1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2018 Intel Corporation
4 */
5
6 #include <linux/sort.h>
7
8 #include "i915_selftest.h"
9 #include "intel_engine_regs.h"
10 #include "intel_gpu_commands.h"
11 #include "intel_gt_clock_utils.h"
12 #include "selftest_engine.h"
13 #include "selftest_engine_heartbeat.h"
14 #include "selftests/igt_atomic.h"
15 #include "selftests/igt_flush_test.h"
16 #include "selftests/igt_spinner.h"
17
18 #define COUNT 5
19
cmp_u64(const void * A,const void * B)20 static int cmp_u64(const void *A, const void *B)
21 {
22 const u64 *a = A, *b = B;
23
24 return *a - *b;
25 }
26
trifilter(u64 * a)27 static u64 trifilter(u64 *a)
28 {
29 sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
30 return (a[1] + 2 * a[2] + a[3]) >> 2;
31 }
32
emit_wait(u32 * cs,u32 offset,int op,u32 value)33 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
34 {
35 *cs++ = MI_SEMAPHORE_WAIT |
36 MI_SEMAPHORE_GLOBAL_GTT |
37 MI_SEMAPHORE_POLL |
38 op;
39 *cs++ = value;
40 *cs++ = offset;
41 *cs++ = 0;
42
43 return cs;
44 }
45
emit_store(u32 * cs,u32 offset,u32 value)46 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
47 {
48 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
49 *cs++ = offset;
50 *cs++ = 0;
51 *cs++ = value;
52
53 return cs;
54 }
55
emit_srm(u32 * cs,i915_reg_t reg,u32 offset)56 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
57 {
58 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
59 *cs++ = i915_mmio_reg_offset(reg);
60 *cs++ = offset;
61 *cs++ = 0;
62
63 return cs;
64 }
65
write_semaphore(u32 * x,u32 value)66 static void write_semaphore(u32 *x, u32 value)
67 {
68 WRITE_ONCE(*x, value);
69 wmb();
70 }
71
__measure_timestamps(struct intel_context * ce,u64 * dt,u64 * d_ring,u64 * d_ctx)72 static int __measure_timestamps(struct intel_context *ce,
73 u64 *dt, u64 *d_ring, u64 *d_ctx)
74 {
75 struct intel_engine_cs *engine = ce->engine;
76 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
77 u32 offset = i915_ggtt_offset(engine->status_page.vma);
78 struct i915_request *rq;
79 u32 *cs;
80
81 rq = intel_context_create_request(ce);
82 if (IS_ERR(rq))
83 return PTR_ERR(rq);
84
85 cs = intel_ring_begin(rq, 28);
86 if (IS_ERR(cs)) {
87 i915_request_add(rq);
88 return PTR_ERR(cs);
89 }
90
91 /* Signal & wait for start */
92 cs = emit_store(cs, offset + 4008, 1);
93 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
94
95 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
96 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
97
98 /* Busy wait */
99 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
100
101 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
102 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
103
104 intel_ring_advance(rq, cs);
105 i915_request_get(rq);
106 i915_request_add(rq);
107 intel_engine_flush_submission(engine);
108
109 /* Wait for the request to start executing, that then waits for us */
110 while (READ_ONCE(sema[2]) == 0)
111 cpu_relax();
112
113 /* Run the request for a 100us, sampling timestamps before/after */
114 local_irq_disable();
115 write_semaphore(&sema[2], 0);
116 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
117 cpu_relax();
118 *dt = local_clock();
119 udelay(100);
120 *dt = local_clock() - *dt;
121 write_semaphore(&sema[2], 1);
122 local_irq_enable();
123
124 if (i915_request_wait(rq, 0, HZ / 2) < 0) {
125 i915_request_put(rq);
126 return -ETIME;
127 }
128 i915_request_put(rq);
129
130 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
131 engine->name, sema[1], sema[3], sema[0], sema[4]);
132
133 *d_ctx = sema[3] - sema[1];
134 *d_ring = sema[4] - sema[0];
135 return 0;
136 }
137
__live_engine_timestamps(struct intel_engine_cs * engine)138 static int __live_engine_timestamps(struct intel_engine_cs *engine)
139 {
140 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
141 struct intel_context *ce;
142 int i, err = 0;
143
144 ce = intel_context_create(engine);
145 if (IS_ERR(ce))
146 return PTR_ERR(ce);
147
148 for (i = 0; i < COUNT; i++) {
149 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
150 if (err)
151 break;
152 }
153 intel_context_put(ce);
154 if (err)
155 return err;
156
157 dt = trifilter(st);
158 d_ring = trifilter(s_ring);
159 d_ctx = trifilter(s_ctx);
160
161 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
162 engine->name, dt,
163 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
164 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
165
166 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
167 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
168 pr_err("%s Mismatch between ring timestamp and walltime!\n",
169 engine->name);
170 return -EINVAL;
171 }
172
173 d_ring = trifilter(s_ring);
174 d_ctx = trifilter(s_ctx);
175
176 d_ctx *= engine->gt->clock_frequency;
177 if (GRAPHICS_VER(engine->i915) == 11)
178 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
179 else
180 d_ring *= engine->gt->clock_frequency;
181
182 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
183 pr_err("%s Mismatch between ring and context timestamps!\n",
184 engine->name);
185 return -EINVAL;
186 }
187
188 return 0;
189 }
190
live_engine_timestamps(void * arg)191 static int live_engine_timestamps(void *arg)
192 {
193 struct intel_gt *gt = arg;
194 struct intel_engine_cs *engine;
195 enum intel_engine_id id;
196
197 /*
198 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
199 * the same CS clock.
200 */
201
202 if (GRAPHICS_VER(gt->i915) < 8)
203 return 0;
204
205 for_each_engine(engine, gt, id) {
206 int err;
207
208 st_engine_heartbeat_disable(engine);
209 err = __live_engine_timestamps(engine);
210 st_engine_heartbeat_enable(engine);
211 if (err)
212 return err;
213 }
214
215 return 0;
216 }
217
__spin_until_busier(struct intel_engine_cs * engine,ktime_t busyness)218 static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
219 {
220 ktime_t start, unused, dt;
221
222 if (!intel_engine_uses_guc(engine))
223 return 0;
224
225 /*
226 * In GuC mode of submission, the busyness stats may get updated after
227 * the batch starts running. Poll for a change in busyness and timeout
228 * after 500 us.
229 */
230 start = ktime_get();
231 while (intel_engine_get_busy_time(engine, &unused) == busyness) {
232 dt = ktime_get() - start;
233 if (dt > 10000000) {
234 pr_err("active wait timed out %lld\n", dt);
235 ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
236 return -ETIME;
237 }
238 }
239
240 return 0;
241 }
242
live_engine_busy_stats(void * arg)243 static int live_engine_busy_stats(void *arg)
244 {
245 struct intel_gt *gt = arg;
246 struct intel_engine_cs *engine;
247 enum intel_engine_id id;
248 struct igt_spinner spin;
249 int err = 0;
250
251 /*
252 * Check that if an engine supports busy-stats, they tell the truth.
253 */
254
255 if (igt_spinner_init(&spin, gt))
256 return -ENOMEM;
257
258 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
259 for_each_engine(engine, gt, id) {
260 struct i915_request *rq;
261 ktime_t busyness, dummy;
262 ktime_t de, dt;
263 ktime_t t[2];
264
265 if (!intel_engine_supports_stats(engine))
266 continue;
267
268 if (!intel_engine_can_store_dword(engine))
269 continue;
270
271 if (intel_gt_pm_wait_for_idle(gt)) {
272 err = -EBUSY;
273 break;
274 }
275
276 st_engine_heartbeat_disable(engine);
277
278 ENGINE_TRACE(engine, "measuring idle time\n");
279 preempt_disable();
280 de = intel_engine_get_busy_time(engine, &t[0]);
281 udelay(100);
282 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
283 preempt_enable();
284 dt = ktime_sub(t[1], t[0]);
285 if (de < 0 || de > 10) {
286 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
287 engine->name,
288 de, (int)div64_u64(100 * de, dt), dt);
289 GEM_TRACE_DUMP();
290 err = -EINVAL;
291 goto end;
292 }
293
294 /* 100% busy */
295 rq = igt_spinner_create_request(&spin,
296 engine->kernel_context,
297 MI_NOOP);
298 if (IS_ERR(rq)) {
299 err = PTR_ERR(rq);
300 goto end;
301 }
302 i915_request_add(rq);
303
304 busyness = intel_engine_get_busy_time(engine, &dummy);
305 if (!igt_wait_for_spinner(&spin, rq)) {
306 intel_gt_set_wedged(engine->gt);
307 err = -ETIME;
308 goto end;
309 }
310
311 err = __spin_until_busier(engine, busyness);
312 if (err) {
313 GEM_TRACE_DUMP();
314 goto end;
315 }
316
317 ENGINE_TRACE(engine, "measuring busy time\n");
318 preempt_disable();
319 de = intel_engine_get_busy_time(engine, &t[0]);
320 mdelay(100);
321 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
322 preempt_enable();
323 dt = ktime_sub(t[1], t[0]);
324 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
325 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
326 engine->name,
327 de, (int)div64_u64(100 * de, dt), dt);
328 GEM_TRACE_DUMP();
329 err = -EINVAL;
330 goto end;
331 }
332
333 end:
334 st_engine_heartbeat_enable(engine);
335 igt_spinner_end(&spin);
336 if (igt_flush_test(gt->i915))
337 err = -EIO;
338 if (err)
339 break;
340 }
341
342 igt_spinner_fini(&spin);
343 if (igt_flush_test(gt->i915))
344 err = -EIO;
345 return err;
346 }
347
live_engine_pm(void * arg)348 static int live_engine_pm(void *arg)
349 {
350 struct intel_gt *gt = arg;
351 struct intel_engine_cs *engine;
352 enum intel_engine_id id;
353
354 /*
355 * Check we can call intel_engine_pm_put from any context. No
356 * failures are reported directly, but if we mess up lockdep should
357 * tell us.
358 */
359 if (intel_gt_pm_wait_for_idle(gt)) {
360 pr_err("Unable to flush GT pm before test\n");
361 return -EBUSY;
362 }
363
364 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
365 for_each_engine(engine, gt, id) {
366 const typeof(*igt_atomic_phases) *p;
367
368 for (p = igt_atomic_phases; p->name; p++) {
369 /*
370 * Acquisition is always synchronous, except if we
371 * know that the engine is already awake, in which
372 * case we should use intel_engine_pm_get_if_awake()
373 * to atomically grab the wakeref.
374 *
375 * In practice,
376 * intel_engine_pm_get();
377 * intel_engine_pm_put();
378 * occurs in one thread, while simultaneously
379 * intel_engine_pm_get_if_awake();
380 * intel_engine_pm_put();
381 * occurs from atomic context in another.
382 */
383 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
384 intel_engine_pm_get(engine);
385
386 p->critical_section_begin();
387 if (!intel_engine_pm_get_if_awake(engine))
388 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
389 engine->name, p->name);
390 else
391 intel_engine_pm_put_async(engine);
392 intel_engine_pm_put_async(engine);
393 p->critical_section_end();
394
395 intel_engine_pm_flush(engine);
396
397 if (intel_engine_pm_is_awake(engine)) {
398 pr_err("%s is still awake after flushing pm\n",
399 engine->name);
400 return -EINVAL;
401 }
402
403 /* gt wakeref is async (deferred to workqueue) */
404 if (intel_gt_pm_wait_for_idle(gt)) {
405 pr_err("GT failed to idle\n");
406 return -EINVAL;
407 }
408 }
409 }
410
411 return 0;
412 }
413
live_engine_pm_selftests(struct intel_gt * gt)414 int live_engine_pm_selftests(struct intel_gt *gt)
415 {
416 static const struct i915_subtest tests[] = {
417 SUBTEST(live_engine_timestamps),
418 SUBTEST(live_engine_busy_stats),
419 SUBTEST(live_engine_pm),
420 };
421
422 return intel_gt_live_subtests(tests, gt);
423 }
424