1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * exynos_adc.c - Support for ADC in EXYNOS SoCs
4 *
5 * 8 ~ 10 channel, 10/12-bit ADC
6 *
7 * Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8 */
9
10 #include <linux/compiler.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/interrupt.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_platform.h>
25 #include <linux/err.h>
26 #include <linux/input.h>
27
28 #include <linux/iio/iio.h>
29 #include <linux/iio/machine.h>
30 #include <linux/iio/driver.h>
31 #include <linux/mfd/syscon.h>
32 #include <linux/regmap.h>
33
34 #include <linux/platform_data/touchscreen-s3c2410.h>
35
36 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
37 #define ADC_V1_CON(x) ((x) + 0x00)
38 #define ADC_V1_TSC(x) ((x) + 0x04)
39 #define ADC_V1_DLY(x) ((x) + 0x08)
40 #define ADC_V1_DATX(x) ((x) + 0x0C)
41 #define ADC_V1_DATY(x) ((x) + 0x10)
42 #define ADC_V1_UPDN(x) ((x) + 0x14)
43 #define ADC_V1_INTCLR(x) ((x) + 0x18)
44 #define ADC_V1_MUX(x) ((x) + 0x1c)
45 #define ADC_V1_CLRINTPNDNUP(x) ((x) + 0x20)
46
47 /* S3C2410 ADC registers definitions */
48 #define ADC_S3C2410_MUX(x) ((x) + 0x18)
49
50 /* Future ADC_V2 registers definitions */
51 #define ADC_V2_CON1(x) ((x) + 0x00)
52 #define ADC_V2_CON2(x) ((x) + 0x04)
53 #define ADC_V2_STAT(x) ((x) + 0x08)
54 #define ADC_V2_INT_EN(x) ((x) + 0x10)
55 #define ADC_V2_INT_ST(x) ((x) + 0x14)
56 #define ADC_V2_VER(x) ((x) + 0x20)
57
58 /* Bit definitions for ADC_V1 */
59 #define ADC_V1_CON_RES (1u << 16)
60 #define ADC_V1_CON_PRSCEN (1u << 14)
61 #define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6)
62 #define ADC_V1_CON_STANDBY (1u << 2)
63
64 /* Bit definitions for S3C2410 ADC */
65 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
66 #define ADC_S3C2410_DATX_MASK 0x3FF
67 #define ADC_S3C2416_CON_RES_SEL (1u << 3)
68
69 /* touch screen always uses channel 0 */
70 #define ADC_S3C2410_MUX_TS 0
71
72 /* ADCTSC Register Bits */
73 #define ADC_S3C2443_TSC_UD_SEN (1u << 8)
74 #define ADC_S3C2410_TSC_YM_SEN (1u << 7)
75 #define ADC_S3C2410_TSC_YP_SEN (1u << 6)
76 #define ADC_S3C2410_TSC_XM_SEN (1u << 5)
77 #define ADC_S3C2410_TSC_XP_SEN (1u << 4)
78 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3)
79 #define ADC_S3C2410_TSC_AUTO_PST (1u << 2)
80 #define ADC_S3C2410_TSC_XY_PST(x) (((x) & 0x3) << 0)
81
82 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
83 ADC_S3C2410_TSC_YP_SEN | \
84 ADC_S3C2410_TSC_XP_SEN | \
85 ADC_S3C2410_TSC_XY_PST(3))
86
87 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \
88 ADC_S3C2410_TSC_YP_SEN | \
89 ADC_S3C2410_TSC_XP_SEN | \
90 ADC_S3C2410_TSC_AUTO_PST | \
91 ADC_S3C2410_TSC_XY_PST(0))
92
93 /* Bit definitions for ADC_V2 */
94 #define ADC_V2_CON1_SOFT_RESET (1u << 2)
95
96 #define ADC_V2_CON2_OSEL (1u << 10)
97 #define ADC_V2_CON2_ESEL (1u << 9)
98 #define ADC_V2_CON2_HIGHF (1u << 8)
99 #define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4)
100 #define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0)
101 #define ADC_V2_CON2_ACH_MASK 0xF
102
103 #define MAX_ADC_V2_CHANNELS 10
104 #define MAX_ADC_V1_CHANNELS 8
105 #define MAX_EXYNOS3250_ADC_CHANNELS 2
106 #define MAX_EXYNOS4212_ADC_CHANNELS 4
107 #define MAX_S5PV210_ADC_CHANNELS 10
108
109 /* Bit definitions common for ADC_V1 and ADC_V2 */
110 #define ADC_CON_EN_START (1u << 0)
111 #define ADC_CON_EN_START_MASK (0x3 << 0)
112 #define ADC_DATX_PRESSED (1u << 15)
113 #define ADC_DATX_MASK 0xFFF
114 #define ADC_DATY_MASK 0xFFF
115
116 #define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100))
117
118 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718
119 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720
120
121 struct exynos_adc {
122 struct exynos_adc_data *data;
123 struct device *dev;
124 struct input_dev *input;
125 void __iomem *regs;
126 struct regmap *pmu_map;
127 struct clk *clk;
128 struct clk *sclk;
129 unsigned int irq;
130 unsigned int tsirq;
131 unsigned int delay;
132 struct regulator *vdd;
133
134 struct completion completion;
135
136 u32 value;
137 unsigned int version;
138
139 bool ts_enabled;
140
141 bool read_ts;
142 u32 ts_x;
143 u32 ts_y;
144
145 /*
146 * Lock to protect from potential concurrent access to the
147 * completion callback during a manual conversion. For this driver
148 * a wait-callback is used to wait for the conversion result,
149 * so in the meantime no other read request (or conversion start)
150 * must be performed, otherwise it would interfere with the
151 * current conversion result.
152 */
153 struct mutex lock;
154 };
155
156 struct exynos_adc_data {
157 int num_channels;
158 bool needs_sclk;
159 bool needs_adc_phy;
160 int phy_offset;
161 u32 mask;
162
163 void (*init_hw)(struct exynos_adc *info);
164 void (*exit_hw)(struct exynos_adc *info);
165 void (*clear_irq)(struct exynos_adc *info);
166 void (*start_conv)(struct exynos_adc *info, unsigned long addr);
167 };
168
exynos_adc_unprepare_clk(struct exynos_adc * info)169 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
170 {
171 if (info->data->needs_sclk)
172 clk_unprepare(info->sclk);
173 clk_unprepare(info->clk);
174 }
175
exynos_adc_prepare_clk(struct exynos_adc * info)176 static int exynos_adc_prepare_clk(struct exynos_adc *info)
177 {
178 int ret;
179
180 ret = clk_prepare(info->clk);
181 if (ret) {
182 dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
183 return ret;
184 }
185
186 if (info->data->needs_sclk) {
187 ret = clk_prepare(info->sclk);
188 if (ret) {
189 clk_unprepare(info->clk);
190 dev_err(info->dev,
191 "failed preparing sclk_adc clock: %d\n", ret);
192 return ret;
193 }
194 }
195
196 return 0;
197 }
198
exynos_adc_disable_clk(struct exynos_adc * info)199 static void exynos_adc_disable_clk(struct exynos_adc *info)
200 {
201 if (info->data->needs_sclk)
202 clk_disable(info->sclk);
203 clk_disable(info->clk);
204 }
205
exynos_adc_enable_clk(struct exynos_adc * info)206 static int exynos_adc_enable_clk(struct exynos_adc *info)
207 {
208 int ret;
209
210 ret = clk_enable(info->clk);
211 if (ret) {
212 dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
213 return ret;
214 }
215
216 if (info->data->needs_sclk) {
217 ret = clk_enable(info->sclk);
218 if (ret) {
219 clk_disable(info->clk);
220 dev_err(info->dev,
221 "failed enabling sclk_adc clock: %d\n", ret);
222 return ret;
223 }
224 }
225
226 return 0;
227 }
228
exynos_adc_v1_init_hw(struct exynos_adc * info)229 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
230 {
231 u32 con1;
232
233 if (info->data->needs_adc_phy)
234 regmap_write(info->pmu_map, info->data->phy_offset, 1);
235
236 /* set default prescaler values and Enable prescaler */
237 con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
238
239 /* Enable 12-bit ADC resolution */
240 con1 |= ADC_V1_CON_RES;
241 writel(con1, ADC_V1_CON(info->regs));
242
243 /* set touchscreen delay */
244 writel(info->delay, ADC_V1_DLY(info->regs));
245 }
246
exynos_adc_v1_exit_hw(struct exynos_adc * info)247 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
248 {
249 u32 con;
250
251 if (info->data->needs_adc_phy)
252 regmap_write(info->pmu_map, info->data->phy_offset, 0);
253
254 con = readl(ADC_V1_CON(info->regs));
255 con |= ADC_V1_CON_STANDBY;
256 writel(con, ADC_V1_CON(info->regs));
257 }
258
exynos_adc_v1_clear_irq(struct exynos_adc * info)259 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
260 {
261 writel(1, ADC_V1_INTCLR(info->regs));
262 }
263
exynos_adc_v1_start_conv(struct exynos_adc * info,unsigned long addr)264 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
265 unsigned long addr)
266 {
267 u32 con1;
268
269 writel(addr, ADC_V1_MUX(info->regs));
270
271 con1 = readl(ADC_V1_CON(info->regs));
272 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
273 }
274
275 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
276 static const struct exynos_adc_data exynos4212_adc_data = {
277 .num_channels = MAX_EXYNOS4212_ADC_CHANNELS,
278 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
279 .needs_adc_phy = true,
280 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
281
282 .init_hw = exynos_adc_v1_init_hw,
283 .exit_hw = exynos_adc_v1_exit_hw,
284 .clear_irq = exynos_adc_v1_clear_irq,
285 .start_conv = exynos_adc_v1_start_conv,
286 };
287
288 static const struct exynos_adc_data exynos_adc_v1_data = {
289 .num_channels = MAX_ADC_V1_CHANNELS,
290 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
291 .needs_adc_phy = true,
292 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
293
294 .init_hw = exynos_adc_v1_init_hw,
295 .exit_hw = exynos_adc_v1_exit_hw,
296 .clear_irq = exynos_adc_v1_clear_irq,
297 .start_conv = exynos_adc_v1_start_conv,
298 };
299
300 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
301 .num_channels = MAX_S5PV210_ADC_CHANNELS,
302 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
303
304 .init_hw = exynos_adc_v1_init_hw,
305 .exit_hw = exynos_adc_v1_exit_hw,
306 .clear_irq = exynos_adc_v1_clear_irq,
307 .start_conv = exynos_adc_v1_start_conv,
308 };
309
exynos_adc_s3c2416_start_conv(struct exynos_adc * info,unsigned long addr)310 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
311 unsigned long addr)
312 {
313 u32 con1;
314
315 /* Enable 12 bit ADC resolution */
316 con1 = readl(ADC_V1_CON(info->regs));
317 con1 |= ADC_S3C2416_CON_RES_SEL;
318 writel(con1, ADC_V1_CON(info->regs));
319
320 /* Select channel for S3C2416 */
321 writel(addr, ADC_S3C2410_MUX(info->regs));
322
323 con1 = readl(ADC_V1_CON(info->regs));
324 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
325 }
326
327 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
328 .num_channels = MAX_ADC_V1_CHANNELS,
329 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
330
331 .init_hw = exynos_adc_v1_init_hw,
332 .exit_hw = exynos_adc_v1_exit_hw,
333 .start_conv = exynos_adc_s3c2416_start_conv,
334 };
335
exynos_adc_s3c2443_start_conv(struct exynos_adc * info,unsigned long addr)336 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
337 unsigned long addr)
338 {
339 u32 con1;
340
341 /* Select channel for S3C2433 */
342 writel(addr, ADC_S3C2410_MUX(info->regs));
343
344 con1 = readl(ADC_V1_CON(info->regs));
345 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
346 }
347
348 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
349 .num_channels = MAX_ADC_V1_CHANNELS,
350 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
351
352 .init_hw = exynos_adc_v1_init_hw,
353 .exit_hw = exynos_adc_v1_exit_hw,
354 .start_conv = exynos_adc_s3c2443_start_conv,
355 };
356
exynos_adc_s3c64xx_start_conv(struct exynos_adc * info,unsigned long addr)357 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
358 unsigned long addr)
359 {
360 u32 con1;
361
362 con1 = readl(ADC_V1_CON(info->regs));
363 con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
364 con1 |= ADC_S3C2410_CON_SELMUX(addr);
365 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
366 }
367
368 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
369 .num_channels = MAX_ADC_V1_CHANNELS,
370 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
371
372 .init_hw = exynos_adc_v1_init_hw,
373 .exit_hw = exynos_adc_v1_exit_hw,
374 .start_conv = exynos_adc_s3c64xx_start_conv,
375 };
376
377 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
378 .num_channels = MAX_ADC_V1_CHANNELS,
379 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
380
381 .init_hw = exynos_adc_v1_init_hw,
382 .exit_hw = exynos_adc_v1_exit_hw,
383 .clear_irq = exynos_adc_v1_clear_irq,
384 .start_conv = exynos_adc_s3c64xx_start_conv,
385 };
386
exynos_adc_v2_init_hw(struct exynos_adc * info)387 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
388 {
389 u32 con1, con2;
390
391 if (info->data->needs_adc_phy)
392 regmap_write(info->pmu_map, info->data->phy_offset, 1);
393
394 con1 = ADC_V2_CON1_SOFT_RESET;
395 writel(con1, ADC_V2_CON1(info->regs));
396
397 con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
398 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
399 writel(con2, ADC_V2_CON2(info->regs));
400
401 /* Enable interrupts */
402 writel(1, ADC_V2_INT_EN(info->regs));
403 }
404
exynos_adc_v2_exit_hw(struct exynos_adc * info)405 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
406 {
407 u32 con;
408
409 if (info->data->needs_adc_phy)
410 regmap_write(info->pmu_map, info->data->phy_offset, 0);
411
412 con = readl(ADC_V2_CON1(info->regs));
413 con &= ~ADC_CON_EN_START;
414 writel(con, ADC_V2_CON1(info->regs));
415 }
416
exynos_adc_v2_clear_irq(struct exynos_adc * info)417 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
418 {
419 writel(1, ADC_V2_INT_ST(info->regs));
420 }
421
exynos_adc_v2_start_conv(struct exynos_adc * info,unsigned long addr)422 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
423 unsigned long addr)
424 {
425 u32 con1, con2;
426
427 con2 = readl(ADC_V2_CON2(info->regs));
428 con2 &= ~ADC_V2_CON2_ACH_MASK;
429 con2 |= ADC_V2_CON2_ACH_SEL(addr);
430 writel(con2, ADC_V2_CON2(info->regs));
431
432 con1 = readl(ADC_V2_CON1(info->regs));
433 writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
434 }
435
436 static const struct exynos_adc_data exynos_adc_v2_data = {
437 .num_channels = MAX_ADC_V2_CHANNELS,
438 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
439 .needs_adc_phy = true,
440 .phy_offset = EXYNOS_ADCV2_PHY_OFFSET,
441
442 .init_hw = exynos_adc_v2_init_hw,
443 .exit_hw = exynos_adc_v2_exit_hw,
444 .clear_irq = exynos_adc_v2_clear_irq,
445 .start_conv = exynos_adc_v2_start_conv,
446 };
447
448 static const struct exynos_adc_data exynos3250_adc_data = {
449 .num_channels = MAX_EXYNOS3250_ADC_CHANNELS,
450 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
451 .needs_sclk = true,
452 .needs_adc_phy = true,
453 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
454
455 .init_hw = exynos_adc_v2_init_hw,
456 .exit_hw = exynos_adc_v2_exit_hw,
457 .clear_irq = exynos_adc_v2_clear_irq,
458 .start_conv = exynos_adc_v2_start_conv,
459 };
460
exynos_adc_exynos7_init_hw(struct exynos_adc * info)461 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
462 {
463 u32 con1, con2;
464
465 con1 = ADC_V2_CON1_SOFT_RESET;
466 writel(con1, ADC_V2_CON1(info->regs));
467
468 con2 = readl(ADC_V2_CON2(info->regs));
469 con2 &= ~ADC_V2_CON2_C_TIME(7);
470 con2 |= ADC_V2_CON2_C_TIME(0);
471 writel(con2, ADC_V2_CON2(info->regs));
472
473 /* Enable interrupts */
474 writel(1, ADC_V2_INT_EN(info->regs));
475 }
476
477 static const struct exynos_adc_data exynos7_adc_data = {
478 .num_channels = MAX_ADC_V1_CHANNELS,
479 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
480
481 .init_hw = exynos_adc_exynos7_init_hw,
482 .exit_hw = exynos_adc_v2_exit_hw,
483 .clear_irq = exynos_adc_v2_clear_irq,
484 .start_conv = exynos_adc_v2_start_conv,
485 };
486
487 static const struct of_device_id exynos_adc_match[] = {
488 {
489 .compatible = "samsung,s3c2410-adc",
490 .data = &exynos_adc_s3c24xx_data,
491 }, {
492 .compatible = "samsung,s3c2416-adc",
493 .data = &exynos_adc_s3c2416_data,
494 }, {
495 .compatible = "samsung,s3c2440-adc",
496 .data = &exynos_adc_s3c24xx_data,
497 }, {
498 .compatible = "samsung,s3c2443-adc",
499 .data = &exynos_adc_s3c2443_data,
500 }, {
501 .compatible = "samsung,s3c6410-adc",
502 .data = &exynos_adc_s3c64xx_data,
503 }, {
504 .compatible = "samsung,s5pv210-adc",
505 .data = &exynos_adc_s5pv210_data,
506 }, {
507 .compatible = "samsung,exynos4212-adc",
508 .data = &exynos4212_adc_data,
509 }, {
510 .compatible = "samsung,exynos-adc-v1",
511 .data = &exynos_adc_v1_data,
512 }, {
513 .compatible = "samsung,exynos-adc-v2",
514 .data = &exynos_adc_v2_data,
515 }, {
516 .compatible = "samsung,exynos3250-adc",
517 .data = &exynos3250_adc_data,
518 }, {
519 .compatible = "samsung,exynos7-adc",
520 .data = &exynos7_adc_data,
521 },
522 {},
523 };
524 MODULE_DEVICE_TABLE(of, exynos_adc_match);
525
exynos_adc_get_data(struct platform_device * pdev)526 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
527 {
528 const struct of_device_id *match;
529
530 match = of_match_node(exynos_adc_match, pdev->dev.of_node);
531 return (struct exynos_adc_data *)match->data;
532 }
533
exynos_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)534 static int exynos_read_raw(struct iio_dev *indio_dev,
535 struct iio_chan_spec const *chan,
536 int *val,
537 int *val2,
538 long mask)
539 {
540 struct exynos_adc *info = iio_priv(indio_dev);
541 unsigned long timeout;
542 int ret;
543
544 if (mask == IIO_CHAN_INFO_SCALE) {
545 ret = regulator_get_voltage(info->vdd);
546 if (ret < 0)
547 return ret;
548
549 /* Regulator voltage is in uV, but need mV */
550 *val = ret / 1000;
551 *val2 = info->data->mask;
552
553 return IIO_VAL_FRACTIONAL;
554 } else if (mask != IIO_CHAN_INFO_RAW) {
555 return -EINVAL;
556 }
557
558 mutex_lock(&info->lock);
559 reinit_completion(&info->completion);
560
561 /* Select the channel to be used and Trigger conversion */
562 if (info->data->start_conv)
563 info->data->start_conv(info, chan->address);
564
565 timeout = wait_for_completion_timeout(&info->completion,
566 EXYNOS_ADC_TIMEOUT);
567 if (timeout == 0) {
568 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
569 if (info->data->init_hw)
570 info->data->init_hw(info);
571 ret = -ETIMEDOUT;
572 } else {
573 *val = info->value;
574 *val2 = 0;
575 ret = IIO_VAL_INT;
576 }
577
578 mutex_unlock(&info->lock);
579
580 return ret;
581 }
582
exynos_read_s3c64xx_ts(struct iio_dev * indio_dev,int * x,int * y)583 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
584 {
585 struct exynos_adc *info = iio_priv(indio_dev);
586 unsigned long timeout;
587 int ret;
588
589 mutex_lock(&info->lock);
590 info->read_ts = true;
591
592 reinit_completion(&info->completion);
593
594 writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
595 ADC_V1_TSC(info->regs));
596
597 /* Select the ts channel to be used and Trigger conversion */
598 info->data->start_conv(info, ADC_S3C2410_MUX_TS);
599
600 timeout = wait_for_completion_timeout(&info->completion,
601 EXYNOS_ADC_TIMEOUT);
602 if (timeout == 0) {
603 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
604 if (info->data->init_hw)
605 info->data->init_hw(info);
606 ret = -ETIMEDOUT;
607 } else {
608 *x = info->ts_x;
609 *y = info->ts_y;
610 ret = 0;
611 }
612
613 info->read_ts = false;
614 mutex_unlock(&info->lock);
615
616 return ret;
617 }
618
exynos_adc_isr(int irq,void * dev_id)619 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
620 {
621 struct exynos_adc *info = dev_id;
622 u32 mask = info->data->mask;
623
624 /* Read value */
625 if (info->read_ts) {
626 info->ts_x = readl(ADC_V1_DATX(info->regs));
627 info->ts_y = readl(ADC_V1_DATY(info->regs));
628 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
629 } else {
630 info->value = readl(ADC_V1_DATX(info->regs)) & mask;
631 }
632
633 /* clear irq */
634 if (info->data->clear_irq)
635 info->data->clear_irq(info);
636
637 complete(&info->completion);
638
639 return IRQ_HANDLED;
640 }
641
642 /*
643 * Here we (ab)use a threaded interrupt handler to stay running
644 * for as long as the touchscreen remains pressed, we report
645 * a new event with the latest data and then sleep until the
646 * next timer tick. This mirrors the behavior of the old
647 * driver, with much less code.
648 */
exynos_ts_isr(int irq,void * dev_id)649 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
650 {
651 struct exynos_adc *info = dev_id;
652 struct iio_dev *dev = dev_get_drvdata(info->dev);
653 u32 x, y;
654 bool pressed;
655 int ret;
656
657 while (READ_ONCE(info->ts_enabled)) {
658 ret = exynos_read_s3c64xx_ts(dev, &x, &y);
659 if (ret == -ETIMEDOUT)
660 break;
661
662 pressed = x & y & ADC_DATX_PRESSED;
663 if (!pressed) {
664 input_report_key(info->input, BTN_TOUCH, 0);
665 input_sync(info->input);
666 break;
667 }
668
669 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
670 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
671 input_report_key(info->input, BTN_TOUCH, 1);
672 input_sync(info->input);
673
674 usleep_range(1000, 1100);
675 }
676
677 writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
678
679 return IRQ_HANDLED;
680 }
681
exynos_adc_reg_access(struct iio_dev * indio_dev,unsigned reg,unsigned writeval,unsigned * readval)682 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
683 unsigned reg, unsigned writeval,
684 unsigned *readval)
685 {
686 struct exynos_adc *info = iio_priv(indio_dev);
687
688 if (readval == NULL)
689 return -EINVAL;
690
691 *readval = readl(info->regs + reg);
692
693 return 0;
694 }
695
696 static const struct iio_info exynos_adc_iio_info = {
697 .read_raw = &exynos_read_raw,
698 .debugfs_reg_access = &exynos_adc_reg_access,
699 };
700
701 #define ADC_CHANNEL(_index, _id) { \
702 .type = IIO_VOLTAGE, \
703 .indexed = 1, \
704 .channel = _index, \
705 .address = _index, \
706 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
707 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE), \
708 .datasheet_name = _id, \
709 }
710
711 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
712 ADC_CHANNEL(0, "adc0"),
713 ADC_CHANNEL(1, "adc1"),
714 ADC_CHANNEL(2, "adc2"),
715 ADC_CHANNEL(3, "adc3"),
716 ADC_CHANNEL(4, "adc4"),
717 ADC_CHANNEL(5, "adc5"),
718 ADC_CHANNEL(6, "adc6"),
719 ADC_CHANNEL(7, "adc7"),
720 ADC_CHANNEL(8, "adc8"),
721 ADC_CHANNEL(9, "adc9"),
722 };
723
exynos_adc_remove_devices(struct device * dev,void * c)724 static int exynos_adc_remove_devices(struct device *dev, void *c)
725 {
726 struct platform_device *pdev = to_platform_device(dev);
727
728 platform_device_unregister(pdev);
729
730 return 0;
731 }
732
exynos_adc_ts_open(struct input_dev * dev)733 static int exynos_adc_ts_open(struct input_dev *dev)
734 {
735 struct exynos_adc *info = input_get_drvdata(dev);
736
737 WRITE_ONCE(info->ts_enabled, true);
738 enable_irq(info->tsirq);
739
740 return 0;
741 }
742
exynos_adc_ts_close(struct input_dev * dev)743 static void exynos_adc_ts_close(struct input_dev *dev)
744 {
745 struct exynos_adc *info = input_get_drvdata(dev);
746
747 WRITE_ONCE(info->ts_enabled, false);
748 disable_irq(info->tsirq);
749 }
750
exynos_adc_ts_init(struct exynos_adc * info)751 static int exynos_adc_ts_init(struct exynos_adc *info)
752 {
753 int ret;
754
755 if (info->tsirq <= 0)
756 return -ENODEV;
757
758 info->input = input_allocate_device();
759 if (!info->input)
760 return -ENOMEM;
761
762 info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
763 info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
764
765 input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
766 input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
767
768 info->input->name = "S3C24xx TouchScreen";
769 info->input->id.bustype = BUS_HOST;
770 info->input->open = exynos_adc_ts_open;
771 info->input->close = exynos_adc_ts_close;
772
773 input_set_drvdata(info->input, info);
774
775 ret = input_register_device(info->input);
776 if (ret) {
777 input_free_device(info->input);
778 return ret;
779 }
780
781 ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
782 IRQF_ONESHOT | IRQF_NO_AUTOEN,
783 "touchscreen", info);
784 if (ret)
785 input_unregister_device(info->input);
786
787 return ret;
788 }
789
exynos_adc_probe(struct platform_device * pdev)790 static int exynos_adc_probe(struct platform_device *pdev)
791 {
792 struct exynos_adc *info = NULL;
793 struct device_node *np = pdev->dev.of_node;
794 struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
795 struct iio_dev *indio_dev = NULL;
796 bool has_ts = false;
797 int ret;
798 int irq;
799
800 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
801 if (!indio_dev) {
802 dev_err(&pdev->dev, "failed allocating iio device\n");
803 return -ENOMEM;
804 }
805
806 info = iio_priv(indio_dev);
807
808 info->data = exynos_adc_get_data(pdev);
809 if (!info->data) {
810 dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
811 return -EINVAL;
812 }
813
814 info->regs = devm_platform_ioremap_resource(pdev, 0);
815 if (IS_ERR(info->regs))
816 return PTR_ERR(info->regs);
817
818
819 if (info->data->needs_adc_phy) {
820 info->pmu_map = syscon_regmap_lookup_by_phandle(
821 pdev->dev.of_node,
822 "samsung,syscon-phandle");
823 if (IS_ERR(info->pmu_map)) {
824 dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
825 return PTR_ERR(info->pmu_map);
826 }
827 }
828
829 irq = platform_get_irq(pdev, 0);
830 if (irq < 0)
831 return irq;
832 info->irq = irq;
833
834 irq = platform_get_irq(pdev, 1);
835 if (irq == -EPROBE_DEFER)
836 return irq;
837
838 info->tsirq = irq;
839
840 info->dev = &pdev->dev;
841
842 init_completion(&info->completion);
843
844 info->clk = devm_clk_get(&pdev->dev, "adc");
845 if (IS_ERR(info->clk)) {
846 dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
847 PTR_ERR(info->clk));
848 return PTR_ERR(info->clk);
849 }
850
851 if (info->data->needs_sclk) {
852 info->sclk = devm_clk_get(&pdev->dev, "sclk");
853 if (IS_ERR(info->sclk)) {
854 dev_err(&pdev->dev,
855 "failed getting sclk clock, err = %ld\n",
856 PTR_ERR(info->sclk));
857 return PTR_ERR(info->sclk);
858 }
859 }
860
861 info->vdd = devm_regulator_get(&pdev->dev, "vdd");
862 if (IS_ERR(info->vdd))
863 return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
864 "failed getting regulator");
865
866 ret = regulator_enable(info->vdd);
867 if (ret)
868 return ret;
869
870 ret = exynos_adc_prepare_clk(info);
871 if (ret)
872 goto err_disable_reg;
873
874 ret = exynos_adc_enable_clk(info);
875 if (ret)
876 goto err_unprepare_clk;
877
878 platform_set_drvdata(pdev, indio_dev);
879
880 indio_dev->name = dev_name(&pdev->dev);
881 indio_dev->info = &exynos_adc_iio_info;
882 indio_dev->modes = INDIO_DIRECT_MODE;
883 indio_dev->channels = exynos_adc_iio_channels;
884 indio_dev->num_channels = info->data->num_channels;
885
886 mutex_init(&info->lock);
887
888 ret = request_irq(info->irq, exynos_adc_isr,
889 0, dev_name(&pdev->dev), info);
890 if (ret < 0) {
891 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
892 info->irq);
893 goto err_disable_clk;
894 }
895
896 ret = iio_device_register(indio_dev);
897 if (ret)
898 goto err_irq;
899
900 if (info->data->init_hw)
901 info->data->init_hw(info);
902
903 /* leave out any TS related code if unreachable */
904 if (IS_REACHABLE(CONFIG_INPUT)) {
905 has_ts = of_property_read_bool(pdev->dev.of_node,
906 "has-touchscreen") || pdata;
907 }
908
909 if (pdata)
910 info->delay = pdata->delay;
911 else
912 info->delay = 10000;
913
914 if (has_ts)
915 ret = exynos_adc_ts_init(info);
916 if (ret)
917 goto err_iio;
918
919 ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
920 if (ret < 0) {
921 dev_err(&pdev->dev, "failed adding child nodes\n");
922 goto err_of_populate;
923 }
924
925 return 0;
926
927 err_of_populate:
928 device_for_each_child(&indio_dev->dev, NULL,
929 exynos_adc_remove_devices);
930 if (has_ts) {
931 input_unregister_device(info->input);
932 free_irq(info->tsirq, info);
933 }
934 err_iio:
935 iio_device_unregister(indio_dev);
936 err_irq:
937 free_irq(info->irq, info);
938 err_disable_clk:
939 if (info->data->exit_hw)
940 info->data->exit_hw(info);
941 exynos_adc_disable_clk(info);
942 err_unprepare_clk:
943 exynos_adc_unprepare_clk(info);
944 err_disable_reg:
945 regulator_disable(info->vdd);
946 return ret;
947 }
948
exynos_adc_remove(struct platform_device * pdev)949 static int exynos_adc_remove(struct platform_device *pdev)
950 {
951 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
952 struct exynos_adc *info = iio_priv(indio_dev);
953
954 if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
955 free_irq(info->tsirq, info);
956 input_unregister_device(info->input);
957 }
958 device_for_each_child(&indio_dev->dev, NULL,
959 exynos_adc_remove_devices);
960 iio_device_unregister(indio_dev);
961 free_irq(info->irq, info);
962 if (info->data->exit_hw)
963 info->data->exit_hw(info);
964 exynos_adc_disable_clk(info);
965 exynos_adc_unprepare_clk(info);
966 regulator_disable(info->vdd);
967
968 return 0;
969 }
970
exynos_adc_suspend(struct device * dev)971 static int exynos_adc_suspend(struct device *dev)
972 {
973 struct iio_dev *indio_dev = dev_get_drvdata(dev);
974 struct exynos_adc *info = iio_priv(indio_dev);
975
976 if (info->data->exit_hw)
977 info->data->exit_hw(info);
978 exynos_adc_disable_clk(info);
979 regulator_disable(info->vdd);
980
981 return 0;
982 }
983
exynos_adc_resume(struct device * dev)984 static int exynos_adc_resume(struct device *dev)
985 {
986 struct iio_dev *indio_dev = dev_get_drvdata(dev);
987 struct exynos_adc *info = iio_priv(indio_dev);
988 int ret;
989
990 ret = regulator_enable(info->vdd);
991 if (ret)
992 return ret;
993
994 ret = exynos_adc_enable_clk(info);
995 if (ret)
996 return ret;
997
998 if (info->data->init_hw)
999 info->data->init_hw(info);
1000
1001 return 0;
1002 }
1003
1004 static DEFINE_SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops, exynos_adc_suspend,
1005 exynos_adc_resume);
1006
1007 static struct platform_driver exynos_adc_driver = {
1008 .probe = exynos_adc_probe,
1009 .remove = exynos_adc_remove,
1010 .driver = {
1011 .name = "exynos-adc",
1012 .of_match_table = exynos_adc_match,
1013 .pm = pm_sleep_ptr(&exynos_adc_pm_ops),
1014 },
1015 };
1016
1017 module_platform_driver(exynos_adc_driver);
1018
1019 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1020 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1021 MODULE_LICENSE("GPL v2");
1022