1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 *
5 * Copyright (C) 2011 Weinmann Medical GmbH
6 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 *
8 * Evolved from original work by:
9 * Copyright (C) 2004 Rick Bronson
10 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 *
12 * Borrowed heavily from original work by:
13 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30
31 #include "i2c-at91.h"
32
at91_init_twi_bus_master(struct at91_twi_dev * dev)33 void at91_init_twi_bus_master(struct at91_twi_dev *dev)
34 {
35 struct at91_twi_pdata *pdata = dev->pdata;
36 u32 filtr = 0;
37
38 /* FIFO should be enabled immediately after the software reset */
39 if (dev->fifo_size)
40 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
41 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
42 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
43 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
44
45 /* enable digital filter */
46 if (pdata->has_dig_filtr && dev->enable_dig_filt)
47 filtr |= AT91_TWI_FILTR_FILT;
48
49 /* enable advanced digital filter */
50 if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
51 filtr |= AT91_TWI_FILTR_FILT |
52 (AT91_TWI_FILTR_THRES(dev->filter_width) &
53 AT91_TWI_FILTR_THRES_MASK);
54
55 /* enable analog filter */
56 if (pdata->has_ana_filtr && dev->enable_ana_filt)
57 filtr |= AT91_TWI_FILTR_PADFEN;
58
59 if (filtr)
60 at91_twi_write(dev, AT91_TWI_FILTR, filtr);
61 }
62
63 /*
64 * Calculate symmetric clock as stated in datasheet:
65 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
66 */
at91_calc_twi_clock(struct at91_twi_dev * dev)67 static void at91_calc_twi_clock(struct at91_twi_dev *dev)
68 {
69 int ckdiv, cdiv, div, hold = 0, filter_width = 0;
70 struct at91_twi_pdata *pdata = dev->pdata;
71 int offset = pdata->clk_offset;
72 int max_ckdiv = pdata->clk_max_div;
73 struct i2c_timings timings, *t = &timings;
74
75 i2c_parse_fw_timings(dev->dev, t, true);
76
77 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
78 2 * t->bus_freq_hz) - offset);
79 ckdiv = fls(div >> 8);
80 cdiv = div >> ckdiv;
81
82 if (ckdiv > max_ckdiv) {
83 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
84 ckdiv, max_ckdiv);
85 ckdiv = max_ckdiv;
86 cdiv = 255;
87 }
88
89 if (pdata->has_hold_field) {
90 /*
91 * hold time = HOLD + 3 x T_peripheral_clock
92 * Use clk rate in kHz to prevent overflows when computing
93 * hold.
94 */
95 hold = DIV_ROUND_UP(t->sda_hold_ns
96 * (clk_get_rate(dev->clk) / 1000), 1000000);
97 hold -= 3;
98 if (hold < 0)
99 hold = 0;
100 if (hold > AT91_TWI_CWGR_HOLD_MAX) {
101 dev_warn(dev->dev,
102 "HOLD field set to its maximum value (%d instead of %d)\n",
103 AT91_TWI_CWGR_HOLD_MAX, hold);
104 hold = AT91_TWI_CWGR_HOLD_MAX;
105 }
106 }
107
108 if (pdata->has_adv_dig_filtr) {
109 /*
110 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
111 * peripheral clocks
112 */
113 filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
114 * (clk_get_rate(dev->clk) / 1000), 1000000);
115 if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
116 dev_warn(dev->dev,
117 "Filter threshold set to its maximum value (%d instead of %d)\n",
118 AT91_TWI_FILTR_THRES_MAX, filter_width);
119 filter_width = AT91_TWI_FILTR_THRES_MAX;
120 }
121 }
122
123 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
124 | AT91_TWI_CWGR_HOLD(hold);
125
126 dev->filter_width = filter_width;
127
128 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
129 cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
130 t->digital_filter_width_ns);
131 }
132
at91_twi_dma_cleanup(struct at91_twi_dev * dev)133 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
134 {
135 struct at91_twi_dma *dma = &dev->dma;
136
137 at91_twi_irq_save(dev);
138
139 if (dma->xfer_in_progress) {
140 if (dma->direction == DMA_FROM_DEVICE)
141 dmaengine_terminate_sync(dma->chan_rx);
142 else
143 dmaengine_terminate_sync(dma->chan_tx);
144 dma->xfer_in_progress = false;
145 }
146 if (dma->buf_mapped) {
147 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
148 dev->buf_len, dma->direction);
149 dma->buf_mapped = false;
150 }
151
152 at91_twi_irq_restore(dev);
153 }
154
at91_twi_write_next_byte(struct at91_twi_dev * dev)155 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
156 {
157 if (!dev->buf_len)
158 return;
159
160 /* 8bit write works with and without FIFO */
161 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
162
163 /* send stop when last byte has been written */
164 if (--dev->buf_len == 0) {
165 if (!dev->use_alt_cmd)
166 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
167 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
168 }
169
170 dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
171
172 ++dev->buf;
173 }
174
at91_twi_write_data_dma_callback(void * data)175 static void at91_twi_write_data_dma_callback(void *data)
176 {
177 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
178
179 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
180 dev->buf_len, DMA_TO_DEVICE);
181
182 /*
183 * When this callback is called, THR/TX FIFO is likely not to be empty
184 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
185 * Status Register to be sure that the STOP bit has been sent and the
186 * transfer is completed. The NACK interrupt has already been enabled,
187 * we just have to enable TXCOMP one.
188 */
189 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
190 if (!dev->use_alt_cmd)
191 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
192 }
193
at91_twi_write_data_dma(struct at91_twi_dev * dev)194 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
195 {
196 dma_addr_t dma_addr;
197 struct dma_async_tx_descriptor *txdesc;
198 struct at91_twi_dma *dma = &dev->dma;
199 struct dma_chan *chan_tx = dma->chan_tx;
200 unsigned int sg_len = 1;
201
202 if (!dev->buf_len)
203 return;
204
205 dma->direction = DMA_TO_DEVICE;
206
207 at91_twi_irq_save(dev);
208 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
209 DMA_TO_DEVICE);
210 if (dma_mapping_error(dev->dev, dma_addr)) {
211 dev_err(dev->dev, "dma map failed\n");
212 return;
213 }
214 dma->buf_mapped = true;
215 at91_twi_irq_restore(dev);
216
217 if (dev->fifo_size) {
218 size_t part1_len, part2_len;
219 struct scatterlist *sg;
220 unsigned fifo_mr;
221
222 sg_len = 0;
223
224 part1_len = dev->buf_len & ~0x3;
225 if (part1_len) {
226 sg = &dma->sg[sg_len++];
227 sg_dma_len(sg) = part1_len;
228 sg_dma_address(sg) = dma_addr;
229 }
230
231 part2_len = dev->buf_len & 0x3;
232 if (part2_len) {
233 sg = &dma->sg[sg_len++];
234 sg_dma_len(sg) = part2_len;
235 sg_dma_address(sg) = dma_addr + part1_len;
236 }
237
238 /*
239 * DMA controller is triggered when at least 4 data can be
240 * written into the TX FIFO
241 */
242 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
243 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
244 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
245 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
246 } else {
247 sg_dma_len(&dma->sg[0]) = dev->buf_len;
248 sg_dma_address(&dma->sg[0]) = dma_addr;
249 }
250
251 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
252 DMA_MEM_TO_DEV,
253 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
254 if (!txdesc) {
255 dev_err(dev->dev, "dma prep slave sg failed\n");
256 goto error;
257 }
258
259 txdesc->callback = at91_twi_write_data_dma_callback;
260 txdesc->callback_param = dev;
261
262 dma->xfer_in_progress = true;
263 dmaengine_submit(txdesc);
264 dma_async_issue_pending(chan_tx);
265
266 return;
267
268 error:
269 at91_twi_dma_cleanup(dev);
270 }
271
at91_twi_read_next_byte(struct at91_twi_dev * dev)272 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
273 {
274 /*
275 * If we are in this case, it means there is garbage data in RHR, so
276 * delete them.
277 */
278 if (!dev->buf_len) {
279 at91_twi_read(dev, AT91_TWI_RHR);
280 return;
281 }
282
283 /* 8bit read works with and without FIFO */
284 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
285 --dev->buf_len;
286
287 /* return if aborting, we only needed to read RHR to clear RXRDY*/
288 if (dev->recv_len_abort)
289 return;
290
291 /* handle I2C_SMBUS_BLOCK_DATA */
292 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
293 /* ensure length byte is a valid value */
294 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
295 dev->msg->flags &= ~I2C_M_RECV_LEN;
296 dev->buf_len += *dev->buf;
297 dev->msg->len = dev->buf_len + 1;
298 dev_dbg(dev->dev, "received block length %zu\n",
299 dev->buf_len);
300 } else {
301 /* abort and send the stop by reading one more byte */
302 dev->recv_len_abort = true;
303 dev->buf_len = 1;
304 }
305 }
306
307 /* send stop if second but last byte has been read */
308 if (!dev->use_alt_cmd && dev->buf_len == 1)
309 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
310
311 dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
312
313 ++dev->buf;
314 }
315
at91_twi_read_data_dma_callback(void * data)316 static void at91_twi_read_data_dma_callback(void *data)
317 {
318 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
319 unsigned ier = AT91_TWI_TXCOMP;
320
321 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
322 dev->buf_len, DMA_FROM_DEVICE);
323
324 if (!dev->use_alt_cmd) {
325 /* The last two bytes have to be read without using dma */
326 dev->buf += dev->buf_len - 2;
327 dev->buf_len = 2;
328 ier |= AT91_TWI_RXRDY;
329 }
330 at91_twi_write(dev, AT91_TWI_IER, ier);
331 }
332
at91_twi_read_data_dma(struct at91_twi_dev * dev)333 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
334 {
335 dma_addr_t dma_addr;
336 struct dma_async_tx_descriptor *rxdesc;
337 struct at91_twi_dma *dma = &dev->dma;
338 struct dma_chan *chan_rx = dma->chan_rx;
339 size_t buf_len;
340
341 buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
342 dma->direction = DMA_FROM_DEVICE;
343
344 /* Keep in mind that we won't use dma to read the last two bytes */
345 at91_twi_irq_save(dev);
346 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
347 if (dma_mapping_error(dev->dev, dma_addr)) {
348 dev_err(dev->dev, "dma map failed\n");
349 return;
350 }
351 dma->buf_mapped = true;
352 at91_twi_irq_restore(dev);
353
354 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
355 unsigned fifo_mr;
356
357 /*
358 * DMA controller is triggered when at least 4 data can be
359 * read from the RX FIFO
360 */
361 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
362 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
363 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
364 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
365 }
366
367 sg_dma_len(&dma->sg[0]) = buf_len;
368 sg_dma_address(&dma->sg[0]) = dma_addr;
369
370 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
371 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
372 if (!rxdesc) {
373 dev_err(dev->dev, "dma prep slave sg failed\n");
374 goto error;
375 }
376
377 rxdesc->callback = at91_twi_read_data_dma_callback;
378 rxdesc->callback_param = dev;
379
380 dma->xfer_in_progress = true;
381 dmaengine_submit(rxdesc);
382 dma_async_issue_pending(dma->chan_rx);
383
384 return;
385
386 error:
387 at91_twi_dma_cleanup(dev);
388 }
389
atmel_twi_interrupt(int irq,void * dev_id)390 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
391 {
392 struct at91_twi_dev *dev = dev_id;
393 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
394 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
395
396 if (!irqstatus)
397 return IRQ_NONE;
398 /*
399 * In reception, the behavior of the twi device (before sama5d2) is
400 * weird. There is some magic about RXRDY flag! When a data has been
401 * almost received, the reception of a new one is anticipated if there
402 * is no stop command to send. That is the reason why ask for sending
403 * the stop command not on the last data but on the second last one.
404 *
405 * Unfortunately, we could still have the RXRDY flag set even if the
406 * transfer is done and we have read the last data. It might happen
407 * when the i2c slave device sends too quickly data after receiving the
408 * ack from the master. The data has been almost received before having
409 * the order to send stop. In this case, sending the stop command could
410 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
411 * the RXRDY interrupt first in order to not keep garbage data in the
412 * Receive Holding Register for the next transfer.
413 */
414 if (irqstatus & AT91_TWI_RXRDY) {
415 /*
416 * Read all available bytes at once by polling RXRDY usable w/
417 * and w/o FIFO. With FIFO enabled we could also read RXFL and
418 * avoid polling RXRDY.
419 */
420 do {
421 at91_twi_read_next_byte(dev);
422 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
423 }
424
425 /*
426 * When a NACK condition is detected, the I2C controller sets the NACK,
427 * TXCOMP and TXRDY bits all together in the Status Register (SR).
428 *
429 * 1 - Handling NACK errors with CPU write transfer.
430 *
431 * In such case, we should not write the next byte into the Transmit
432 * Holding Register (THR) otherwise the I2C controller would start a new
433 * transfer and the I2C slave is likely to reply by another NACK.
434 *
435 * 2 - Handling NACK errors with DMA write transfer.
436 *
437 * By setting the TXRDY bit in the SR, the I2C controller also triggers
438 * the DMA controller to write the next data into the THR. Then the
439 * result depends on the hardware version of the I2C controller.
440 *
441 * 2a - Without support of the Alternative Command mode.
442 *
443 * This is the worst case: the DMA controller is triggered to write the
444 * next data into the THR, hence starting a new transfer: the I2C slave
445 * is likely to reply by another NACK.
446 * Concurrently, this interrupt handler is likely to be called to manage
447 * the first NACK before the I2C controller detects the second NACK and
448 * sets once again the NACK bit into the SR.
449 * When handling the first NACK, this interrupt handler disables the I2C
450 * controller interruptions, especially the NACK interrupt.
451 * Hence, the NACK bit is pending into the SR. This is why we should
452 * read the SR to clear all pending interrupts at the beginning of
453 * at91_do_twi_transfer() before actually starting a new transfer.
454 *
455 * 2b - With support of the Alternative Command mode.
456 *
457 * When a NACK condition is detected, the I2C controller also locks the
458 * THR (and sets the LOCK bit in the SR): even though the DMA controller
459 * is triggered by the TXRDY bit to write the next data into the THR,
460 * this data actually won't go on the I2C bus hence a second NACK is not
461 * generated.
462 */
463 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
464 at91_disable_twi_interrupts(dev);
465 complete(&dev->cmd_complete);
466 } else if (irqstatus & AT91_TWI_TXRDY) {
467 at91_twi_write_next_byte(dev);
468 }
469
470 /* catch error flags */
471 dev->transfer_status |= status;
472
473 return IRQ_HANDLED;
474 }
475
at91_do_twi_transfer(struct at91_twi_dev * dev)476 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
477 {
478 int ret;
479 unsigned long time_left;
480 bool has_unre_flag = dev->pdata->has_unre_flag;
481 bool has_alt_cmd = dev->pdata->has_alt_cmd;
482
483 /*
484 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
485 * read flag but shows the state of the transmission at the time the
486 * Status Register is read. According to the programmer datasheet,
487 * TXCOMP is set when both holding register and internal shifter are
488 * empty and STOP condition has been sent.
489 * Consequently, we should enable NACK interrupt rather than TXCOMP to
490 * detect transmission failure.
491 * Indeed let's take the case of an i2c write command using DMA.
492 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
493 * TXCOMP bits are set together into the Status Register.
494 * LOCK is a clear on write bit, which is set to prevent the DMA
495 * controller from sending new data on the i2c bus after a NACK
496 * condition has happened. Once locked, this i2c peripheral stops
497 * triggering the DMA controller for new data but it is more than
498 * likely that a new DMA transaction is already in progress, writing
499 * into the Transmit Holding Register. Since the peripheral is locked,
500 * these new data won't be sent to the i2c bus but they will remain
501 * into the Transmit Holding Register, so TXCOMP bit is cleared.
502 * Then when the interrupt handler is called, the Status Register is
503 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
504 * manage the error properly, without waiting for timeout.
505 * This case can be reproduced easyly when writing into an at24 eeprom.
506 *
507 * Besides, the TXCOMP bit is already set before the i2c transaction
508 * has been started. For read transactions, this bit is cleared when
509 * writing the START bit into the Control Register. So the
510 * corresponding interrupt can safely be enabled just after.
511 * However for write transactions managed by the CPU, we first write
512 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
513 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
514 * the interrupt handler would be called immediately and the i2c command
515 * would be reported as completed.
516 * Also when a write transaction is managed by the DMA controller,
517 * enabling the TXCOMP interrupt in this function may lead to a race
518 * condition since we don't know whether the TXCOMP interrupt is enabled
519 * before or after the DMA has started to write into THR. So the TXCOMP
520 * interrupt is enabled later by at91_twi_write_data_dma_callback().
521 * Immediately after in that DMA callback, if the alternative command
522 * mode is not used, we still need to send the STOP condition manually
523 * writing the corresponding bit into the Control Register.
524 */
525
526 dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
527 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
528
529 reinit_completion(&dev->cmd_complete);
530 dev->transfer_status = 0;
531
532 /* Clear pending interrupts, such as NACK. */
533 at91_twi_read(dev, AT91_TWI_SR);
534
535 if (dev->fifo_size) {
536 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
537
538 /* Reset FIFO mode register */
539 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
540 AT91_TWI_FMR_RXRDYM_MASK);
541 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
542 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
543 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
544
545 /* Flush FIFOs */
546 at91_twi_write(dev, AT91_TWI_CR,
547 AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
548 }
549
550 if (!dev->buf_len) {
551 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
552 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
553 } else if (dev->msg->flags & I2C_M_RD) {
554 unsigned start_flags = AT91_TWI_START;
555
556 /* if only one byte is to be read, immediately stop transfer */
557 if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
558 !(dev->msg->flags & I2C_M_RECV_LEN))
559 start_flags |= AT91_TWI_STOP;
560 at91_twi_write(dev, AT91_TWI_CR, start_flags);
561 /*
562 * When using dma without alternative command mode, the last
563 * byte has to be read manually in order to not send the stop
564 * command too late and then to receive extra data.
565 * In practice, there are some issues if you use the dma to
566 * read n-1 bytes because of latency.
567 * Reading n-2 bytes with dma and the two last ones manually
568 * seems to be the best solution.
569 */
570 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
571 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
572 at91_twi_read_data_dma(dev);
573 } else {
574 at91_twi_write(dev, AT91_TWI_IER,
575 AT91_TWI_TXCOMP |
576 AT91_TWI_NACK |
577 AT91_TWI_RXRDY);
578 }
579 } else {
580 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
581 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
582 at91_twi_write_data_dma(dev);
583 } else {
584 at91_twi_write_next_byte(dev);
585 at91_twi_write(dev, AT91_TWI_IER,
586 AT91_TWI_TXCOMP | AT91_TWI_NACK |
587 (dev->buf_len ? AT91_TWI_TXRDY : 0));
588 }
589 }
590
591 time_left = wait_for_completion_timeout(&dev->cmd_complete,
592 dev->adapter.timeout);
593 if (time_left == 0) {
594 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
595 dev_err(dev->dev, "controller timed out\n");
596 at91_init_twi_bus(dev);
597 ret = -ETIMEDOUT;
598 goto error;
599 }
600 if (dev->transfer_status & AT91_TWI_NACK) {
601 dev_dbg(dev->dev, "received nack\n");
602 ret = -EREMOTEIO;
603 goto error;
604 }
605 if (dev->transfer_status & AT91_TWI_OVRE) {
606 dev_err(dev->dev, "overrun while reading\n");
607 ret = -EIO;
608 goto error;
609 }
610 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
611 dev_err(dev->dev, "underrun while writing\n");
612 ret = -EIO;
613 goto error;
614 }
615 if ((has_alt_cmd || dev->fifo_size) &&
616 (dev->transfer_status & AT91_TWI_LOCK)) {
617 dev_err(dev->dev, "tx locked\n");
618 ret = -EIO;
619 goto error;
620 }
621 if (dev->recv_len_abort) {
622 dev_err(dev->dev, "invalid smbus block length recvd\n");
623 ret = -EPROTO;
624 goto error;
625 }
626
627 dev_dbg(dev->dev, "transfer complete\n");
628
629 return 0;
630
631 error:
632 /* first stop DMA transfer if still in progress */
633 at91_twi_dma_cleanup(dev);
634 /* then flush THR/FIFO and unlock TX if locked */
635 if ((has_alt_cmd || dev->fifo_size) &&
636 (dev->transfer_status & AT91_TWI_LOCK)) {
637 dev_dbg(dev->dev, "unlock tx\n");
638 at91_twi_write(dev, AT91_TWI_CR,
639 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
640 }
641
642 /*
643 * some faulty I2C slave devices might hold SDA down;
644 * we can send a bus clear command, hoping that the pins will be
645 * released
646 */
647 i2c_recover_bus(&dev->adapter);
648
649 return ret;
650 }
651
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)652 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
653 {
654 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
655 int ret;
656 unsigned int_addr_flag = 0;
657 struct i2c_msg *m_start = msg;
658 bool is_read;
659 u8 *dma_buf = NULL;
660
661 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
662
663 ret = pm_runtime_get_sync(dev->dev);
664 if (ret < 0)
665 goto out;
666
667 if (num == 2) {
668 int internal_address = 0;
669 int i;
670
671 /* 1st msg is put into the internal address, start with 2nd */
672 m_start = &msg[1];
673 for (i = 0; i < msg->len; ++i) {
674 const unsigned addr = msg->buf[msg->len - 1 - i];
675
676 internal_address |= addr << (8 * i);
677 int_addr_flag += AT91_TWI_IADRSZ_1;
678 }
679 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
680 }
681
682 dev->use_alt_cmd = false;
683 is_read = (m_start->flags & I2C_M_RD);
684 if (dev->pdata->has_alt_cmd) {
685 if (m_start->len > 0 &&
686 m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
687 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
688 at91_twi_write(dev, AT91_TWI_ACR,
689 AT91_TWI_ACR_DATAL(m_start->len) |
690 ((is_read) ? AT91_TWI_ACR_DIR : 0));
691 dev->use_alt_cmd = true;
692 } else {
693 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
694 }
695 }
696
697 at91_twi_write(dev, AT91_TWI_MMR,
698 (m_start->addr << 16) |
699 int_addr_flag |
700 ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
701
702 dev->buf_len = m_start->len;
703 dev->buf = m_start->buf;
704 dev->msg = m_start;
705 dev->recv_len_abort = false;
706
707 if (dev->use_dma) {
708 dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
709 if (!dma_buf) {
710 ret = -ENOMEM;
711 goto out;
712 }
713 dev->buf = dma_buf;
714 }
715
716 ret = at91_do_twi_transfer(dev);
717 i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
718
719 ret = (ret < 0) ? ret : num;
720 out:
721 pm_runtime_mark_last_busy(dev->dev);
722 pm_runtime_put_autosuspend(dev->dev);
723
724 return ret;
725 }
726
727 /*
728 * The hardware can handle at most two messages concatenated by a
729 * repeated start via it's internal address feature.
730 */
731 static const struct i2c_adapter_quirks at91_twi_quirks = {
732 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
733 .max_comb_1st_msg_len = 3,
734 };
735
at91_twi_func(struct i2c_adapter * adapter)736 static u32 at91_twi_func(struct i2c_adapter *adapter)
737 {
738 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
739 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
740 }
741
742 static const struct i2c_algorithm at91_twi_algorithm = {
743 .master_xfer = at91_twi_xfer,
744 .functionality = at91_twi_func,
745 };
746
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)747 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
748 {
749 int ret = 0;
750 struct dma_slave_config slave_config;
751 struct at91_twi_dma *dma = &dev->dma;
752 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
753
754 /*
755 * The actual width of the access will be chosen in
756 * dmaengine_prep_slave_sg():
757 * for each buffer in the scatter-gather list, if its size is aligned
758 * to addr_width then addr_width accesses will be performed to transfer
759 * the buffer. On the other hand, if the buffer size is not aligned to
760 * addr_width then the buffer is transferred using single byte accesses.
761 * Please refer to the Atmel eXtended DMA controller driver.
762 * When FIFOs are used, the TXRDYM threshold can always be set to
763 * trigger the XDMAC when at least 4 data can be written into the TX
764 * FIFO, even if single byte accesses are performed.
765 * However the RXRDYM threshold must be set to fit the access width,
766 * deduced from buffer length, so the XDMAC is triggered properly to
767 * read data from the RX FIFO.
768 */
769 if (dev->fifo_size)
770 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
771
772 memset(&slave_config, 0, sizeof(slave_config));
773 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
774 slave_config.src_addr_width = addr_width;
775 slave_config.src_maxburst = 1;
776 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
777 slave_config.dst_addr_width = addr_width;
778 slave_config.dst_maxburst = 1;
779 slave_config.device_fc = false;
780
781 dma->chan_tx = dma_request_chan(dev->dev, "tx");
782 if (IS_ERR(dma->chan_tx)) {
783 ret = PTR_ERR(dma->chan_tx);
784 dma->chan_tx = NULL;
785 goto error;
786 }
787
788 dma->chan_rx = dma_request_chan(dev->dev, "rx");
789 if (IS_ERR(dma->chan_rx)) {
790 ret = PTR_ERR(dma->chan_rx);
791 dma->chan_rx = NULL;
792 goto error;
793 }
794
795 slave_config.direction = DMA_MEM_TO_DEV;
796 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
797 dev_err(dev->dev, "failed to configure tx channel\n");
798 ret = -EINVAL;
799 goto error;
800 }
801
802 slave_config.direction = DMA_DEV_TO_MEM;
803 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
804 dev_err(dev->dev, "failed to configure rx channel\n");
805 ret = -EINVAL;
806 goto error;
807 }
808
809 sg_init_table(dma->sg, 2);
810 dma->buf_mapped = false;
811 dma->xfer_in_progress = false;
812 dev->use_dma = true;
813
814 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
815 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
816
817 return ret;
818
819 error:
820 if (ret != -EPROBE_DEFER)
821 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
822 if (dma->chan_rx)
823 dma_release_channel(dma->chan_rx);
824 if (dma->chan_tx)
825 dma_release_channel(dma->chan_tx);
826 return ret;
827 }
828
at91_init_twi_recovery_gpio(struct platform_device * pdev,struct at91_twi_dev * dev)829 static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
830 struct at91_twi_dev *dev)
831 {
832 struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
833
834 rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
835 if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) {
836 dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
837 return PTR_ERR(rinfo->pinctrl);
838 }
839 dev->adapter.bus_recovery_info = rinfo;
840
841 return 0;
842 }
843
at91_twi_recover_bus_cmd(struct i2c_adapter * adap)844 static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
845 {
846 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
847
848 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
849 if (!(dev->transfer_status & AT91_TWI_SDA)) {
850 dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
851 if (dev->use_alt_cmd) {
852 unsigned int acr;
853
854 acr = at91_twi_read(dev, AT91_TWI_ACR);
855 acr &= ~AT91_TWI_ACR_DATAL_MASK;
856 at91_twi_write(dev, AT91_TWI_ACR, acr);
857 }
858 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
859 }
860
861 return 0;
862 }
863
at91_init_twi_recovery_info(struct platform_device * pdev,struct at91_twi_dev * dev)864 static int at91_init_twi_recovery_info(struct platform_device *pdev,
865 struct at91_twi_dev *dev)
866 {
867 struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
868 bool has_clear_cmd = dev->pdata->has_clear_cmd;
869
870 if (!has_clear_cmd)
871 return at91_init_twi_recovery_gpio(pdev, dev);
872
873 rinfo->recover_bus = at91_twi_recover_bus_cmd;
874 dev->adapter.bus_recovery_info = rinfo;
875
876 return 0;
877 }
878
at91_twi_probe_master(struct platform_device * pdev,u32 phy_addr,struct at91_twi_dev * dev)879 int at91_twi_probe_master(struct platform_device *pdev,
880 u32 phy_addr, struct at91_twi_dev *dev)
881 {
882 int rc;
883
884 init_completion(&dev->cmd_complete);
885
886 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
887 dev_name(dev->dev), dev);
888 if (rc) {
889 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
890 return rc;
891 }
892
893 if (dev->dev->of_node) {
894 rc = at91_twi_configure_dma(dev, phy_addr);
895 if (rc == -EPROBE_DEFER)
896 return rc;
897 }
898
899 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
900 &dev->fifo_size)) {
901 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
902 }
903
904 dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
905 "i2c-digital-filter");
906
907 dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
908 "i2c-analog-filter");
909 at91_calc_twi_clock(dev);
910
911 rc = at91_init_twi_recovery_info(pdev, dev);
912 if (rc == -EPROBE_DEFER)
913 return rc;
914
915 dev->adapter.algo = &at91_twi_algorithm;
916 dev->adapter.quirks = &at91_twi_quirks;
917
918 return 0;
919 }
920