_fallback:
226 crypto_free_skcipher(ctx_p->fallback_tfm);
227 crypto_free_shash(ctx_p->shash_tfm);
228
229 return -ENOMEM;
230 }
231
cc_cipher_exit(struct crypto_tfm * tfm)232 static void cc_cipher_exit(struct crypto_tfm *tfm)
233 {
234 struct crypto_alg *alg = tfm->__crt_alg;
235 struct cc_crypto_alg *cc_alg =
236 container_of(alg, struct cc_crypto_alg,
237 skcipher_alg.base);
238 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
239 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
240 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
241
242 dev_dbg(dev, "Clearing context @%p for %s\n",
243 crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
244
245 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
246 /* Free hash tfm for essiv */
247 crypto_free_shash(ctx_p->shash_tfm);
248 ctx_p->shash_tfm = NULL;
249 crypto_free_skcipher(ctx_p->fallback_tfm);
250 ctx_p->fallback_tfm = NULL;
251 }
252
253 /* Unmap key buffer */
254 dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
255 DMA_TO_DEVICE);
256 dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
257 &ctx_p->user.key_dma_addr);
258
259 /* Free key buffer in context */
260 dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
261 kfree_sensitive(ctx_p->user.key);
262 }
263
264 struct tdes_keys {
265 u8 key1[DES_KEY_SIZE];
266 u8 key2[DES_KEY_SIZE];
267 u8 key3[DES_KEY_SIZE];
268 };
269
cc_slot_to_hw_key(u8 slot_num)270 static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
271 {
272 switch (slot_num) {
273 case 0:
274 return KFDE0_KEY;
275 case 1:
276 return KFDE1_KEY;
277 case 2:
278 return KFDE2_KEY;
279 case 3:
280 return KFDE3_KEY;
281 }
282 return END_OF_KEYS;
283 }
284
cc_slot_to_cpp_key(u8 slot_num)285 static u8 cc_slot_to_cpp_key(u8 slot_num)
286 {
287 return (slot_num - CC_FIRST_CPP_KEY_SLOT);
288 }
289
cc_slot_to_key_type(u8 slot_num)290 static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
291 {
292 if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
293 return CC_HW_PROTECTED_KEY;
294 else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
295 slot_num <= CC_LAST_CPP_KEY_SLOT)
296 return CC_POLICY_PROTECTED_KEY;
297 else
298 return CC_INVALID_PROTECTED_KEY;
299 }
300
cc_cipher_sethkey(struct crypto_skcipher * sktfm,const u8 * key,unsigned int keylen)301 static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
302 unsigned int keylen)
303 {
304 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
305 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
306 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
307 struct cc_hkey_info hki;
308
309 dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
310 ctx_p, crypto_tfm_alg_name(tfm), keylen);
311 dump_byte_array("key", key, keylen);
312
313 /* STAT_PHASE_0: Init and sanity checks */
314
315 /* This check the size of the protected key token */
316 if (keylen != sizeof(hki)) {
317 dev_err(dev, "Unsupported protected key size %d.\n", keylen);
318 return -EINVAL;
319 }
320
321 memcpy(&hki, key, keylen);
322
323 /* The real key len for crypto op is the size of the HW key
324 * referenced by the HW key slot, not the hardware key token
325 */
326 keylen = hki.keylen;
327
328 if (validate_keys_sizes(ctx_p, keylen)) {
329 dev_dbg(dev, "Unsupported key size %d.\n", keylen);
330 return -EINVAL;
331 }
332
333 ctx_p->keylen = keylen;
334 ctx_p->fallback_on = false;
335
336 switch (cc_slot_to_key_type(hki.hw_key1)) {
337 case CC_HW_PROTECTED_KEY:
338 if (ctx_p->flow_mode == S_DIN_to_SM4) {
339 dev_err(dev, "Only AES HW protected keys are supported\n");
340 return -EINVAL;
341 }
342
343 ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
344 if (ctx_p->hw.key1_slot == END_OF_KEYS) {
345 dev_err(dev, "Unsupported hw key1 number (%d)\n",
346 hki.hw_key1);
347 return -EINVAL;
348 }
349
350 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
351 ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
352 if (hki.hw_key1 == hki.hw_key2) {
353 dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
354 hki.hw_key1, hki.hw_key2);
355 return -EINVAL;
356 }
357
358 ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
359 if (ctx_p->hw.key2_slot == END_OF_KEYS) {
360 dev_err(dev, "Unsupported hw key2 number (%d)\n",
361 hki.hw_key2);
362 return -EINVAL;
363 }
364 }
365
366 ctx_p->key_type = CC_HW_PROTECTED_KEY;
367 dev_dbg(dev, "HW protected key %d/%d set\n.",
368 ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
369 break;
370
371 case CC_POLICY_PROTECTED_KEY:
372 if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
373 dev_err(dev, "CPP keys not supported in this hardware revision.\n");
374 return -EINVAL;
375 }
376
377 if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
378 ctx_p->cipher_mode != DRV_CIPHER_CTR) {
379 dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
380 return -EINVAL;
381 }
382
383 ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
384 if (ctx_p->flow_mode == S_DIN_to_AES)
385 ctx_p->cpp.alg = CC_CPP_AES;
386 else /* Must be SM4 since due to sethkey registration */
387 ctx_p->cpp.alg = CC_CPP_SM4;
388 ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
389 dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
390 ctx_p->cpp.alg, ctx_p->cpp.slot);
391 break;
392
393 default:
394 dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
395 return -EINVAL;
396 }
397
398 return 0;
399 }
400
cc_cipher_setkey(struct crypto_skcipher * sktfm,const u8 * key,unsigned int keylen)401 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
402 unsigned int keylen)
403 {
404 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
405 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
406 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
407 struct cc_crypto_alg *cc_alg =
408 container_of(tfm->__crt_alg, struct cc_crypto_alg,
409 skcipher_alg.base);
410 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
411
412 dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
413 ctx_p, crypto_tfm_alg_name(tfm), keylen);
414 dump_byte_array("key", key, keylen);
415
416 /* STAT_PHASE_0: Init and sanity checks */
417
418 if (validate_keys_sizes(ctx_p, keylen)) {
419 dev_dbg(dev, "Invalid key size %d.\n", keylen);
420 return -EINVAL;
421 }
422
423 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
424
425 /* We only support 256 bit ESSIV-CBC-AES keys */
426 if (keylen != AES_KEYSIZE_256) {
427 unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
428
429 if (likely(ctx_p->fallback_tfm)) {
430 ctx_p->fallback_on = true;
431 crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
432 CRYPTO_TFM_REQ_MASK);
433 crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
434 return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
435 }
436
437 dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
438 return -EINVAL;
439 }
440
441 /* Internal ESSIV key buffer is double sized */
442 max_key_buf_size <<= 1;
443 }
444
445 ctx_p->fallback_on = false;
446 ctx_p->key_type = CC_UNPROTECTED_KEY;
447
448 /*
449 * Verify DES weak keys
450 * Note that we're dropping the expanded key since the
451 * HW does the expansion on its own.
452 */
453 if (ctx_p->flow_mode == S_DIN_to_DES) {
454 if ((keylen == DES3_EDE_KEY_SIZE &&
455 verify_skcipher_des3_key(sktfm, key)) ||
456 verify_skcipher_des_key(sktfm, key)) {
457 dev_dbg(dev, "weak DES key");
458 return -EINVAL;
459 }
460 }
461
462 if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
463 xts_verify_key(sktfm, key, keylen)) {
464 dev_dbg(dev, "weak XTS key");
465 return -EINVAL;
466 }
467
468 /* STAT_PHASE_1: Copy key to ctx */
469 dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
470 max_key_buf_size, DMA_TO_DEVICE);
471
472 memcpy(ctx_p->user.key, key, keylen);
473
474 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
475 /* sha256 for key2 - use sw implementation */
476 int err;
477
478 err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
479 ctx_p->user.key, keylen,
480 ctx_p->user.key + keylen);
481 if (err) {
482 dev_err(dev, "Failed to hash ESSIV key.\n");
483 return err;
484 }
485
486 keylen <<= 1;
487 }
488 dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
489 max_key_buf_size, DMA_TO_DEVICE);
490 ctx_p->keylen = keylen;
491
492 dev_dbg(dev, "return safely");
493 return 0;
494 }
495
cc_out_setup_mode(struct cc_cipher_ctx * ctx_p)496 static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
497 {
498 switch (ctx_p->flow_mode) {
499 case S_DIN_to_AES:
500 return S_AES_to_DOUT;
501 case S_DIN_to_DES:
502 return S_DES_to_DOUT;
503 case S_DIN_to_SM4:
504 return S_SM4_to_DOUT;
505 default:
506 return ctx_p->flow_mode;
507 }
508 }
509
cc_setup_readiv_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,struct cc_hw_desc desc[],unsigned int * seq_size)510 static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
511 struct cipher_req_ctx *req_ctx,
512 unsigned int ivsize, struct cc_hw_desc desc[],
513 unsigned int *seq_size)
514 {
515 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
516 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
517 int cipher_mode = ctx_p->cipher_mode;
518 int flow_mode = cc_out_setup_mode(ctx_p);
519 int direction = req_ctx->gen_ctx.op_type;
520 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
521
522 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
523 return;
524
525 switch (cipher_mode) {
526 case DRV_CIPHER_ECB:
527 break;
528 case DRV_CIPHER_CBC:
529 case DRV_CIPHER_CBC_CTS:
530 case DRV_CIPHER_CTR:
531 case DRV_CIPHER_OFB:
532 /* Read next IV */
533 hw_desc_init(&desc[*seq_size]);
534 set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
535 set_cipher_config0(&desc[*seq_size], direction);
536 set_flow_mode(&desc[*seq_size], flow_mode);
537 set_cipher_mode(&desc[*seq_size], cipher_mode);
538 if (cipher_mode == DRV_CIPHER_CTR ||
539 cipher_mode == DRV_CIPHER_OFB) {
540 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
541 } else {
542 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
543 }
544 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
545 (*seq_size)++;
546 break;
547 case DRV_CIPHER_XTS:
548 case DRV_CIPHER_ESSIV:
549 /* IV */
550 hw_desc_init(&desc[*seq_size]);
551 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
552 set_cipher_mode(&desc[*seq_size], cipher_mode);
553 set_cipher_config0(&desc[*seq_size], direction);
554 set_flow_mode(&desc[*seq_size], flow_mode);
555 set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
556 NS_BIT, 1);
557 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
558 (*seq_size)++;
559 break;
560 default:
561 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
562 }
563 }
564
565
cc_setup_state_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)566 static void cc_setup_state_desc(struct crypto_tfm *tfm,
567 struct cipher_req_ctx *req_ctx,
568 unsigned int ivsize, unsigned int nbytes,
569 struct cc_hw_desc desc[],
570 unsigned int *seq_size)
571 {
572 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
573 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
574 int cipher_mode = ctx_p->cipher_mode;
575 int flow_mode = ctx_p->flow_mode;
576 int direction = req_ctx->gen_ctx.op_type;
577 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
578
579 switch (cipher_mode) {
580 case DRV_CIPHER_ECB:
581 break;
582 case DRV_CIPHER_CBC:
583 case DRV_CIPHER_CBC_CTS:
584 case DRV_CIPHER_CTR:
585 case DRV_CIPHER_OFB:
586 /* Load IV */
587 hw_desc_init(&desc[*seq_size]);
588 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
589 NS_BIT);
590 set_cipher_config0(&desc[*seq_size], direction);
591 set_flow_mode(&desc[*seq_size], flow_mode);
592 set_cipher_mode(&desc[*seq_size], cipher_mode);
593 if (cipher_mode == DRV_CIPHER_CTR ||
594 cipher_mode == DRV_CIPHER_OFB) {
595 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
596 } else {
597 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
598 }
599 (*seq_size)++;
600 break;
601 case DRV_CIPHER_XTS:
602 case DRV_CIPHER_ESSIV:
603 break;
604 default:
605 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
606 }
607 }
608
609
cc_setup_xex_state_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int ivsize,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)610 static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
611 struct cipher_req_ctx *req_ctx,
612 unsigned int ivsize, unsigned int nbytes,
613 struct cc_hw_desc desc[],
614 unsigned int *seq_size)
615 {
616 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
617 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
618 int cipher_mode = ctx_p->cipher_mode;
619 int flow_mode = ctx_p->flow_mode;
620 int direction = req_ctx->gen_ctx.op_type;
621 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
622 unsigned int key_len = (ctx_p->keylen / 2);
623 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
624 unsigned int key_offset = key_len;
625
626 switch (cipher_mode) {
627 case DRV_CIPHER_ECB:
628 break;
629 case DRV_CIPHER_CBC:
630 case DRV_CIPHER_CBC_CTS:
631 case DRV_CIPHER_CTR:
632 case DRV_CIPHER_OFB:
633 break;
634 case DRV_CIPHER_XTS:
635 case DRV_CIPHER_ESSIV:
636
637 if (cipher_mode == DRV_CIPHER_ESSIV)
638 key_len = SHA256_DIGEST_SIZE;
639
640 /* load XEX key */
641 hw_desc_init(&desc[*seq_size]);
642 set_cipher_mode(&desc[*seq_size], cipher_mode);
643 set_cipher_config0(&desc[*seq_size], direction);
644 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
645 set_hw_crypto_key(&desc[*seq_size],
646 ctx_p->hw.key2_slot);
647 } else {
648 set_din_type(&desc[*seq_size], DMA_DLLI,
649 (key_dma_addr + key_offset),
650 key_len, NS_BIT);
651 }
652 set_xex_data_unit_size(&desc[*seq_size], nbytes);
653 set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
654 set_key_size_aes(&desc[*seq_size], key_len);
655 set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
656 (*seq_size)++;
657
658 /* Load IV */
659 hw_desc_init(&desc[*seq_size]);
660 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
661 set_cipher_mode(&desc[*seq_size], cipher_mode);
662 set_cipher_config0(&desc[*seq_size], direction);
663 set_key_size_aes(&desc[*seq_size], key_len);
664 set_flow_mode(&desc[*seq_size], flow_mode);
665 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
666 CC_AES_BLOCK_SIZE, NS_BIT);
667 (*seq_size)++;
668 break;
669 default:
670 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
671 }
672 }
673
cc_out_flow_mode(struct cc_cipher_ctx * ctx_p)674 static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
675 {
676 switch (ctx_p->flow_mode) {
677 case S_DIN_to_AES:
678 return DIN_AES_DOUT;
679 case S_DIN_to_DES:
680 return DIN_DES_DOUT;
681 case S_DIN_to_SM4:
682 return DIN_SM4_DOUT;
683 default:
684 return ctx_p->flow_mode;
685 }
686 }
687
cc_setup_key_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)688 static void cc_setup_key_desc(struct crypto_tfm *tfm,
689 struct cipher_req_ctx *req_ctx,
690 unsigned int nbytes, struct cc_hw_desc desc[],
691 unsigned int *seq_size)
692 {
693 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
694 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
695 int cipher_mode = ctx_p->cipher_mode;
696 int flow_mode = ctx_p->flow_mode;
697 int direction = req_ctx->gen_ctx.op_type;
698 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
699 unsigned int key_len = ctx_p->keylen;
700 unsigned int din_size;
701
702 switch (cipher_mode) {
703 case DRV_CIPHER_CBC:
704 case DRV_CIPHER_CBC_CTS:
705 case DRV_CIPHER_CTR:
706 case DRV_CIPHER_OFB:
707 case DRV_CIPHER_ECB:
708 /* Load key */
709 hw_desc_init(&desc[*seq_size]);
710 set_cipher_mode(&desc[*seq_size], cipher_mode);
711 set_cipher_config0(&desc[*seq_size], direction);
712
713 if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
714 /* We use the AES key size coding for all CPP algs */
715 set_key_size_aes(&desc[*seq_size], key_len);
716 set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
717 flow_mode = cc_out_flow_mode(ctx_p);
718 } else {
719 if (flow_mode == S_DIN_to_AES) {
720 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
721 set_hw_crypto_key(&desc[*seq_size],
722 ctx_p->hw.key1_slot);
723 } else {
724 /* CC_POLICY_UNPROTECTED_KEY
725 * Invalid keys are filtered out in
726 * sethkey()
727 */
728 din_size = (key_len == 24) ?
729 AES_MAX_KEY_SIZE : key_len;
730
731 set_din_type(&desc[*seq_size], DMA_DLLI,
732 key_dma_addr, din_size,
733 NS_BIT);
734 }
735 set_key_size_aes(&desc[*seq_size], key_len);
736 } else {
737 /*des*/
738 set_din_type(&desc[*seq_size], DMA_DLLI,
739 key_dma_addr, key_len, NS_BIT);
740 set_key_size_des(&desc[*seq_size], key_len);
741 }
742 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
743 }
744 set_flow_mode(&desc[*seq_size], flow_mode);
745 (*seq_size)++;
746 break;
747 case DRV_CIPHER_XTS:
748 case DRV_CIPHER_ESSIV:
749 /* Load AES key */
750 hw_desc_init(&desc[*seq_size]);
751 set_cipher_mode(&desc[*seq_size], cipher_mode);
752 set_cipher_config0(&desc[*seq_size], direction);
753 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
754 set_hw_crypto_key(&desc[*seq_size],
755 ctx_p->hw.key1_slot);
756 } else {
757 set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
758 (key_len / 2), NS_BIT);
759 }
760 set_key_size_aes(&desc[*seq_size], (key_len / 2));
761 set_flow_mode(&desc[*seq_size], flow_mode);
762 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
763 (*seq_size)++;
764 break;
765 default:
766 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
767 }
768 }
769
cc_setup_mlli_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes,void * areq,struct cc_hw_desc desc[],unsigned int * seq_size)770 static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
771 struct cipher_req_ctx *req_ctx,
772 struct scatterlist *dst, struct scatterlist *src,
773 unsigned int nbytes, void *areq,
774 struct cc_hw_desc desc[], unsigned int *seq_size)
775 {
776 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
777 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
778
779 if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
780 /* bypass */
781 dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
782 &req_ctx->mlli_params.mlli_dma_addr,
783 req_ctx->mlli_params.mlli_len,
784 ctx_p->drvdata->mlli_sram_addr);
785 hw_desc_init(&desc[*seq_size]);
786 set_din_type(&desc[*seq_size], DMA_DLLI,
787 req_ctx->mlli_params.mlli_dma_addr,
788 req_ctx->mlli_params.mlli_len, NS_BIT);
789 set_dout_sram(&desc[*seq_size],
790 ctx_p->drvdata->mlli_sram_addr,
791 req_ctx->mlli_params.mlli_len);
792 set_flow_mode(&desc[*seq_size], BYPASS);
793 (*seq_size)++;
794 }
795 }
796
cc_setup_flow_desc(struct crypto_tfm * tfm,struct cipher_req_ctx * req_ctx,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes,struct cc_hw_desc desc[],unsigned int * seq_size)797 static void cc_setup_flow_desc(struct crypto_tfm *tfm,
798 struct cipher_req_ctx *req_ctx,
799 struct scatterlist *dst, struct scatterlist *src,
800 unsigned int nbytes, struct cc_hw_desc desc[],
801 unsigned int *seq_size)
802 {
803 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
804 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
805 unsigned int flow_mode = cc_out_flow_mode(ctx_p);
806 bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
807 ctx_p->cipher_mode == DRV_CIPHER_ECB);
808
809 /* Process */
810 if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
811 dev_dbg(dev, " data params addr %pad length 0x%X\n",
812 &sg_dma_address(src), nbytes);
813 dev_dbg(dev, " data params addr %pad length 0x%X\n",
814 &sg_dma_address(dst), nbytes);
815 hw_desc_init(&desc[*seq_size]);
816 set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
817 nbytes, NS_BIT);
818 set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
819 nbytes, NS_BIT, (!last_desc ? 0 : 1));
820 if (last_desc)
821 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
822
823 set_flow_mode(&desc[*seq_size], flow_mode);
824 (*seq_size)++;
825 } else {
826 hw_desc_init(&desc[*seq_size]);
827 set_din_type(&desc[*seq_size], DMA_MLLI,
828 ctx_p->drvdata->mlli_sram_addr,
829 req_ctx->in_mlli_nents, NS_BIT);
830 if (req_ctx->out_nents == 0) {
831 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
832 ctx_p->drvdata->mlli_sram_addr,
833 ctx_p->drvdata->mlli_sram_addr);
834 set_dout_mlli(&desc[*seq_size],
835 ctx_p->drvdata->mlli_sram_addr,
836 req_ctx->in_mlli_nents, NS_BIT,
837 (!last_desc ? 0 : 1));
838 } else {
839 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
840 ctx_p->drvdata->mlli_sram_addr,
841 ctx_p->drvdata->mlli_sram_addr +
842 (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
843 set_dout_mlli(&desc[*seq_size],
844 (ctx_p->drvdata->mlli_sram_addr +
845 (LLI_ENTRY_BYTE_SIZE *
846 req_ctx->in_mlli_nents)),
847 req_ctx->out_mlli_nents, NS_BIT,
848 (!last_desc ? 0 : 1));
849 }
850 if (last_desc)
851 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
852
853 set_flow_mode(&desc[*seq_size], flow_mode);
854 (*seq_size)++;
855 }
856 }
857
cc_cipher_complete(struct device * dev,void * cc_req,int err)858 static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
859 {
860 struct skcipher_request *req = (struct skcipher_request *)cc_req;
861 struct scatterlist *dst = req->dst;
862 struct scatterlist *src = req->src;
863 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
864 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
865 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
866
867 if (err != -EINPROGRESS) {
868 /* Not a BACKLOG notification */
869 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
870 memcpy(req->iv, req_ctx->iv, ivsize);
871 kfree_sensitive(req_ctx->iv);
872 }
873
874 skcipher_request_complete(req, err);
875 }
876
cc_cipher_process(struct skcipher_request * req,enum drv_crypto_direction direction)877 static int cc_cipher_process(struct skcipher_request *req,
878 enum drv_crypto_direction direction)
879 {
880 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
881 struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
882 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
883 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
884 struct scatterlist *dst = req->dst;
885 struct scatterlist *src = req->src;
886 unsigned int nbytes = req->cryptlen;
887 void *iv = req->iv;
888 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
889 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
890 struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
891 struct cc_crypto_req cc_req = {};
892 int rc;
893 unsigned int seq_len = 0;
894 gfp_t flags = cc_gfp_flags(&req->base);
895
896 dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
897 ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
898 "Encrypt" : "Decrypt"), req, iv, nbytes);
899
900 /* STAT_PHASE_0: Init and sanity checks */
901
902 if (validate_data_size(ctx_p, nbytes)) {
903 dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
904 rc = -EINVAL;
905 goto exit_process;
906 }
907 if (nbytes == 0) {
908 /* No data to process is valid */
909 rc = 0;
910 goto exit_process;
911 }
912
913 if (ctx_p->fallback_on) {
914 struct skcipher_request *subreq = skcipher_request_ctx(req);
915
916 *subreq = *req;
917 skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
918 if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
919 return crypto_skcipher_encrypt(subreq);
920 else
921 return crypto_skcipher_decrypt(subreq);
922 }
923
924 /* The IV we are handed may be allocated from the stack so
925 * we must copy it to a DMAable buffer before use.
926 */
927 req_ctx->iv = kmemdup(iv, ivsize, flags);
928 if (!req_ctx->iv) {
929 rc = -ENOMEM;
930 goto exit_process;
931 }
932
933 /* Setup request structure */
934 cc_req.user_cb = cc_cipher_complete;
935 cc_req.user_arg = req;
936
937 /* Setup CPP operation details */
938 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
939 cc_req.cpp.is_cpp = true;
940 cc_req.cpp.alg = ctx_p->cpp.alg;
941 cc_req.cpp.slot = ctx_p->cpp.slot;
942 }
943
944 /* Setup request context */
945 req_ctx->gen_ctx.op_type = direction;
946
947 /* STAT_PHASE_1: Map buffers */
948
949 rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
950 req_ctx->iv, src, dst, flags);
951 if (rc) {
952 dev_err(dev, "map_request() failed\n");
953 goto exit_process;
954 }
955
956 /* STAT_PHASE_2: Create sequence */
957
958 /* Setup state (IV) */
959 cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
960 /* Setup MLLI line, if needed */
961 cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
962 /* Setup key */
963 cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
964 /* Setup state (IV and XEX key) */
965 cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
966 /* Data processing */
967 cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
968 /* Read next IV */
969 cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
970
971 /* STAT_PHASE_3: Lock HW and push sequence */
972
973 rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
974 &req->base);
975 if (rc != -EINPROGRESS && rc != -EBUSY) {
976 /* Failed to send the request or request completed
977 * synchronously
978 */
979 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
980 }
981
982 exit_process:
983 if (rc != -EINPROGRESS && rc != -EBUSY) {
984 kfree_sensitive(req_ctx->iv);
985 }
986
987 return rc;
988 }
989
cc_cipher_encrypt(struct skcipher_request * req)990 static int cc_cipher_encrypt(struct skcipher_request *req)
991 {
992 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
993
994 memset(req_ctx, 0, sizeof(*req_ctx));
995
996 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
997 }
998
cc_cipher_decrypt(struct skcipher_request * req)999 static int cc_cipher_decrypt(struct skcipher_request *req)
1000 {
1001 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
1002
1003 memset(req_ctx, 0, sizeof(*req_ctx));
1004
1005 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1006 }
1007
1008 /* Block cipher alg */
1009 static const struct cc_alg_template skcipher_algs[] = {
1010 {
1011 .name = "xts(paes)",
1012 .driver_name = "xts-paes-ccree",
1013 .blocksize = 1,
1014 .template_skcipher = {
1015 .setkey = cc_cipher_sethkey,
1016 .encrypt = cc_cipher_encrypt,
1017 .decrypt = cc_cipher_decrypt,
1018 .min_keysize = CC_HW_KEY_SIZE,
1019 .max_keysize = CC_HW_KEY_SIZE,
1020 .ivsize = AES_BLOCK_SIZE,
1021 },
1022 .cipher_mode = DRV_CIPHER_XTS,
1023 .flow_mode = S_DIN_to_AES,
1024 .min_hw_rev = CC_HW_REV_630,
1025 .std_body = CC_STD_NIST,
1026 .sec_func = true,
1027 },
1028 {
1029 .name = "essiv(cbc(paes),sha256)",
1030 .driver_name = "essiv-paes-ccree",
1031 .blocksize = AES_BLOCK_SIZE,
1032 .template_skcipher = {
1033 .setkey = cc_cipher_sethkey,
1034 .encrypt = cc_cipher_encrypt,
1035 .decrypt = cc_cipher_decrypt,
1036 .min_keysize = CC_HW_KEY_SIZE,
1037 .max_keysize = CC_HW_KEY_SIZE,
1038 .ivsize = AES_BLOCK_SIZE,
1039 },
1040 .cipher_mode = DRV_CIPHER_ESSIV,
1041 .flow_mode = S_DIN_to_AES,
1042 .min_hw_rev = CC_HW_REV_712,
1043 .std_body = CC_STD_NIST,
1044 .sec_func = true,
1045 },
1046 {
1047 .name = "ecb(paes)",
1048 .driver_name = "ecb-paes-ccree",
1049 .blocksize = AES_BLOCK_SIZE,
1050 .template_skcipher = {
1051 .setkey = cc_cipher_sethkey,
1052 .encrypt = cc_cipher_encrypt,
1053 .decrypt = cc_cipher_decrypt,
1054 .min_keysize = CC_HW_KEY_SIZE,
1055 .max_keysize = CC_HW_KEY_SIZE,
1056 .ivsize = 0,
1057 },
1058 .cipher_mode = DRV_CIPHER_ECB,
1059 .flow_mode = S_DIN_to_AES,
1060 .min_hw_rev = CC_HW_REV_712,
1061 .std_body = CC_STD_NIST,
1062 .sec_func = true,
1063 },
1064 {
1065 .name = "cbc(paes)",
1066 .driver_name = "cbc-paes-ccree",
1067 .blocksize = AES_BLOCK_SIZE,
1068 .template_skcipher = {
1069 .setkey = cc_cipher_sethkey,
1070 .encrypt = cc_cipher_encrypt,
1071 .decrypt = cc_cipher_decrypt,
1072 .min_keysize = CC_HW_KEY_SIZE,
1073 .max_keysize = CC_HW_KEY_SIZE,
1074 .ivsize = AES_BLOCK_SIZE,
1075 },
1076 .cipher_mode = DRV_CIPHER_CBC,
1077 .flow_mode = S_DIN_to_AES,
1078 .min_hw_rev = CC_HW_REV_712,
1079 .std_body = CC_STD_NIST,
1080 .sec_func = true,
1081 },
1082 {
1083 .name = "ofb(paes)",
1084 .driver_name = "ofb-paes-ccree",
1085 .blocksize = AES_BLOCK_SIZE,
1086 .template_skcipher = {
1087 .setkey = cc_cipher_sethkey,
1088 .encrypt = cc_cipher_encrypt,
1089 .decrypt = cc_cipher_decrypt,
1090 .min_keysize = CC_HW_KEY_SIZE,
1091 .max_keysize = CC_HW_KEY_SIZE,
1092 .ivsize = AES_BLOCK_SIZE,
1093 },
1094 .cipher_mode = DRV_CIPHER_OFB,
1095 .flow_mode = S_DIN_to_AES,
1096 .min_hw_rev = CC_HW_REV_712,
1097 .std_body = CC_STD_NIST,
1098 .sec_func = true,
1099 },
1100 {
1101 .name = "cts(cbc(paes))",
1102 .driver_name = "cts-cbc-paes-ccree",
1103 .blocksize = AES_BLOCK_SIZE,
1104 .template_skcipher = {
1105 .setkey = cc_cipher_sethkey,
1106 .encrypt = cc_cipher_encrypt,
1107 .decrypt = cc_cipher_decrypt,
1108 .min_keysize = CC_HW_KEY_SIZE,
1109 .max_keysize = CC_HW_KEY_SIZE,
1110 .ivsize = AES_BLOCK_SIZE,
1111 },
1112 .cipher_mode = DRV_CIPHER_CBC_CTS,
1113 .flow_mode = S_DIN_to_AES,
1114 .min_hw_rev = CC_HW_REV_712,
1115 .std_body = CC_STD_NIST,
1116 .sec_func = true,
1117 },
1118 {
1119 .name = "ctr(paes)",
1120 .driver_name = "ctr-paes-ccree",
1121 .blocksize = 1,
1122 .template_skcipher = {
1123 .setkey = cc_cipher_sethkey,
1124 .encrypt = cc_cipher_encrypt,
1125 .decrypt = cc_cipher_decrypt,
1126 .min_keysize = CC_HW_KEY_SIZE,
1127 .max_keysize = CC_HW_KEY_SIZE,
1128 .ivsize = AES_BLOCK_SIZE,
1129 },
1130 .cipher_mode = DRV_CIPHER_CTR,
1131 .flow_mode = S_DIN_to_AES,
1132 .min_hw_rev = CC_HW_REV_712,
1133 .std_body = CC_STD_NIST,
1134 .sec_func = true,
1135 },
1136 {
1137 /* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1138 * for the reason why this differs from the generic
1139 * implementation.
1140 */
1141 .name = "xts(aes)",
1142 .driver_name = "xts-aes-ccree",
1143 .blocksize = 1,
1144 .template_skcipher = {
1145 .setkey = cc_cipher_setkey,
1146 .encrypt = cc_cipher_encrypt,
1147 .decrypt = cc_cipher_decrypt,
1148 .min_keysize = AES_MIN_KEY_SIZE * 2,
1149 .max_keysize = AES_MAX_KEY_SIZE * 2,
1150 .ivsize = AES_BLOCK_SIZE,
1151 },
1152 .cipher_mode = DRV_CIPHER_XTS,
1153 .flow_mode = S_DIN_to_AES,
1154 .min_hw_rev = CC_HW_REV_630,
1155 .std_body = CC_STD_NIST,
1156 },
1157 {
1158 .name = "essiv(cbc(aes),sha256)",
1159 .driver_name = "essiv-aes-ccree",
1160 .blocksize = AES_BLOCK_SIZE,
1161 .template_skcipher = {
1162 .setkey = cc_cipher_setkey,
1163 .encrypt = cc_cipher_encrypt,
1164 .decrypt = cc_cipher_decrypt,
1165 .min_keysize = AES_MIN_KEY_SIZE,
1166 .max_keysize = AES_MAX_KEY_SIZE,
1167 .ivsize = AES_BLOCK_SIZE,
1168 },
1169 .cipher_mode = DRV_CIPHER_ESSIV,
1170 .flow_mode = S_DIN_to_AES,
1171 .min_hw_rev = CC_HW_REV_712,
1172 .std_body = CC_STD_NIST,
1173 },
1174 {
1175 .name = "ecb(aes)",
1176 .driver_name = "ecb-aes-ccree",
1177 .blocksize = AES_BLOCK_SIZE,
1178 .template_skcipher = {
1179 .setkey = cc_cipher_setkey,
1180 .encrypt = cc_cipher_encrypt,
1181 .decrypt = cc_cipher_decrypt,
1182 .min_keysize = AES_MIN_KEY_SIZE,
1183 .max_keysize = AES_MAX_KEY_SIZE,
1184 .ivsize = 0,
1185 },
1186 .cipher_mode = DRV_CIPHER_ECB,
1187 .flow_mode = S_DIN_to_AES,
1188 .min_hw_rev = CC_HW_REV_630,
1189 .std_body = CC_STD_NIST,
1190 },
1191 {
1192 .name = "cbc(aes)",
1193 .driver_name = "cbc-aes-ccree",
1194 .blocksize = AES_BLOCK_SIZE,
1195 .template_skcipher = {
1196 .setkey = cc_cipher_setkey,
1197 .encrypt = cc_cipher_encrypt,
1198 .decrypt = cc_cipher_decrypt,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .ivsize = AES_BLOCK_SIZE,
1202 },
1203 .cipher_mode = DRV_CIPHER_CBC,
1204 .flow_mode = S_DIN_to_AES,
1205 .min_hw_rev = CC_HW_REV_630,
1206 .std_body = CC_STD_NIST,
1207 },
1208 {
1209 .name = "ofb(aes)",
1210 .driver_name = "ofb-aes-ccree",
1211 .blocksize = 1,
1212 .template_skcipher = {
1213 .setkey = cc_cipher_setkey,
1214 .encrypt = cc_cipher_encrypt,
1215 .decrypt = cc_cipher_decrypt,
1216 .min_keysize = AES_MIN_KEY_SIZE,
1217 .max_keysize = AES_MAX_KEY_SIZE,
1218 .ivsize = AES_BLOCK_SIZE,
1219 },
1220 .cipher_mode = DRV_CIPHER_OFB,
1221 .flow_mode = S_DIN_to_AES,
1222 .min_hw_rev = CC_HW_REV_630,
1223 .std_body = CC_STD_NIST,
1224 },
1225 {
1226 .name = "cts(cbc(aes))",
1227 .driver_name = "cts-cbc-aes-ccree",
1228 .blocksize = AES_BLOCK_SIZE,
1229 .template_skcipher = {
1230 .setkey = cc_cipher_setkey,
1231 .encrypt = cc_cipher_encrypt,
1232 .decrypt = cc_cipher_decrypt,
1233 .min_keysize = AES_MIN_KEY_SIZE,
1234 .max_keysize = AES_MAX_KEY_SIZE,
1235 .ivsize = AES_BLOCK_SIZE,
1236 },
1237 .cipher_mode = DRV_CIPHER_CBC_CTS,
1238 .flow_mode = S_DIN_to_AES,
1239 .min_hw_rev = CC_HW_REV_630,
1240 .std_body = CC_STD_NIST,
1241 },
1242 {
1243 .name = "ctr(aes)",
1244 .driver_name = "ctr-aes-ccree",
1245 .blocksize = 1,
1246 .template_skcipher = {
1247 .setkey = cc_cipher_setkey,
1248 .encrypt = cc_cipher_encrypt,
1249 .decrypt = cc_cipher_decrypt,
1250 .min_keysize = AES_MIN_KEY_SIZE,
1251 .max_keysize = AES_MAX_KEY_SIZE,
1252 .ivsize = AES_BLOCK_SIZE,
1253 },
1254 .cipher_mode = DRV_CIPHER_CTR,
1255 .flow_mode = S_DIN_to_AES,
1256 .min_hw_rev = CC_HW_REV_630,
1257 .std_body = CC_STD_NIST,
1258 },
1259 {
1260 .name = "cbc(des3_ede)",
1261 .driver_name = "cbc-3des-ccree",
1262 .blocksize = DES3_EDE_BLOCK_SIZE,
1263 .template_skcipher = {
1264 .setkey = cc_cipher_setkey,
1265 .encrypt = cc_cipher_encrypt,
1266 .decrypt = cc_cipher_decrypt,
1267 .min_keysize = DES3_EDE_KEY_SIZE,
1268 .max_keysize = DES3_EDE_KEY_SIZE,
1269 .ivsize = DES3_EDE_BLOCK_SIZE,
1270 },
1271 .cipher_mode = DRV_CIPHER_CBC,
1272 .flow_mode = S_DIN_to_DES,
1273 .min_hw_rev = CC_HW_REV_630,
1274 .std_body = CC_STD_NIST,
1275 },
1276 {
1277 .name = "ecb(des3_ede)",
1278 .driver_name = "ecb-3des-ccree",
1279 .blocksize = DES3_EDE_BLOCK_SIZE,
1280 .template_skcipher = {
1281 .setkey = cc_cipher_setkey,
1282 .encrypt = cc_cipher_encrypt,
1283 .decrypt = cc_cipher_decrypt,
1284 .min_keysize = DES3_EDE_KEY_SIZE,
1285 .max_keysize = DES3_EDE_KEY_SIZE,
1286 .ivsize = 0,
1287 },
1288 .cipher_mode = DRV_CIPHER_ECB,
1289 .flow_mode = S_DIN_to_DES,
1290 .min_hw_rev = CC_HW_REV_630,
1291 .std_body = CC_STD_NIST,
1292 },
1293 {
1294 .name = "cbc(des)",
1295 .driver_name = "cbc-des-ccree",
1296 .blocksize = DES_BLOCK_SIZE,
1297 .template_skcipher = {
1298 .setkey = cc_cipher_setkey,
1299 .encrypt = cc_cipher_encrypt,
1300 .decrypt = cc_cipher_decrypt,
1301 .min_keysize = DES_KEY_SIZE,
1302 .max_keysize = DES_KEY_SIZE,
1303 .ivsize = DES_BLOCK_SIZE,
1304 },
1305 .cipher_mode = DRV_CIPHER_CBC,
1306 .flow_mode = S_DIN_to_DES,
1307 .min_hw_rev = CC_HW_REV_630,
1308 .std_body = CC_STD_NIST,
1309 },
1310 {
1311 .name = "ecb(des)",
1312 .driver_name = "ecb-des-ccree",
1313 .blocksize = DES_BLOCK_SIZE,
1314 .template_skcipher = {
1315 .setkey = cc_cipher_setkey,
1316 .encrypt = cc_cipher_encrypt,
1317 .decrypt = cc_cipher_decrypt,
1318 .min_keysize = DES_KEY_SIZE,
1319 .max_keysize = DES_KEY_SIZE,
1320 .ivsize = 0,
1321 },
1322 .cipher_mode = DRV_CIPHER_ECB,
1323 .flow_mode = S_DIN_to_DES,
1324 .min_hw_rev = CC_HW_REV_630,
1325 .std_body = CC_STD_NIST,
1326 },
1327 {
1328 .name = "cbc(sm4)",
1329 .driver_name = "cbc-sm4-ccree",
1330 .blocksize = SM4_BLOCK_SIZE,
1331 .template_skcipher = {
1332 .setkey = cc_cipher_setkey,
1333 .encrypt = cc_cipher_encrypt,
1334 .decrypt = cc_cipher_decrypt,
1335 .min_keysize = SM4_KEY_SIZE,
1336 .max_keysize = SM4_KEY_SIZE,
1337 .ivsize = SM4_BLOCK_SIZE,
1338 },
1339 .cipher_mode = DRV_CIPHER_CBC,
1340 .flow_mode = S_DIN_to_SM4,
1341 .min_hw_rev = CC_HW_REV_713,
1342 .std_body = CC_STD_OSCCA,
1343 },
1344 {
1345 .name = "ecb(sm4)",
1346 .driver_name = "ecb-sm4-ccree",
1347 .blocksize = SM4_BLOCK_SIZE,
1348 .template_skcipher = {
1349 .setkey = cc_cipher_setkey,
1350 .encrypt = cc_cipher_encrypt,
1351 .decrypt = cc_cipher_decrypt,
1352 .min_keysize = SM4_KEY_SIZE,
1353 .max_keysize = SM4_KEY_SIZE,
1354 .ivsize = 0,
1355 },
1356 .cipher_mode = DRV_CIPHER_ECB,
1357 .flow_mode = S_DIN_to_SM4,
1358 .min_hw_rev = CC_HW_REV_713,
1359 .std_body = CC_STD_OSCCA,
1360 },
1361 {
1362 .name = "ctr(sm4)",
1363 .driver_name = "ctr-sm4-ccree",
1364 .blocksize = 1,
1365 .template_skcipher = {
1366 .setkey = cc_cipher_setkey,
1367 .encrypt = cc_cipher_encrypt,
1368 .decrypt = cc_cipher_decrypt,
1369 .min_keysize = SM4_KEY_SIZE,
1370 .max_keysize = SM4_KEY_SIZE,
1371 .ivsize = SM4_BLOCK_SIZE,
1372 },
1373 .cipher_mode = DRV_CIPHER_CTR,
1374 .flow_mode = S_DIN_to_SM4,
1375 .min_hw_rev = CC_HW_REV_713,
1376 .std_body = CC_STD_OSCCA,
1377 },
1378 {
1379 .name = "cbc(psm4)",
1380 .driver_name = "cbc-psm4-ccree",
1381 .blocksize = SM4_BLOCK_SIZE,
1382 .template_skcipher = {
1383 .setkey = cc_cipher_sethkey,
1384 .encrypt = cc_cipher_encrypt,
1385 .decrypt = cc_cipher_decrypt,
1386 .min_keysize = CC_HW_KEY_SIZE,
1387 .max_keysize = CC_HW_KEY_SIZE,
1388 .ivsize = SM4_BLOCK_SIZE,
1389 },
1390 .cipher_mode = DRV_CIPHER_CBC,
1391 .flow_mode = S_DIN_to_SM4,
1392 .min_hw_rev = CC_HW_REV_713,
1393 .std_body = CC_STD_OSCCA,
1394 .sec_func = true,
1395 },
1396 {
1397 .name = "ctr(psm4)",
1398 .driver_name = "ctr-psm4-ccree",
1399 .blocksize = SM4_BLOCK_SIZE,
1400 .template_skcipher = {
1401 .setkey = cc_cipher_sethkey,
1402 .encrypt = cc_cipher_encrypt,
1403 .decrypt = cc_cipher_decrypt,
1404 .min_keysize = CC_HW_KEY_SIZE,
1405 .max_keysize = CC_HW_KEY_SIZE,
1406 .ivsize = SM4_BLOCK_SIZE,
1407 },
1408 .cipher_mode = DRV_CIPHER_CTR,
1409 .flow_mode = S_DIN_to_SM4,
1410 .min_hw_rev = CC_HW_REV_713,
1411 .std_body = CC_STD_OSCCA,
1412 .sec_func = true,
1413 },
1414 };
1415
cc_create_alg(const struct cc_alg_template * tmpl,struct device * dev)1416 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1417 struct device *dev)
1418 {
1419 struct cc_crypto_alg *t_alg;
1420 struct skcipher_alg *alg;
1421
1422 t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1423 if (!t_alg)
1424 return ERR_PTR(-ENOMEM);
1425
1426 alg = &t_alg->skcipher_alg;
1427
1428 memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1429
1430 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1431 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1432 tmpl->driver_name);
1433 alg->base.cra_module = THIS_MODULE;
1434 alg->base.cra_priority = CC_CRA_PRIO;
1435 alg->base.cra_blocksize = tmpl->blocksize;
1436 alg->base.cra_alignmask = 0;
1437 alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1438
1439 alg->base.cra_init = cc_cipher_init;
1440 alg->base.cra_exit = cc_cipher_exit;
1441 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1442
1443 t_alg->cipher_mode = tmpl->cipher_mode;
1444 t_alg->flow_mode = tmpl->flow_mode;
1445
1446 return t_alg;
1447 }
1448
cc_cipher_free(struct cc_drvdata * drvdata)1449 int cc_cipher_free(struct cc_drvdata *drvdata)
1450 {
1451 struct cc_crypto_alg *t_alg, *n;
1452
1453 /* Remove registered algs */
1454 list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1455 crypto_unregister_skcipher(&t_alg->skcipher_alg);
1456 list_del(&t_alg->entry);
1457 }
1458 return 0;
1459 }
1460
cc_cipher_alloc(struct cc_drvdata * drvdata)1461 int cc_cipher_alloc(struct cc_drvdata *drvdata)
1462 {
1463 struct cc_crypto_alg *t_alg;
1464 struct device *dev = drvdata_to_dev(drvdata);
1465 int rc = -ENOMEM;
1466 int alg;
1467
1468 INIT_LIST_HEAD(&drvdata->alg_list);
1469
1470 /* Linux crypto */
1471 dev_dbg(dev, "Number of algorithms = %zu\n",
1472 ARRAY_SIZE(skcipher_algs));
1473 for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1474 if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1475 !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1476 (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1477 continue;
1478
1479 dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1480 t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1481 if (IS_ERR(t_alg)) {
1482 rc = PTR_ERR(t_alg);
1483 dev_err(dev, "%s alg allocation failed\n",
1484 skcipher_algs[alg].driver_name);
1485 goto fail0;
1486 }
1487 t_alg->drvdata = drvdata;
1488
1489 dev_dbg(dev, "registering %s\n",
1490 skcipher_algs[alg].driver_name);
1491 rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1492 dev_dbg(dev, "%s alg registration rc = %x\n",
1493 t_alg->skcipher_alg.base.cra_driver_name, rc);
1494 if (rc) {
1495 dev_err(dev, "%s alg registration failed\n",
1496 t_alg->skcipher_alg.base.cra_driver_name);
1497 goto fail0;
1498 }
1499
1500 list_add_tail(&t_alg->entry, &drvdata->alg_list);
1501 dev_dbg(dev, "Registered %s\n",
1502 t_alg->skcipher_alg.base.cra_driver_name);
1503 }
1504 return 0;
1505
1506 fail0:
1507 cc_cipher_free(drvdata);
1508 return rc;
1509 }
1510