1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
6 *
7 * Copyright 2011 Intel Corporation; author Matt Fleming
8 */
9
10 #include <linux/stdarg.h>
11
12 #include <linux/efi.h>
13 #include <linux/kernel.h>
14 #include <asm/efi.h>
15 #include <asm/setup.h>
16
17 #include "efistub.h"
18
19 bool efi_nochunk;
20 bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
21 bool efi_novamap;
22
23 static bool efi_noinitrd;
24 static bool efi_nosoftreserve;
25 static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
26
__efi_soft_reserve_enabled(void)27 bool __pure __efi_soft_reserve_enabled(void)
28 {
29 return !efi_nosoftreserve;
30 }
31
32 /**
33 * efi_parse_options() - Parse EFI command line options
34 * @cmdline: kernel command line
35 *
36 * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
37 * option, e.g. efi=nochunk.
38 *
39 * It should be noted that efi= is parsed in two very different
40 * environments, first in the early boot environment of the EFI boot
41 * stub, and subsequently during the kernel boot.
42 *
43 * Return: status code
44 */
efi_parse_options(char const * cmdline)45 efi_status_t efi_parse_options(char const *cmdline)
46 {
47 size_t len;
48 efi_status_t status;
49 char *str, *buf;
50
51 if (!cmdline)
52 return EFI_SUCCESS;
53
54 len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
55 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
56 if (status != EFI_SUCCESS)
57 return status;
58
59 memcpy(buf, cmdline, len - 1);
60 buf[len - 1] = '\0';
61 str = skip_spaces(buf);
62
63 while (*str) {
64 char *param, *val;
65
66 str = next_arg(str, ¶m, &val);
67 if (!val && !strcmp(param, "--"))
68 break;
69
70 if (!strcmp(param, "nokaslr")) {
71 efi_nokaslr = true;
72 } else if (!strcmp(param, "quiet")) {
73 efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
74 } else if (!strcmp(param, "noinitrd")) {
75 efi_noinitrd = true;
76 } else if (!strcmp(param, "efi") && val) {
77 efi_nochunk = parse_option_str(val, "nochunk");
78 efi_novamap |= parse_option_str(val, "novamap");
79
80 efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
81 parse_option_str(val, "nosoftreserve");
82
83 if (parse_option_str(val, "disable_early_pci_dma"))
84 efi_disable_pci_dma = true;
85 if (parse_option_str(val, "no_disable_early_pci_dma"))
86 efi_disable_pci_dma = false;
87 if (parse_option_str(val, "debug"))
88 efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
89 } else if (!strcmp(param, "video") &&
90 val && strstarts(val, "efifb:")) {
91 efi_parse_option_graphics(val + strlen("efifb:"));
92 }
93 }
94 efi_bs_call(free_pool, buf);
95 return EFI_SUCCESS;
96 }
97
98 /*
99 * The EFI_LOAD_OPTION descriptor has the following layout:
100 * u32 Attributes;
101 * u16 FilePathListLength;
102 * u16 Description[];
103 * efi_device_path_protocol_t FilePathList[];
104 * u8 OptionalData[];
105 *
106 * This function validates and unpacks the variable-size data fields.
107 */
108 static
efi_load_option_unpack(efi_load_option_unpacked_t * dest,const efi_load_option_t * src,size_t size)109 bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
110 const efi_load_option_t *src, size_t size)
111 {
112 const void *pos;
113 u16 c;
114 efi_device_path_protocol_t header;
115 const efi_char16_t *description;
116 const efi_device_path_protocol_t *file_path_list;
117
118 if (size < offsetof(efi_load_option_t, variable_data))
119 return false;
120 pos = src->variable_data;
121 size -= offsetof(efi_load_option_t, variable_data);
122
123 if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
124 return false;
125
126 /* Scan description. */
127 description = pos;
128 do {
129 if (size < sizeof(c))
130 return false;
131 c = *(const u16 *)pos;
132 pos += sizeof(c);
133 size -= sizeof(c);
134 } while (c != L'\0');
135
136 /* Scan file_path_list. */
137 file_path_list = pos;
138 do {
139 if (size < sizeof(header))
140 return false;
141 header = *(const efi_device_path_protocol_t *)pos;
142 if (header.length < sizeof(header))
143 return false;
144 if (size < header.length)
145 return false;
146 pos += header.length;
147 size -= header.length;
148 } while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
149 (header.sub_type != EFI_DEV_END_ENTIRE));
150 if (pos != (const void *)file_path_list + src->file_path_list_length)
151 return false;
152
153 dest->attributes = src->attributes;
154 dest->file_path_list_length = src->file_path_list_length;
155 dest->description = description;
156 dest->file_path_list = file_path_list;
157 dest->optional_data_size = size;
158 dest->optional_data = size ? pos : NULL;
159
160 return true;
161 }
162
163 /*
164 * At least some versions of Dell firmware pass the entire contents of the
165 * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
166 * OptionalData field.
167 *
168 * Detect this case and extract OptionalData.
169 */
efi_apply_loadoptions_quirk(const void ** load_options,u32 * load_options_size)170 void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
171 {
172 const efi_load_option_t *load_option = *load_options;
173 efi_load_option_unpacked_t load_option_unpacked;
174
175 if (!IS_ENABLED(CONFIG_X86))
176 return;
177 if (!load_option)
178 return;
179 if (*load_options_size < sizeof(*load_option))
180 return;
181 if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
182 return;
183
184 if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
185 return;
186
187 efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
188 efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
189
190 *load_options = load_option_unpacked.optional_data;
191 *load_options_size = load_option_unpacked.optional_data_size;
192 }
193
194 enum efistub_event {
195 EFISTUB_EVT_INITRD,
196 EFISTUB_EVT_LOAD_OPTIONS,
197 EFISTUB_EVT_COUNT,
198 };
199
200 #define STR_WITH_SIZE(s) sizeof(s), s
201
202 static const struct {
203 u32 pcr_index;
204 u32 event_id;
205 u32 event_data_len;
206 u8 event_data[52];
207 } events[] = {
208 [EFISTUB_EVT_INITRD] = {
209 9,
210 INITRD_EVENT_TAG_ID,
211 STR_WITH_SIZE("Linux initrd")
212 },
213 [EFISTUB_EVT_LOAD_OPTIONS] = {
214 9,
215 LOAD_OPTIONS_EVENT_TAG_ID,
216 STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
217 },
218 };
219
efi_measure_tagged_event(unsigned long load_addr,unsigned long load_size,enum efistub_event event)220 static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
221 unsigned long load_size,
222 enum efistub_event event)
223 {
224 efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
225 efi_tcg2_protocol_t *tcg2 = NULL;
226 efi_status_t status;
227
228 efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
229 if (tcg2) {
230 struct efi_measured_event {
231 efi_tcg2_event_t event_data;
232 efi_tcg2_tagged_event_t tagged_event;
233 u8 tagged_event_data[];
234 } *evt;
235 int size = sizeof(*evt) + events[event].event_data_len;
236
237 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
238 (void **)&evt);
239 if (status != EFI_SUCCESS)
240 goto fail;
241
242 evt->event_data = (struct efi_tcg2_event){
243 .event_size = size,
244 .event_header.header_size = sizeof(evt->event_data.event_header),
245 .event_header.header_version = EFI_TCG2_EVENT_HEADER_VERSION,
246 .event_header.pcr_index = events[event].pcr_index,
247 .event_header.event_type = EV_EVENT_TAG,
248 };
249
250 evt->tagged_event = (struct efi_tcg2_tagged_event){
251 .tagged_event_id = events[event].event_id,
252 .tagged_event_data_size = events[event].event_data_len,
253 };
254
255 memcpy(evt->tagged_event_data, events[event].event_data,
256 events[event].event_data_len);
257
258 status = efi_call_proto(tcg2, hash_log_extend_event, 0,
259 load_addr, load_size, &evt->event_data);
260 efi_bs_call(free_pool, evt);
261
262 if (status != EFI_SUCCESS)
263 goto fail;
264 return EFI_SUCCESS;
265 }
266
267 return EFI_UNSUPPORTED;
268 fail:
269 efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
270 return status;
271 }
272
273 /*
274 * Convert the unicode UEFI command line to ASCII to pass to kernel.
275 * Size of memory allocated return in *cmd_line_len.
276 * Returns NULL on error.
277 */
efi_convert_cmdline(efi_loaded_image_t * image,int * cmd_line_len)278 char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
279 {
280 const efi_char16_t *options = efi_table_attr(image, load_options);
281 u32 options_size = efi_table_attr(image, load_options_size);
282 int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */
283 unsigned long cmdline_addr = 0;
284 const efi_char16_t *s2;
285 bool in_quote = false;
286 efi_status_t status;
287 u32 options_chars;
288
289 if (options_size > 0)
290 efi_measure_tagged_event((unsigned long)options, options_size,
291 EFISTUB_EVT_LOAD_OPTIONS);
292
293 efi_apply_loadoptions_quirk((const void **)&options, &options_size);
294 options_chars = options_size / sizeof(efi_char16_t);
295
296 if (options) {
297 s2 = options;
298 while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
299 efi_char16_t c = *s2++;
300
301 if (c < 0x80) {
302 if (c == L'\0' || c == L'\n')
303 break;
304 if (c == L'"')
305 in_quote = !in_quote;
306 else if (!in_quote && isspace((char)c))
307 safe_options_bytes = options_bytes;
308
309 options_bytes++;
310 continue;
311 }
312
313 /*
314 * Get the number of UTF-8 bytes corresponding to a
315 * UTF-16 character.
316 * The first part handles everything in the BMP.
317 */
318 options_bytes += 2 + (c >= 0x800);
319 /*
320 * Add one more byte for valid surrogate pairs. Invalid
321 * surrogates will be replaced with 0xfffd and take up
322 * only 3 bytes.
323 */
324 if ((c & 0xfc00) == 0xd800) {
325 /*
326 * If the very last word is a high surrogate,
327 * we must ignore it since we can't access the
328 * low surrogate.
329 */
330 if (!options_chars) {
331 options_bytes -= 3;
332 } else if ((*s2 & 0xfc00) == 0xdc00) {
333 options_bytes++;
334 options_chars--;
335 s2++;
336 }
337 }
338 }
339 if (options_bytes >= COMMAND_LINE_SIZE) {
340 options_bytes = safe_options_bytes;
341 efi_err("Command line is too long: truncated to %d bytes\n",
342 options_bytes);
343 }
344 }
345
346 options_bytes++; /* NUL termination */
347
348 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
349 (void **)&cmdline_addr);
350 if (status != EFI_SUCCESS)
351 return NULL;
352
353 snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
354 options_bytes - 1, options);
355
356 *cmd_line_len = options_bytes;
357 return (char *)cmdline_addr;
358 }
359
360 /**
361 * efi_exit_boot_services() - Exit boot services
362 * @handle: handle of the exiting image
363 * @priv: argument to be passed to @priv_func
364 * @priv_func: function to process the memory map before exiting boot services
365 *
366 * Handle calling ExitBootServices according to the requirements set out by the
367 * spec. Obtains the current memory map, and returns that info after calling
368 * ExitBootServices. The client must specify a function to perform any
369 * processing of the memory map data prior to ExitBootServices. A client
370 * specific structure may be passed to the function via priv. The client
371 * function may be called multiple times.
372 *
373 * Return: status code
374 */
efi_exit_boot_services(void * handle,void * priv,efi_exit_boot_map_processing priv_func)375 efi_status_t efi_exit_boot_services(void *handle, void *priv,
376 efi_exit_boot_map_processing priv_func)
377 {
378 struct efi_boot_memmap *map;
379 efi_status_t status;
380
381 status = efi_get_memory_map(&map, true);
382 if (status != EFI_SUCCESS)
383 return status;
384
385 status = priv_func(map, priv);
386 if (status != EFI_SUCCESS) {
387 efi_bs_call(free_pool, map);
388 return status;
389 }
390
391 if (efi_disable_pci_dma)
392 efi_pci_disable_bridge_busmaster();
393
394 status = efi_bs_call(exit_boot_services, handle, map->map_key);
395
396 if (status == EFI_INVALID_PARAMETER) {
397 /*
398 * The memory map changed between efi_get_memory_map() and
399 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
400 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
401 * updated map, and try again. The spec implies one retry
402 * should be sufficent, which is confirmed against the EDK2
403 * implementation. Per the spec, we can only invoke
404 * get_memory_map() and exit_boot_services() - we cannot alloc
405 * so efi_get_memory_map() cannot be used, and we must reuse
406 * the buffer. For all practical purposes, the headroom in the
407 * buffer should account for any changes in the map so the call
408 * to get_memory_map() is expected to succeed here.
409 */
410 map->map_size = map->buff_size;
411 status = efi_bs_call(get_memory_map,
412 &map->map_size,
413 &map->map,
414 &map->map_key,
415 &map->desc_size,
416 &map->desc_ver);
417
418 /* exit_boot_services() was called, thus cannot free */
419 if (status != EFI_SUCCESS)
420 return status;
421
422 status = priv_func(map, priv);
423 /* exit_boot_services() was called, thus cannot free */
424 if (status != EFI_SUCCESS)
425 return status;
426
427 status = efi_bs_call(exit_boot_services, handle, map->map_key);
428 }
429
430 return status;
431 }
432
433 /**
434 * get_efi_config_table() - retrieve UEFI configuration table
435 * @guid: GUID of the configuration table to be retrieved
436 * Return: pointer to the configuration table or NULL
437 */
get_efi_config_table(efi_guid_t guid)438 void *get_efi_config_table(efi_guid_t guid)
439 {
440 unsigned long tables = efi_table_attr(efi_system_table, tables);
441 int nr_tables = efi_table_attr(efi_system_table, nr_tables);
442 int i;
443
444 for (i = 0; i < nr_tables; i++) {
445 efi_config_table_t *t = (void *)tables;
446
447 if (efi_guidcmp(t->guid, guid) == 0)
448 return efi_table_attr(t, table);
449
450 tables += efi_is_native() ? sizeof(efi_config_table_t)
451 : sizeof(efi_config_table_32_t);
452 }
453 return NULL;
454 }
455
456 /*
457 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
458 * for the firmware or bootloader to expose the initrd data directly to the stub
459 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
460 * very easy to implement. It is a simple Linux initrd specific conduit between
461 * kernel and firmware, allowing us to put the EFI stub (being part of the
462 * kernel) in charge of where and when to load the initrd, while leaving it up
463 * to the firmware to decide whether it needs to expose its filesystem hierarchy
464 * via EFI protocols.
465 */
466 static const struct {
467 struct efi_vendor_dev_path vendor;
468 struct efi_generic_dev_path end;
469 } __packed initrd_dev_path = {
470 {
471 {
472 EFI_DEV_MEDIA,
473 EFI_DEV_MEDIA_VENDOR,
474 sizeof(struct efi_vendor_dev_path),
475 },
476 LINUX_EFI_INITRD_MEDIA_GUID
477 }, {
478 EFI_DEV_END_PATH,
479 EFI_DEV_END_ENTIRE,
480 sizeof(struct efi_generic_dev_path)
481 }
482 };
483
484 /**
485 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
486 * @initrd: pointer of struct to store the address where the initrd was loaded
487 * and the size of the loaded initrd
488 * @max: upper limit for the initrd memory allocation
489 *
490 * Return:
491 * * %EFI_SUCCESS if the initrd was loaded successfully, in which
492 * case @load_addr and @load_size are assigned accordingly
493 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
494 * * %EFI_OUT_OF_RESOURCES if memory allocation failed
495 * * %EFI_LOAD_ERROR in all other cases
496 */
497 static
efi_load_initrd_dev_path(struct linux_efi_initrd * initrd,unsigned long max)498 efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
499 unsigned long max)
500 {
501 efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
502 efi_device_path_protocol_t *dp;
503 efi_load_file2_protocol_t *lf2;
504 efi_handle_t handle;
505 efi_status_t status;
506
507 dp = (efi_device_path_protocol_t *)&initrd_dev_path;
508 status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
509 if (status != EFI_SUCCESS)
510 return status;
511
512 status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
513 (void **)&lf2);
514 if (status != EFI_SUCCESS)
515 return status;
516
517 initrd->size = 0;
518 status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
519 if (status != EFI_BUFFER_TOO_SMALL)
520 return EFI_LOAD_ERROR;
521
522 status = efi_allocate_pages(initrd->size, &initrd->base, max);
523 if (status != EFI_SUCCESS)
524 return status;
525
526 status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
527 (void *)initrd->base);
528 if (status != EFI_SUCCESS) {
529 efi_free(initrd->size, initrd->base);
530 return EFI_LOAD_ERROR;
531 }
532 return EFI_SUCCESS;
533 }
534
535 static
efi_load_initrd_cmdline(efi_loaded_image_t * image,struct linux_efi_initrd * initrd,unsigned long soft_limit,unsigned long hard_limit)536 efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
537 struct linux_efi_initrd *initrd,
538 unsigned long soft_limit,
539 unsigned long hard_limit)
540 {
541 if (image == NULL)
542 return EFI_UNSUPPORTED;
543
544 return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
545 soft_limit, hard_limit,
546 &initrd->base, &initrd->size);
547 }
548
549 /**
550 * efi_load_initrd() - Load initial RAM disk
551 * @image: EFI loaded image protocol
552 * @soft_limit: preferred address for loading the initrd
553 * @hard_limit: upper limit address for loading the initrd
554 *
555 * Return: status code
556 */
efi_load_initrd(efi_loaded_image_t * image,unsigned long soft_limit,unsigned long hard_limit,const struct linux_efi_initrd ** out)557 efi_status_t efi_load_initrd(efi_loaded_image_t *image,
558 unsigned long soft_limit,
559 unsigned long hard_limit,
560 const struct linux_efi_initrd **out)
561 {
562 efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
563 efi_status_t status = EFI_SUCCESS;
564 struct linux_efi_initrd initrd, *tbl;
565
566 if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
567 return EFI_SUCCESS;
568
569 status = efi_load_initrd_dev_path(&initrd, hard_limit);
570 if (status == EFI_SUCCESS) {
571 efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
572 if (initrd.size > 0 &&
573 efi_measure_tagged_event(initrd.base, initrd.size,
574 EFISTUB_EVT_INITRD) == EFI_SUCCESS)
575 efi_info("Measured initrd data into PCR 9\n");
576 } else if (status == EFI_NOT_FOUND) {
577 status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
578 hard_limit);
579 /* command line loader disabled or no initrd= passed? */
580 if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
581 return EFI_SUCCESS;
582 if (status == EFI_SUCCESS)
583 efi_info("Loaded initrd from command line option\n");
584 }
585 if (status != EFI_SUCCESS)
586 goto failed;
587
588 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
589 (void **)&tbl);
590 if (status != EFI_SUCCESS)
591 goto free_initrd;
592
593 *tbl = initrd;
594 status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
595 if (status != EFI_SUCCESS)
596 goto free_tbl;
597
598 if (out)
599 *out = tbl;
600 return EFI_SUCCESS;
601
602 free_tbl:
603 efi_bs_call(free_pool, tbl);
604 free_initrd:
605 efi_free(initrd.size, initrd.base);
606 failed:
607 efi_err("Failed to load initrd: 0x%lx\n", status);
608 return status;
609 }
610
611 /**
612 * efi_wait_for_key() - Wait for key stroke
613 * @usec: number of microseconds to wait for key stroke
614 * @key: key entered
615 *
616 * Wait for up to @usec microseconds for a key stroke.
617 *
618 * Return: status code, EFI_SUCCESS if key received
619 */
efi_wait_for_key(unsigned long usec,efi_input_key_t * key)620 efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
621 {
622 efi_event_t events[2], timer;
623 unsigned long index;
624 efi_simple_text_input_protocol_t *con_in;
625 efi_status_t status;
626
627 con_in = efi_table_attr(efi_system_table, con_in);
628 if (!con_in)
629 return EFI_UNSUPPORTED;
630 efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
631
632 status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
633 if (status != EFI_SUCCESS)
634 return status;
635
636 status = efi_bs_call(set_timer, timer, EfiTimerRelative,
637 EFI_100NSEC_PER_USEC * usec);
638 if (status != EFI_SUCCESS)
639 return status;
640 efi_set_event_at(events, 1, timer);
641
642 status = efi_bs_call(wait_for_event, 2, events, &index);
643 if (status == EFI_SUCCESS) {
644 if (index == 0)
645 status = efi_call_proto(con_in, read_keystroke, key);
646 else
647 status = EFI_TIMEOUT;
648 }
649
650 efi_bs_call(close_event, timer);
651
652 return status;
653 }
654
655 /**
656 * efi_remap_image - Remap a loaded image with the appropriate permissions
657 * for code and data
658 *
659 * @image_base: the base of the image in memory
660 * @alloc_size: the size of the area in memory occupied by the image
661 * @code_size: the size of the leading part of the image containing code
662 * and read-only data
663 *
664 * efi_remap_image() uses the EFI memory attribute protocol to remap the code
665 * region of the loaded image read-only/executable, and the remainder
666 * read-write/non-executable. The code region is assumed to start at the base
667 * of the image, and will therefore cover the PE/COFF header as well.
668 */
efi_remap_image(unsigned long image_base,unsigned alloc_size,unsigned long code_size)669 void efi_remap_image(unsigned long image_base, unsigned alloc_size,
670 unsigned long code_size)
671 {
672 efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
673 efi_memory_attribute_protocol_t *memattr;
674 efi_status_t status;
675 u64 attr;
676
677 /*
678 * If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's
679 * invoke it to remap the text/rodata region of the decompressed image
680 * as read-only and the data/bss region as non-executable.
681 */
682 status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
683 if (status != EFI_SUCCESS)
684 return;
685
686 // Get the current attributes for the entire region
687 status = memattr->get_memory_attributes(memattr, image_base,
688 alloc_size, &attr);
689 if (status != EFI_SUCCESS) {
690 efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n",
691 status);
692 return;
693 }
694
695 // Mark the code region as read-only
696 status = memattr->set_memory_attributes(memattr, image_base, code_size,
697 EFI_MEMORY_RO);
698 if (status != EFI_SUCCESS) {
699 efi_warn("Failed to remap code region read-only\n");
700 return;
701 }
702
703 // If the entire region was already mapped as non-exec, clear the
704 // attribute from the code region. Otherwise, set it on the data
705 // region.
706 if (attr & EFI_MEMORY_XP) {
707 status = memattr->clear_memory_attributes(memattr, image_base,
708 code_size,
709 EFI_MEMORY_XP);
710 if (status != EFI_SUCCESS)
711 efi_warn("Failed to remap code region executable\n");
712 } else {
713 status = memattr->set_memory_attributes(memattr,
714 image_base + code_size,
715 alloc_size - code_size,
716 EFI_MEMORY_XP);
717 if (status != EFI_SUCCESS)
718 efi_warn("Failed to remap data region non-executable\n");
719 }
720 }
721