1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <crypto/internal/hash.h>
7 #include <linux/err.h>
8 #include <linux/interrupt.h>
9 #include <linux/types.h>
10 #include <crypto/scatterwalk.h>
11 #include <crypto/sha1.h>
12 #include <crypto/sha2.h>
13 
14 #include "cipher.h"
15 #include "common.h"
16 #include "core.h"
17 #include "regs-v5.h"
18 #include "sha.h"
19 #include "aead.h"
20 
qce_read(struct qce_device * qce,u32 offset)21 static inline u32 qce_read(struct qce_device *qce, u32 offset)
22 {
23 	return readl(qce->base + offset);
24 }
25 
qce_write(struct qce_device * qce,u32 offset,u32 val)26 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
27 {
28 	writel(val, qce->base + offset);
29 }
30 
qce_write_array(struct qce_device * qce,u32 offset,const u32 * val,unsigned int len)31 static inline void qce_write_array(struct qce_device *qce, u32 offset,
32 				   const u32 *val, unsigned int len)
33 {
34 	int i;
35 
36 	for (i = 0; i < len; i++)
37 		qce_write(qce, offset + i * sizeof(u32), val[i]);
38 }
39 
40 static inline void
qce_clear_array(struct qce_device * qce,u32 offset,unsigned int len)41 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
42 {
43 	int i;
44 
45 	for (i = 0; i < len; i++)
46 		qce_write(qce, offset + i * sizeof(u32), 0);
47 }
48 
qce_config_reg(struct qce_device * qce,int little)49 static u32 qce_config_reg(struct qce_device *qce, int little)
50 {
51 	u32 beats = (qce->burst_size >> 3) - 1;
52 	u32 pipe_pair = qce->pipe_pair_id;
53 	u32 config;
54 
55 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
56 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
57 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
58 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
59 	config &= ~HIGH_SPD_EN_N_SHIFT;
60 
61 	if (little)
62 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
63 
64 	return config;
65 }
66 
qce_cpu_to_be32p_array(__be32 * dst,const u8 * src,unsigned int len)67 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
68 {
69 	__be32 *d = dst;
70 	const u8 *s = src;
71 	unsigned int n;
72 
73 	n = len / sizeof(u32);
74 	for (; n > 0; n--) {
75 		*d = cpu_to_be32p((const __u32 *) s);
76 		s += sizeof(__u32);
77 		d++;
78 	}
79 }
80 
qce_setup_config(struct qce_device * qce)81 static void qce_setup_config(struct qce_device *qce)
82 {
83 	u32 config;
84 
85 	/* get big endianness */
86 	config = qce_config_reg(qce, 0);
87 
88 	/* clear status */
89 	qce_write(qce, REG_STATUS, 0);
90 	qce_write(qce, REG_CONFIG, config);
91 }
92 
qce_crypto_go(struct qce_device * qce,bool result_dump)93 static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
94 {
95 	if (result_dump)
96 		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
97 	else
98 		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
99 }
100 
101 #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_auth_cfg(unsigned long flags,u32 key_size,u32 auth_size)102 static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
103 {
104 	u32 cfg = 0;
105 
106 	if (IS_CCM(flags) || IS_CMAC(flags))
107 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
108 	else
109 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
110 
111 	if (IS_CCM(flags) || IS_CMAC(flags)) {
112 		if (key_size == AES_KEYSIZE_128)
113 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
114 		else if (key_size == AES_KEYSIZE_256)
115 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
116 	}
117 
118 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
119 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
120 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
121 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
122 	else if (IS_CMAC(flags))
123 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
124 	else if (IS_CCM(flags))
125 		cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
126 
127 	if (IS_SHA1(flags) || IS_SHA256(flags))
128 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
129 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
130 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
131 	else if (IS_CCM(flags))
132 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
133 	else if (IS_CMAC(flags))
134 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
135 
136 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
137 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
138 
139 	if (IS_CCM(flags))
140 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
141 
142 	return cfg;
143 }
144 #endif
145 
146 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
qce_setup_regs_ahash(struct crypto_async_request * async_req)147 static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
148 {
149 	struct ahash_request *req = ahash_request_cast(async_req);
150 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
151 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
152 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
153 	struct qce_device *qce = tmpl->qce;
154 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
155 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
156 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
157 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
158 	u32 auth_cfg = 0, config;
159 	unsigned int iv_words;
160 
161 	/* if not the last, the size has to be on the block boundary */
162 	if (!rctx->last_blk && req->nbytes % blocksize)
163 		return -EINVAL;
164 
165 	qce_setup_config(qce);
166 
167 	if (IS_CMAC(rctx->flags)) {
168 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
169 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
170 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
171 		qce_clear_array(qce, REG_AUTH_IV0, 16);
172 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
173 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
174 
175 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
176 	}
177 
178 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
179 		u32 authkey_words = rctx->authklen / sizeof(u32);
180 
181 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
182 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
183 				authkey_words);
184 	}
185 
186 	if (IS_CMAC(rctx->flags))
187 		goto go_proc;
188 
189 	if (rctx->first_blk)
190 		memcpy(auth, rctx->digest, digestsize);
191 	else
192 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
193 
194 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
195 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
196 
197 	if (rctx->first_blk)
198 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
199 	else
200 		qce_write_array(qce, REG_AUTH_BYTECNT0,
201 				(u32 *)rctx->byte_count, 2);
202 
203 	auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
204 
205 	if (rctx->last_blk)
206 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
207 	else
208 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
209 
210 	if (rctx->first_blk)
211 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
212 	else
213 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
214 
215 go_proc:
216 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
217 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
218 	qce_write(qce, REG_AUTH_SEG_START, 0);
219 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
220 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
221 
222 	/* get little endianness */
223 	config = qce_config_reg(qce, 1);
224 	qce_write(qce, REG_CONFIG, config);
225 
226 	qce_crypto_go(qce, true);
227 
228 	return 0;
229 }
230 #endif
231 
232 #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_encr_cfg(unsigned long flags,u32 aes_key_size)233 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
234 {
235 	u32 cfg = 0;
236 
237 	if (IS_AES(flags)) {
238 		if (aes_key_size == AES_KEYSIZE_128)
239 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
240 		else if (aes_key_size == AES_KEYSIZE_256)
241 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
242 	}
243 
244 	if (IS_AES(flags))
245 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
246 	else if (IS_DES(flags) || IS_3DES(flags))
247 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
248 
249 	if (IS_DES(flags))
250 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
251 
252 	if (IS_3DES(flags))
253 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
254 
255 	switch (flags & QCE_MODE_MASK) {
256 	case QCE_MODE_ECB:
257 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
258 		break;
259 	case QCE_MODE_CBC:
260 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
261 		break;
262 	case QCE_MODE_CTR:
263 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
264 		break;
265 	case QCE_MODE_XTS:
266 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
267 		break;
268 	case QCE_MODE_CCM:
269 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
270 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
271 		break;
272 	default:
273 		return ~0;
274 	}
275 
276 	return cfg;
277 }
278 #endif
279 
280 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
qce_xts_swapiv(__be32 * dst,const u8 * src,unsigned int ivsize)281 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
282 {
283 	u8 swap[QCE_AES_IV_LENGTH];
284 	u32 i, j;
285 
286 	if (ivsize > QCE_AES_IV_LENGTH)
287 		return;
288 
289 	memset(swap, 0, QCE_AES_IV_LENGTH);
290 
291 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
292 	     i < QCE_AES_IV_LENGTH; i++, j--)
293 		swap[i] = src[j];
294 
295 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
296 }
297 
qce_xtskey(struct qce_device * qce,const u8 * enckey,unsigned int enckeylen,unsigned int cryptlen)298 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
299 		       unsigned int enckeylen, unsigned int cryptlen)
300 {
301 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
302 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
303 
304 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
305 			       enckeylen / 2);
306 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
307 
308 	/* Set data unit size to cryptlen. Anything else causes
309 	 * crypto engine to return back incorrect results.
310 	 */
311 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
312 }
313 
qce_setup_regs_skcipher(struct crypto_async_request * async_req)314 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
315 {
316 	struct skcipher_request *req = skcipher_request_cast(async_req);
317 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
318 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
319 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
320 	struct qce_device *qce = tmpl->qce;
321 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
322 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
323 	unsigned int enckey_words, enciv_words;
324 	unsigned int keylen;
325 	u32 encr_cfg = 0, auth_cfg = 0, config;
326 	unsigned int ivsize = rctx->ivsize;
327 	unsigned long flags = rctx->flags;
328 
329 	qce_setup_config(qce);
330 
331 	if (IS_XTS(flags))
332 		keylen = ctx->enc_keylen / 2;
333 	else
334 		keylen = ctx->enc_keylen;
335 
336 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
337 	enckey_words = keylen / sizeof(u32);
338 
339 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
340 
341 	encr_cfg = qce_encr_cfg(flags, keylen);
342 
343 	if (IS_DES(flags)) {
344 		enciv_words = 2;
345 		enckey_words = 2;
346 	} else if (IS_3DES(flags)) {
347 		enciv_words = 2;
348 		enckey_words = 6;
349 	} else if (IS_AES(flags)) {
350 		if (IS_XTS(flags))
351 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
352 				   rctx->cryptlen);
353 		enciv_words = 4;
354 	} else {
355 		return -EINVAL;
356 	}
357 
358 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
359 
360 	if (!IS_ECB(flags)) {
361 		if (IS_XTS(flags))
362 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
363 		else
364 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
365 
366 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
367 	}
368 
369 	if (IS_ENCRYPT(flags))
370 		encr_cfg |= BIT(ENCODE_SHIFT);
371 
372 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
373 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
374 	qce_write(qce, REG_ENCR_SEG_START, 0);
375 
376 	if (IS_CTR(flags)) {
377 		qce_write(qce, REG_CNTR_MASK, ~0);
378 		qce_write(qce, REG_CNTR_MASK0, ~0);
379 		qce_write(qce, REG_CNTR_MASK1, ~0);
380 		qce_write(qce, REG_CNTR_MASK2, ~0);
381 	}
382 
383 	qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
384 
385 	/* get little endianness */
386 	config = qce_config_reg(qce, 1);
387 	qce_write(qce, REG_CONFIG, config);
388 
389 	qce_crypto_go(qce, true);
390 
391 	return 0;
392 }
393 #endif
394 
395 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
396 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
397 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
398 };
399 
400 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
401 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
402 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
403 };
404 
qce_be32_to_cpu_array(u32 * dst,const u8 * src,unsigned int len)405 static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
406 {
407 	u32 *d = dst;
408 	const u8 *s = src;
409 	unsigned int n;
410 
411 	n = len / sizeof(u32);
412 	for (; n > 0; n--) {
413 		*d = be32_to_cpup((const __be32 *)s);
414 		s += sizeof(u32);
415 		d++;
416 	}
417 	return DIV_ROUND_UP(len, sizeof(u32));
418 }
419 
qce_setup_regs_aead(struct crypto_async_request * async_req)420 static int qce_setup_regs_aead(struct crypto_async_request *async_req)
421 {
422 	struct aead_request *req = aead_request_cast(async_req);
423 	struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req);
424 	struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
425 	struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
426 	struct qce_device *qce = tmpl->qce;
427 	u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
428 	u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
429 	u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
430 	u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
431 	u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
432 	unsigned int enc_keylen = ctx->enc_keylen;
433 	unsigned int auth_keylen = ctx->auth_keylen;
434 	unsigned int enc_ivsize = rctx->ivsize;
435 	unsigned int auth_ivsize = 0;
436 	unsigned int enckey_words, enciv_words;
437 	unsigned int authkey_words, authiv_words, authnonce_words;
438 	unsigned long flags = rctx->flags;
439 	u32 encr_cfg, auth_cfg, config, totallen;
440 	u32 iv_last_word;
441 
442 	qce_setup_config(qce);
443 
444 	/* Write encryption key */
445 	enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
446 	qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
447 
448 	/* Write encryption iv */
449 	enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
450 	qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
451 
452 	if (IS_CCM(rctx->flags)) {
453 		iv_last_word = enciv[enciv_words - 1];
454 		qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
455 		qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
456 		qce_write(qce, REG_CNTR_MASK, ~0);
457 		qce_write(qce, REG_CNTR_MASK0, ~0);
458 		qce_write(qce, REG_CNTR_MASK1, ~0);
459 		qce_write(qce, REG_CNTR_MASK2, ~0);
460 	}
461 
462 	/* Clear authentication IV and KEY registers of previous values */
463 	qce_clear_array(qce, REG_AUTH_IV0, 16);
464 	qce_clear_array(qce, REG_AUTH_KEY0, 16);
465 
466 	/* Clear byte count */
467 	qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
468 
469 	/* Write authentication key */
470 	authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
471 	qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
472 
473 	/* Write initial authentication IV only for HMAC algorithms */
474 	if (IS_SHA_HMAC(rctx->flags)) {
475 		/* Write default authentication iv */
476 		if (IS_SHA1_HMAC(rctx->flags)) {
477 			auth_ivsize = SHA1_DIGEST_SIZE;
478 			memcpy(authiv, std_iv_sha1, auth_ivsize);
479 		} else if (IS_SHA256_HMAC(rctx->flags)) {
480 			auth_ivsize = SHA256_DIGEST_SIZE;
481 			memcpy(authiv, std_iv_sha256, auth_ivsize);
482 		}
483 		authiv_words = auth_ivsize / sizeof(u32);
484 		qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
485 	} else if (IS_CCM(rctx->flags)) {
486 		/* Write nonce for CCM algorithms */
487 		authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
488 		qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
489 	}
490 
491 	/* Set up ENCR_SEG_CFG */
492 	encr_cfg = qce_encr_cfg(flags, enc_keylen);
493 	if (IS_ENCRYPT(flags))
494 		encr_cfg |= BIT(ENCODE_SHIFT);
495 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
496 
497 	/* Set up AUTH_SEG_CFG */
498 	auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
499 	auth_cfg |= BIT(AUTH_LAST_SHIFT);
500 	auth_cfg |= BIT(AUTH_FIRST_SHIFT);
501 	if (IS_ENCRYPT(flags)) {
502 		if (IS_CCM(rctx->flags))
503 			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
504 		else
505 			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
506 	} else {
507 		if (IS_CCM(rctx->flags))
508 			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
509 		else
510 			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
511 	}
512 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
513 
514 	totallen = rctx->cryptlen + rctx->assoclen;
515 
516 	/* Set the encryption size and start offset */
517 	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
518 		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
519 	else
520 		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
521 	qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
522 
523 	/* Set the authentication size and start offset */
524 	qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
525 	qce_write(qce, REG_AUTH_SEG_START, 0);
526 
527 	/* Write total length */
528 	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
529 		qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
530 	else
531 		qce_write(qce, REG_SEG_SIZE, totallen);
532 
533 	/* get little endianness */
534 	config = qce_config_reg(qce, 1);
535 	qce_write(qce, REG_CONFIG, config);
536 
537 	/* Start the process */
538 	qce_crypto_go(qce, !IS_CCM(flags));
539 
540 	return 0;
541 }
542 #endif
543 
qce_start(struct crypto_async_request * async_req,u32 type)544 int qce_start(struct crypto_async_request *async_req, u32 type)
545 {
546 	switch (type) {
547 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
548 	case CRYPTO_ALG_TYPE_SKCIPHER:
549 		return qce_setup_regs_skcipher(async_req);
550 #endif
551 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
552 	case CRYPTO_ALG_TYPE_AHASH:
553 		return qce_setup_regs_ahash(async_req);
554 #endif
555 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
556 	case CRYPTO_ALG_TYPE_AEAD:
557 		return qce_setup_regs_aead(async_req);
558 #endif
559 	default:
560 		return -EINVAL;
561 	}
562 }
563 
564 #define STATUS_ERRORS	\
565 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
566 
qce_check_status(struct qce_device * qce,u32 * status)567 int qce_check_status(struct qce_device *qce, u32 *status)
568 {
569 	int ret = 0;
570 
571 	*status = qce_read(qce, REG_STATUS);
572 
573 	/*
574 	 * Don't use result dump status. The operation may not be complete.
575 	 * Instead, use the status we just read from device. In case, we need to
576 	 * use result_status from result dump the result_status needs to be byte
577 	 * swapped, since we set the device to little endian.
578 	 */
579 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
580 		ret = -ENXIO;
581 	else if (*status & BIT(MAC_FAILED_SHIFT))
582 		ret = -EBADMSG;
583 
584 	return ret;
585 }
586 
qce_get_version(struct qce_device * qce,u32 * major,u32 * minor,u32 * step)587 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
588 {
589 	u32 val;
590 
591 	val = qce_read(qce, REG_VERSION);
592 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
593 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
594 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
595 }
596