1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
4 * Synopsys DesignWare eDMA core driver
5 *
6 * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
7 */
8
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/dma/edma.h>
17 #include <linux/dma-mapping.h>
18
19 #include "dw-edma-core.h"
20 #include "dw-edma-v0-core.h"
21 #include "../dmaengine.h"
22 #include "../virt-dma.h"
23
24 static inline
dchan2dev(struct dma_chan * dchan)25 struct device *dchan2dev(struct dma_chan *dchan)
26 {
27 return &dchan->dev->device;
28 }
29
30 static inline
chan2dev(struct dw_edma_chan * chan)31 struct device *chan2dev(struct dw_edma_chan *chan)
32 {
33 return &chan->vc.chan.dev->device;
34 }
35
36 static inline
vd2dw_edma_desc(struct virt_dma_desc * vd)37 struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
38 {
39 return container_of(vd, struct dw_edma_desc, vd);
40 }
41
42 static inline
dw_edma_get_pci_address(struct dw_edma_chan * chan,phys_addr_t cpu_addr)43 u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr)
44 {
45 struct dw_edma_chip *chip = chan->dw->chip;
46
47 if (chip->ops->pci_address)
48 return chip->ops->pci_address(chip->dev, cpu_addr);
49
50 return cpu_addr;
51 }
52
dw_edma_alloc_burst(struct dw_edma_chunk * chunk)53 static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
54 {
55 struct dw_edma_burst *burst;
56
57 burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
58 if (unlikely(!burst))
59 return NULL;
60
61 INIT_LIST_HEAD(&burst->list);
62 if (chunk->burst) {
63 /* Create and add new element into the linked list */
64 chunk->bursts_alloc++;
65 list_add_tail(&burst->list, &chunk->burst->list);
66 } else {
67 /* List head */
68 chunk->bursts_alloc = 0;
69 chunk->burst = burst;
70 }
71
72 return burst;
73 }
74
dw_edma_alloc_chunk(struct dw_edma_desc * desc)75 static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
76 {
77 struct dw_edma_chip *chip = desc->chan->dw->chip;
78 struct dw_edma_chan *chan = desc->chan;
79 struct dw_edma_chunk *chunk;
80
81 chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
82 if (unlikely(!chunk))
83 return NULL;
84
85 INIT_LIST_HEAD(&chunk->list);
86 chunk->chan = chan;
87 /* Toggling change bit (CB) in each chunk, this is a mechanism to
88 * inform the eDMA HW block that this is a new linked list ready
89 * to be consumed.
90 * - Odd chunks originate CB equal to 0
91 * - Even chunks originate CB equal to 1
92 */
93 chunk->cb = !(desc->chunks_alloc % 2);
94 if (chan->dir == EDMA_DIR_WRITE) {
95 chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
96 chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
97 } else {
98 chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
99 chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
100 }
101
102 if (desc->chunk) {
103 /* Create and add new element into the linked list */
104 if (!dw_edma_alloc_burst(chunk)) {
105 kfree(chunk);
106 return NULL;
107 }
108 desc->chunks_alloc++;
109 list_add_tail(&chunk->list, &desc->chunk->list);
110 } else {
111 /* List head */
112 chunk->burst = NULL;
113 desc->chunks_alloc = 0;
114 desc->chunk = chunk;
115 }
116
117 return chunk;
118 }
119
dw_edma_alloc_desc(struct dw_edma_chan * chan)120 static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
121 {
122 struct dw_edma_desc *desc;
123
124 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
125 if (unlikely(!desc))
126 return NULL;
127
128 desc->chan = chan;
129 if (!dw_edma_alloc_chunk(desc)) {
130 kfree(desc);
131 return NULL;
132 }
133
134 return desc;
135 }
136
dw_edma_free_burst(struct dw_edma_chunk * chunk)137 static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
138 {
139 struct dw_edma_burst *child, *_next;
140
141 /* Remove all the list elements */
142 list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
143 list_del(&child->list);
144 kfree(child);
145 chunk->bursts_alloc--;
146 }
147
148 /* Remove the list head */
149 kfree(child);
150 chunk->burst = NULL;
151 }
152
dw_edma_free_chunk(struct dw_edma_desc * desc)153 static void dw_edma_free_chunk(struct dw_edma_desc *desc)
154 {
155 struct dw_edma_chunk *child, *_next;
156
157 if (!desc->chunk)
158 return;
159
160 /* Remove all the list elements */
161 list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
162 dw_edma_free_burst(child);
163 list_del(&child->list);
164 kfree(child);
165 desc->chunks_alloc--;
166 }
167
168 /* Remove the list head */
169 kfree(child);
170 desc->chunk = NULL;
171 }
172
dw_edma_free_desc(struct dw_edma_desc * desc)173 static void dw_edma_free_desc(struct dw_edma_desc *desc)
174 {
175 dw_edma_free_chunk(desc);
176 kfree(desc);
177 }
178
vchan_free_desc(struct virt_dma_desc * vdesc)179 static void vchan_free_desc(struct virt_dma_desc *vdesc)
180 {
181 dw_edma_free_desc(vd2dw_edma_desc(vdesc));
182 }
183
dw_edma_start_transfer(struct dw_edma_chan * chan)184 static void dw_edma_start_transfer(struct dw_edma_chan *chan)
185 {
186 struct dw_edma_chunk *child;
187 struct dw_edma_desc *desc;
188 struct virt_dma_desc *vd;
189
190 vd = vchan_next_desc(&chan->vc);
191 if (!vd)
192 return;
193
194 desc = vd2dw_edma_desc(vd);
195 if (!desc)
196 return;
197
198 child = list_first_entry_or_null(&desc->chunk->list,
199 struct dw_edma_chunk, list);
200 if (!child)
201 return;
202
203 dw_edma_v0_core_start(child, !desc->xfer_sz);
204 desc->xfer_sz += child->ll_region.sz;
205 dw_edma_free_burst(child);
206 list_del(&child->list);
207 kfree(child);
208 desc->chunks_alloc--;
209 }
210
dw_edma_device_caps(struct dma_chan * dchan,struct dma_slave_caps * caps)211 static void dw_edma_device_caps(struct dma_chan *dchan,
212 struct dma_slave_caps *caps)
213 {
214 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
215
216 if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
217 if (chan->dir == EDMA_DIR_READ)
218 caps->directions = BIT(DMA_DEV_TO_MEM);
219 else
220 caps->directions = BIT(DMA_MEM_TO_DEV);
221 } else {
222 if (chan->dir == EDMA_DIR_WRITE)
223 caps->directions = BIT(DMA_DEV_TO_MEM);
224 else
225 caps->directions = BIT(DMA_MEM_TO_DEV);
226 }
227 }
228
dw_edma_device_config(struct dma_chan * dchan,struct dma_slave_config * config)229 static int dw_edma_device_config(struct dma_chan *dchan,
230 struct dma_slave_config *config)
231 {
232 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
233
234 memcpy(&chan->config, config, sizeof(*config));
235 chan->configured = true;
236
237 return 0;
238 }
239
dw_edma_device_pause(struct dma_chan * dchan)240 static int dw_edma_device_pause(struct dma_chan *dchan)
241 {
242 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
243 int err = 0;
244
245 if (!chan->configured)
246 err = -EPERM;
247 else if (chan->status != EDMA_ST_BUSY)
248 err = -EPERM;
249 else if (chan->request != EDMA_REQ_NONE)
250 err = -EPERM;
251 else
252 chan->request = EDMA_REQ_PAUSE;
253
254 return err;
255 }
256
dw_edma_device_resume(struct dma_chan * dchan)257 static int dw_edma_device_resume(struct dma_chan *dchan)
258 {
259 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
260 int err = 0;
261
262 if (!chan->configured) {
263 err = -EPERM;
264 } else if (chan->status != EDMA_ST_PAUSE) {
265 err = -EPERM;
266 } else if (chan->request != EDMA_REQ_NONE) {
267 err = -EPERM;
268 } else {
269 chan->status = EDMA_ST_BUSY;
270 dw_edma_start_transfer(chan);
271 }
272
273 return err;
274 }
275
dw_edma_device_terminate_all(struct dma_chan * dchan)276 static int dw_edma_device_terminate_all(struct dma_chan *dchan)
277 {
278 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
279 int err = 0;
280
281 if (!chan->configured) {
282 /* Do nothing */
283 } else if (chan->status == EDMA_ST_PAUSE) {
284 chan->status = EDMA_ST_IDLE;
285 chan->configured = false;
286 } else if (chan->status == EDMA_ST_IDLE) {
287 chan->configured = false;
288 } else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
289 /*
290 * The channel is in a false BUSY state, probably didn't
291 * receive or lost an interrupt
292 */
293 chan->status = EDMA_ST_IDLE;
294 chan->configured = false;
295 } else if (chan->request > EDMA_REQ_PAUSE) {
296 err = -EPERM;
297 } else {
298 chan->request = EDMA_REQ_STOP;
299 }
300
301 return err;
302 }
303
dw_edma_device_issue_pending(struct dma_chan * dchan)304 static void dw_edma_device_issue_pending(struct dma_chan *dchan)
305 {
306 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
307 unsigned long flags;
308
309 spin_lock_irqsave(&chan->vc.lock, flags);
310 if (chan->configured && chan->request == EDMA_REQ_NONE &&
311 chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
312 chan->status = EDMA_ST_BUSY;
313 dw_edma_start_transfer(chan);
314 }
315 spin_unlock_irqrestore(&chan->vc.lock, flags);
316 }
317
318 static enum dma_status
dw_edma_device_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)319 dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
320 struct dma_tx_state *txstate)
321 {
322 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
323 struct dw_edma_desc *desc;
324 struct virt_dma_desc *vd;
325 unsigned long flags;
326 enum dma_status ret;
327 u32 residue = 0;
328
329 ret = dma_cookie_status(dchan, cookie, txstate);
330 if (ret == DMA_COMPLETE)
331 return ret;
332
333 if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
334 ret = DMA_PAUSED;
335
336 if (!txstate)
337 goto ret_residue;
338
339 spin_lock_irqsave(&chan->vc.lock, flags);
340 vd = vchan_find_desc(&chan->vc, cookie);
341 if (vd) {
342 desc = vd2dw_edma_desc(vd);
343 if (desc)
344 residue = desc->alloc_sz - desc->xfer_sz;
345 }
346 spin_unlock_irqrestore(&chan->vc.lock, flags);
347
348 ret_residue:
349 dma_set_residue(txstate, residue);
350
351 return ret;
352 }
353
354 static struct dma_async_tx_descriptor *
dw_edma_device_transfer(struct dw_edma_transfer * xfer)355 dw_edma_device_transfer(struct dw_edma_transfer *xfer)
356 {
357 struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
358 enum dma_transfer_direction dir = xfer->direction;
359 struct scatterlist *sg = NULL;
360 struct dw_edma_chunk *chunk;
361 struct dw_edma_burst *burst;
362 struct dw_edma_desc *desc;
363 u64 src_addr, dst_addr;
364 size_t fsz = 0;
365 u32 cnt = 0;
366 int i;
367
368 if (!chan->configured)
369 return NULL;
370
371 /*
372 * Local Root Port/End-point Remote End-point
373 * +-----------------------+ PCIe bus +----------------------+
374 * | | +-+ | |
375 * | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM |
376 * | | | | | |
377 * | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV |
378 * | | +-+ | |
379 * +-----------------------+ +----------------------+
380 *
381 * 1. Normal logic:
382 * If eDMA is embedded into the DW PCIe RP/EP and controlled from the
383 * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
384 * for the device read operations (DEV_TO_MEM) and the Tx channel
385 * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
386 *
387 * 2. Inverted logic:
388 * If eDMA is embedded into a Remote PCIe EP and is controlled by the
389 * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
390 * channel (EDMA_DIR_WRITE) will be used for the device read operations
391 * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
392 * operations (MEM_TO_DEV).
393 *
394 * It is the client driver responsibility to choose a proper channel
395 * for the DMA transfers.
396 */
397 if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
398 if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
399 (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
400 return NULL;
401 } else {
402 if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
403 (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
404 return NULL;
405 }
406
407 if (xfer->type == EDMA_XFER_CYCLIC) {
408 if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
409 return NULL;
410 } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
411 if (xfer->xfer.sg.len < 1)
412 return NULL;
413 } else if (xfer->type == EDMA_XFER_INTERLEAVED) {
414 if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1)
415 return NULL;
416 if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc)
417 return NULL;
418 } else {
419 return NULL;
420 }
421
422 desc = dw_edma_alloc_desc(chan);
423 if (unlikely(!desc))
424 goto err_alloc;
425
426 chunk = dw_edma_alloc_chunk(desc);
427 if (unlikely(!chunk))
428 goto err_alloc;
429
430 if (xfer->type == EDMA_XFER_INTERLEAVED) {
431 src_addr = xfer->xfer.il->src_start;
432 dst_addr = xfer->xfer.il->dst_start;
433 } else {
434 src_addr = chan->config.src_addr;
435 dst_addr = chan->config.dst_addr;
436 }
437
438 if (dir == DMA_DEV_TO_MEM)
439 src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr);
440 else
441 dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr);
442
443 if (xfer->type == EDMA_XFER_CYCLIC) {
444 cnt = xfer->xfer.cyclic.cnt;
445 } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
446 cnt = xfer->xfer.sg.len;
447 sg = xfer->xfer.sg.sgl;
448 } else if (xfer->type == EDMA_XFER_INTERLEAVED) {
449 cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size;
450 fsz = xfer->xfer.il->frame_size;
451 }
452
453 for (i = 0; i < cnt; i++) {
454 if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
455 break;
456
457 if (chunk->bursts_alloc == chan->ll_max) {
458 chunk = dw_edma_alloc_chunk(desc);
459 if (unlikely(!chunk))
460 goto err_alloc;
461 }
462
463 burst = dw_edma_alloc_burst(chunk);
464 if (unlikely(!burst))
465 goto err_alloc;
466
467 if (xfer->type == EDMA_XFER_CYCLIC)
468 burst->sz = xfer->xfer.cyclic.len;
469 else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
470 burst->sz = sg_dma_len(sg);
471 else if (xfer->type == EDMA_XFER_INTERLEAVED)
472 burst->sz = xfer->xfer.il->sgl[i % fsz].size;
473
474 chunk->ll_region.sz += burst->sz;
475 desc->alloc_sz += burst->sz;
476
477 if (dir == DMA_DEV_TO_MEM) {
478 burst->sar = src_addr;
479 if (xfer->type == EDMA_XFER_CYCLIC) {
480 burst->dar = xfer->xfer.cyclic.paddr;
481 } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
482 src_addr += sg_dma_len(sg);
483 burst->dar = sg_dma_address(sg);
484 /* Unlike the typical assumption by other
485 * drivers/IPs the peripheral memory isn't
486 * a FIFO memory, in this case, it's a
487 * linear memory and that why the source
488 * and destination addresses are increased
489 * by the same portion (data length)
490 */
491 } else if (xfer->type == EDMA_XFER_INTERLEAVED) {
492 burst->dar = dst_addr;
493 }
494 } else {
495 burst->dar = dst_addr;
496 if (xfer->type == EDMA_XFER_CYCLIC) {
497 burst->sar = xfer->xfer.cyclic.paddr;
498 } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
499 dst_addr += sg_dma_len(sg);
500 burst->sar = sg_dma_address(sg);
501 /* Unlike the typical assumption by other
502 * drivers/IPs the peripheral memory isn't
503 * a FIFO memory, in this case, it's a
504 * linear memory and that why the source
505 * and destination addresses are increased
506 * by the same portion (data length)
507 */
508 } else if (xfer->type == EDMA_XFER_INTERLEAVED) {
509 burst->sar = src_addr;
510 }
511 }
512
513 if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
514 sg = sg_next(sg);
515 } else if (xfer->type == EDMA_XFER_INTERLEAVED) {
516 struct dma_interleaved_template *il = xfer->xfer.il;
517 struct data_chunk *dc = &il->sgl[i % fsz];
518
519 src_addr += burst->sz;
520 if (il->src_sgl)
521 src_addr += dmaengine_get_src_icg(il, dc);
522
523 dst_addr += burst->sz;
524 if (il->dst_sgl)
525 dst_addr += dmaengine_get_dst_icg(il, dc);
526 }
527 }
528
529 return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
530
531 err_alloc:
532 if (desc)
533 dw_edma_free_desc(desc);
534
535 return NULL;
536 }
537
538 static struct dma_async_tx_descriptor *
dw_edma_device_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int len,enum dma_transfer_direction direction,unsigned long flags,void * context)539 dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
540 unsigned int len,
541 enum dma_transfer_direction direction,
542 unsigned long flags, void *context)
543 {
544 struct dw_edma_transfer xfer;
545
546 xfer.dchan = dchan;
547 xfer.direction = direction;
548 xfer.xfer.sg.sgl = sgl;
549 xfer.xfer.sg.len = len;
550 xfer.flags = flags;
551 xfer.type = EDMA_XFER_SCATTER_GATHER;
552
553 return dw_edma_device_transfer(&xfer);
554 }
555
556 static struct dma_async_tx_descriptor *
dw_edma_device_prep_dma_cyclic(struct dma_chan * dchan,dma_addr_t paddr,size_t len,size_t count,enum dma_transfer_direction direction,unsigned long flags)557 dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
558 size_t len, size_t count,
559 enum dma_transfer_direction direction,
560 unsigned long flags)
561 {
562 struct dw_edma_transfer xfer;
563
564 xfer.dchan = dchan;
565 xfer.direction = direction;
566 xfer.xfer.cyclic.paddr = paddr;
567 xfer.xfer.cyclic.len = len;
568 xfer.xfer.cyclic.cnt = count;
569 xfer.flags = flags;
570 xfer.type = EDMA_XFER_CYCLIC;
571
572 return dw_edma_device_transfer(&xfer);
573 }
574
575 static struct dma_async_tx_descriptor *
dw_edma_device_prep_interleaved_dma(struct dma_chan * dchan,struct dma_interleaved_template * ilt,unsigned long flags)576 dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
577 struct dma_interleaved_template *ilt,
578 unsigned long flags)
579 {
580 struct dw_edma_transfer xfer;
581
582 xfer.dchan = dchan;
583 xfer.direction = ilt->dir;
584 xfer.xfer.il = ilt;
585 xfer.flags = flags;
586 xfer.type = EDMA_XFER_INTERLEAVED;
587
588 return dw_edma_device_transfer(&xfer);
589 }
590
dw_edma_done_interrupt(struct dw_edma_chan * chan)591 static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
592 {
593 struct dw_edma_desc *desc;
594 struct virt_dma_desc *vd;
595 unsigned long flags;
596
597 dw_edma_v0_core_clear_done_int(chan);
598
599 spin_lock_irqsave(&chan->vc.lock, flags);
600 vd = vchan_next_desc(&chan->vc);
601 if (vd) {
602 switch (chan->request) {
603 case EDMA_REQ_NONE:
604 desc = vd2dw_edma_desc(vd);
605 if (desc->chunks_alloc) {
606 chan->status = EDMA_ST_BUSY;
607 dw_edma_start_transfer(chan);
608 } else {
609 list_del(&vd->node);
610 vchan_cookie_complete(vd);
611 chan->status = EDMA_ST_IDLE;
612 }
613 break;
614
615 case EDMA_REQ_STOP:
616 list_del(&vd->node);
617 vchan_cookie_complete(vd);
618 chan->request = EDMA_REQ_NONE;
619 chan->status = EDMA_ST_IDLE;
620 break;
621
622 case EDMA_REQ_PAUSE:
623 chan->request = EDMA_REQ_NONE;
624 chan->status = EDMA_ST_PAUSE;
625 break;
626
627 default:
628 break;
629 }
630 }
631 spin_unlock_irqrestore(&chan->vc.lock, flags);
632 }
633
dw_edma_abort_interrupt(struct dw_edma_chan * chan)634 static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
635 {
636 struct virt_dma_desc *vd;
637 unsigned long flags;
638
639 dw_edma_v0_core_clear_abort_int(chan);
640
641 spin_lock_irqsave(&chan->vc.lock, flags);
642 vd = vchan_next_desc(&chan->vc);
643 if (vd) {
644 list_del(&vd->node);
645 vchan_cookie_complete(vd);
646 }
647 spin_unlock_irqrestore(&chan->vc.lock, flags);
648 chan->request = EDMA_REQ_NONE;
649 chan->status = EDMA_ST_IDLE;
650 }
651
dw_edma_interrupt(int irq,void * data,bool write)652 static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
653 {
654 struct dw_edma_irq *dw_irq = data;
655 struct dw_edma *dw = dw_irq->dw;
656 unsigned long total, pos, val;
657 unsigned long off;
658 u32 mask;
659
660 if (write) {
661 total = dw->wr_ch_cnt;
662 off = 0;
663 mask = dw_irq->wr_mask;
664 } else {
665 total = dw->rd_ch_cnt;
666 off = dw->wr_ch_cnt;
667 mask = dw_irq->rd_mask;
668 }
669
670 val = dw_edma_v0_core_status_done_int(dw, write ?
671 EDMA_DIR_WRITE :
672 EDMA_DIR_READ);
673 val &= mask;
674 for_each_set_bit(pos, &val, total) {
675 struct dw_edma_chan *chan = &dw->chan[pos + off];
676
677 dw_edma_done_interrupt(chan);
678 }
679
680 val = dw_edma_v0_core_status_abort_int(dw, write ?
681 EDMA_DIR_WRITE :
682 EDMA_DIR_READ);
683 val &= mask;
684 for_each_set_bit(pos, &val, total) {
685 struct dw_edma_chan *chan = &dw->chan[pos + off];
686
687 dw_edma_abort_interrupt(chan);
688 }
689
690 return IRQ_HANDLED;
691 }
692
dw_edma_interrupt_write(int irq,void * data)693 static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
694 {
695 return dw_edma_interrupt(irq, data, true);
696 }
697
dw_edma_interrupt_read(int irq,void * data)698 static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
699 {
700 return dw_edma_interrupt(irq, data, false);
701 }
702
dw_edma_interrupt_common(int irq,void * data)703 static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
704 {
705 dw_edma_interrupt(irq, data, true);
706 dw_edma_interrupt(irq, data, false);
707
708 return IRQ_HANDLED;
709 }
710
dw_edma_alloc_chan_resources(struct dma_chan * dchan)711 static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
712 {
713 struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
714
715 if (chan->status != EDMA_ST_IDLE)
716 return -EBUSY;
717
718 return 0;
719 }
720
dw_edma_free_chan_resources(struct dma_chan * dchan)721 static void dw_edma_free_chan_resources(struct dma_chan *dchan)
722 {
723 unsigned long timeout = jiffies + msecs_to_jiffies(5000);
724 int ret;
725
726 while (time_before(jiffies, timeout)) {
727 ret = dw_edma_device_terminate_all(dchan);
728 if (!ret)
729 break;
730
731 if (time_after_eq(jiffies, timeout))
732 return;
733
734 cpu_relax();
735 }
736 }
737
dw_edma_channel_setup(struct dw_edma * dw,u32 wr_alloc,u32 rd_alloc)738 static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc)
739 {
740 struct dw_edma_chip *chip = dw->chip;
741 struct device *dev = chip->dev;
742 struct dw_edma_chan *chan;
743 struct dw_edma_irq *irq;
744 struct dma_device *dma;
745 u32 i, ch_cnt;
746 u32 pos;
747
748 ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
749 dma = &dw->dma;
750
751 INIT_LIST_HEAD(&dma->channels);
752
753 for (i = 0; i < ch_cnt; i++) {
754 chan = &dw->chan[i];
755
756 chan->dw = dw;
757
758 if (i < dw->wr_ch_cnt) {
759 chan->id = i;
760 chan->dir = EDMA_DIR_WRITE;
761 } else {
762 chan->id = i - dw->wr_ch_cnt;
763 chan->dir = EDMA_DIR_READ;
764 }
765
766 chan->configured = false;
767 chan->request = EDMA_REQ_NONE;
768 chan->status = EDMA_ST_IDLE;
769
770 if (chan->dir == EDMA_DIR_WRITE)
771 chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ);
772 else
773 chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ);
774 chan->ll_max -= 1;
775
776 dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
777 chan->dir == EDMA_DIR_WRITE ? "write" : "read",
778 chan->id, chan->ll_max);
779
780 if (dw->nr_irqs == 1)
781 pos = 0;
782 else if (chan->dir == EDMA_DIR_WRITE)
783 pos = chan->id % wr_alloc;
784 else
785 pos = wr_alloc + chan->id % rd_alloc;
786
787 irq = &dw->irq[pos];
788
789 if (chan->dir == EDMA_DIR_WRITE)
790 irq->wr_mask |= BIT(chan->id);
791 else
792 irq->rd_mask |= BIT(chan->id);
793
794 irq->dw = dw;
795 memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
796
797 dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
798 chan->dir == EDMA_DIR_WRITE ? "write" : "read", chan->id,
799 chan->msi.address_hi, chan->msi.address_lo,
800 chan->msi.data);
801
802 chan->vc.desc_free = vchan_free_desc;
803 chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ?
804 &dw->chip->dt_region_wr[chan->id] :
805 &dw->chip->dt_region_rd[chan->id];
806
807 vchan_init(&chan->vc, dma);
808
809 dw_edma_v0_core_device_config(chan);
810 }
811
812 /* Set DMA channel capabilities */
813 dma_cap_zero(dma->cap_mask);
814 dma_cap_set(DMA_SLAVE, dma->cap_mask);
815 dma_cap_set(DMA_CYCLIC, dma->cap_mask);
816 dma_cap_set(DMA_PRIVATE, dma->cap_mask);
817 dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
818 dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
819 dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
820 dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
821 dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
822
823 /* Set DMA channel callbacks */
824 dma->dev = chip->dev;
825 dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
826 dma->device_free_chan_resources = dw_edma_free_chan_resources;
827 dma->device_caps = dw_edma_device_caps;
828 dma->device_config = dw_edma_device_config;
829 dma->device_pause = dw_edma_device_pause;
830 dma->device_resume = dw_edma_device_resume;
831 dma->device_terminate_all = dw_edma_device_terminate_all;
832 dma->device_issue_pending = dw_edma_device_issue_pending;
833 dma->device_tx_status = dw_edma_device_tx_status;
834 dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
835 dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
836 dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
837
838 dma_set_max_seg_size(dma->dev, U32_MAX);
839
840 /* Register DMA device */
841 return dma_async_device_register(dma);
842 }
843
dw_edma_dec_irq_alloc(int * nr_irqs,u32 * alloc,u16 cnt)844 static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
845 {
846 if (*nr_irqs && *alloc < cnt) {
847 (*alloc)++;
848 (*nr_irqs)--;
849 }
850 }
851
dw_edma_add_irq_mask(u32 * mask,u32 alloc,u16 cnt)852 static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
853 {
854 while (*mask * alloc < cnt)
855 (*mask)++;
856 }
857
dw_edma_irq_request(struct dw_edma * dw,u32 * wr_alloc,u32 * rd_alloc)858 static int dw_edma_irq_request(struct dw_edma *dw,
859 u32 *wr_alloc, u32 *rd_alloc)
860 {
861 struct dw_edma_chip *chip = dw->chip;
862 struct device *dev = dw->chip->dev;
863 u32 wr_mask = 1;
864 u32 rd_mask = 1;
865 int i, err = 0;
866 u32 ch_cnt;
867 int irq;
868
869 ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
870
871 if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
872 return -EINVAL;
873
874 dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
875 if (!dw->irq)
876 return -ENOMEM;
877
878 if (chip->nr_irqs == 1) {
879 /* Common IRQ shared among all channels */
880 irq = chip->ops->irq_vector(dev, 0);
881 err = request_irq(irq, dw_edma_interrupt_common,
882 IRQF_SHARED, dw->name, &dw->irq[0]);
883 if (err) {
884 dw->nr_irqs = 0;
885 return err;
886 }
887
888 if (irq_get_msi_desc(irq))
889 get_cached_msi_msg(irq, &dw->irq[0].msi);
890
891 dw->nr_irqs = 1;
892 } else {
893 /* Distribute IRQs equally among all channels */
894 int tmp = chip->nr_irqs;
895
896 while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
897 dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
898 dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
899 }
900
901 dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
902 dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
903
904 for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
905 irq = chip->ops->irq_vector(dev, i);
906 err = request_irq(irq,
907 i < *wr_alloc ?
908 dw_edma_interrupt_write :
909 dw_edma_interrupt_read,
910 IRQF_SHARED, dw->name,
911 &dw->irq[i]);
912 if (err)
913 goto err_irq_free;
914
915 if (irq_get_msi_desc(irq))
916 get_cached_msi_msg(irq, &dw->irq[i].msi);
917 }
918
919 dw->nr_irqs = i;
920 }
921
922 return 0;
923
924 err_irq_free:
925 for (i--; i >= 0; i--) {
926 irq = chip->ops->irq_vector(dev, i);
927 free_irq(irq, &dw->irq[i]);
928 }
929
930 return err;
931 }
932
dw_edma_probe(struct dw_edma_chip * chip)933 int dw_edma_probe(struct dw_edma_chip *chip)
934 {
935 struct device *dev;
936 struct dw_edma *dw;
937 u32 wr_alloc = 0;
938 u32 rd_alloc = 0;
939 int i, err;
940
941 if (!chip)
942 return -EINVAL;
943
944 dev = chip->dev;
945 if (!dev || !chip->ops)
946 return -EINVAL;
947
948 dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
949 if (!dw)
950 return -ENOMEM;
951
952 dw->chip = chip;
953
954 raw_spin_lock_init(&dw->lock);
955
956 dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
957 dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
958 dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
959
960 dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
961 dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
962 dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
963
964 if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
965 return -EINVAL;
966
967 dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
968 dw->wr_ch_cnt, dw->rd_ch_cnt);
969
970 /* Allocate channels */
971 dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
972 sizeof(*dw->chan), GFP_KERNEL);
973 if (!dw->chan)
974 return -ENOMEM;
975
976 snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s",
977 dev_name(chip->dev));
978
979 /* Disable eDMA, only to establish the ideal initial conditions */
980 dw_edma_v0_core_off(dw);
981
982 /* Request IRQs */
983 err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
984 if (err)
985 return err;
986
987 /* Setup write/read channels */
988 err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc);
989 if (err)
990 goto err_irq_free;
991
992 /* Turn debugfs on */
993 dw_edma_v0_core_debugfs_on(dw);
994
995 chip->dw = dw;
996
997 return 0;
998
999 err_irq_free:
1000 for (i = (dw->nr_irqs - 1); i >= 0; i--)
1001 free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1002
1003 return err;
1004 }
1005 EXPORT_SYMBOL_GPL(dw_edma_probe);
1006
dw_edma_remove(struct dw_edma_chip * chip)1007 int dw_edma_remove(struct dw_edma_chip *chip)
1008 {
1009 struct dw_edma_chan *chan, *_chan;
1010 struct device *dev = chip->dev;
1011 struct dw_edma *dw = chip->dw;
1012 int i;
1013
1014 /* Skip removal if no private data found */
1015 if (!dw)
1016 return -ENODEV;
1017
1018 /* Disable eDMA */
1019 dw_edma_v0_core_off(dw);
1020
1021 /* Free irqs */
1022 for (i = (dw->nr_irqs - 1); i >= 0; i--)
1023 free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1024
1025 /* Deregister eDMA device */
1026 dma_async_device_unregister(&dw->dma);
1027 list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1028 vc.chan.device_node) {
1029 tasklet_kill(&chan->vc.task);
1030 list_del(&chan->vc.chan.device_node);
1031 }
1032
1033 return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(dw_edma_remove);
1036
1037 MODULE_LICENSE("GPL v2");
1038 MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
1039 MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
1040