1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part the core part STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/iio/iio.h>
12 #include <linux/iio/sysfs.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 
21 #include "stm32-dfsdm.h"
22 
23 /**
24  * struct stm32_dfsdm_dev_data - DFSDM compatible configuration data
25  * @ipid: DFSDM identification number. Used only if hardware provides identification registers
26  * @num_filters: DFSDM number of filters. Unused if identification registers are available
27  * @num_channels: DFSDM number of channels. Unused if identification registers are available
28  * @regmap_cfg: SAI register map configuration pointer
29  */
30 struct stm32_dfsdm_dev_data {
31 	u32 ipid;
32 	unsigned int num_filters;
33 	unsigned int num_channels;
34 	const struct regmap_config *regmap_cfg;
35 };
36 
37 #define STM32H7_DFSDM_NUM_FILTERS	4
38 #define STM32H7_DFSDM_NUM_CHANNELS	8
39 
stm32_dfsdm_volatile_reg(struct device * dev,unsigned int reg)40 static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
41 {
42 	if (reg < DFSDM_FILTER_BASE_ADR)
43 		return false;
44 
45 	/*
46 	 * Mask is done on register to avoid to list registers of all
47 	 * filter instances.
48 	 */
49 	switch (reg & DFSDM_FILTER_REG_MASK) {
50 	case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
51 	case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
52 	case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
53 	case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
54 		return true;
55 	}
56 
57 	return false;
58 }
59 
60 static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
61 	.reg_bits = 32,
62 	.val_bits = 32,
63 	.reg_stride = sizeof(u32),
64 	.max_register = 0x2B8,
65 	.volatile_reg = stm32_dfsdm_volatile_reg,
66 	.fast_io = true,
67 };
68 
69 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
70 	.num_filters = STM32H7_DFSDM_NUM_FILTERS,
71 	.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
72 	.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
73 };
74 
75 static const struct regmap_config stm32mp1_dfsdm_regmap_cfg = {
76 	.reg_bits = 32,
77 	.val_bits = 32,
78 	.reg_stride = sizeof(u32),
79 	.max_register = 0x7fc,
80 	.volatile_reg = stm32_dfsdm_volatile_reg,
81 	.fast_io = true,
82 };
83 
84 static const struct stm32_dfsdm_dev_data stm32mp1_dfsdm_data = {
85 	.ipid = STM32MP15_IPIDR_NUMBER,
86 	.regmap_cfg = &stm32mp1_dfsdm_regmap_cfg,
87 };
88 
89 struct dfsdm_priv {
90 	struct platform_device *pdev; /* platform device */
91 
92 	struct stm32_dfsdm dfsdm; /* common data exported for all instances */
93 
94 	unsigned int spi_clk_out_div; /* SPI clkout divider value */
95 	atomic_t n_active_ch;	/* number of current active channels */
96 
97 	struct clk *clk; /* DFSDM clock */
98 	struct clk *aclk; /* audio clock */
99 };
100 
to_stm32_dfsdm_priv(struct stm32_dfsdm * dfsdm)101 static inline struct dfsdm_priv *to_stm32_dfsdm_priv(struct stm32_dfsdm *dfsdm)
102 {
103 	return container_of(dfsdm, struct dfsdm_priv, dfsdm);
104 }
105 
stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm * dfsdm)106 static int stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm *dfsdm)
107 {
108 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
109 	int ret;
110 
111 	ret = clk_prepare_enable(priv->clk);
112 	if (ret || !priv->aclk)
113 		return ret;
114 
115 	ret = clk_prepare_enable(priv->aclk);
116 	if (ret)
117 		clk_disable_unprepare(priv->clk);
118 
119 	return ret;
120 }
121 
stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm * dfsdm)122 static void stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm *dfsdm)
123 {
124 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
125 
126 	clk_disable_unprepare(priv->aclk);
127 	clk_disable_unprepare(priv->clk);
128 }
129 
130 /**
131  * stm32_dfsdm_start_dfsdm - start global dfsdm interface.
132  *
133  * Enable interface if n_active_ch is not null.
134  * @dfsdm: Handle used to retrieve dfsdm context.
135  */
stm32_dfsdm_start_dfsdm(struct stm32_dfsdm * dfsdm)136 int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
137 {
138 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
139 	struct device *dev = &priv->pdev->dev;
140 	unsigned int clk_div = priv->spi_clk_out_div, clk_src;
141 	int ret;
142 
143 	if (atomic_inc_return(&priv->n_active_ch) == 1) {
144 		ret = pm_runtime_resume_and_get(dev);
145 		if (ret < 0)
146 			goto error_ret;
147 
148 		/* select clock source, e.g. 0 for "dfsdm" or 1 for "audio" */
149 		clk_src = priv->aclk ? 1 : 0;
150 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
151 					 DFSDM_CHCFGR1_CKOUTSRC_MASK,
152 					 DFSDM_CHCFGR1_CKOUTSRC(clk_src));
153 		if (ret < 0)
154 			goto pm_put;
155 
156 		/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
157 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
158 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
159 					 DFSDM_CHCFGR1_CKOUTDIV(clk_div));
160 		if (ret < 0)
161 			goto pm_put;
162 
163 		/* Global enable of DFSDM interface */
164 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
165 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
166 					 DFSDM_CHCFGR1_DFSDMEN(1));
167 		if (ret < 0)
168 			goto pm_put;
169 	}
170 
171 	dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
172 		atomic_read(&priv->n_active_ch));
173 
174 	return 0;
175 
176 pm_put:
177 	pm_runtime_put_sync(dev);
178 error_ret:
179 	atomic_dec(&priv->n_active_ch);
180 
181 	return ret;
182 }
183 EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);
184 
185 /**
186  * stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
187  *
188  * Disable interface if n_active_ch is null
189  * @dfsdm: Handle used to retrieve dfsdm context.
190  */
stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm * dfsdm)191 int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
192 {
193 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
194 	int ret;
195 
196 	if (atomic_dec_and_test(&priv->n_active_ch)) {
197 		/* Global disable of DFSDM interface */
198 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
199 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
200 					 DFSDM_CHCFGR1_DFSDMEN(0));
201 		if (ret < 0)
202 			return ret;
203 
204 		/* Stop SPI CLKOUT */
205 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
206 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
207 					 DFSDM_CHCFGR1_CKOUTDIV(0));
208 		if (ret < 0)
209 			return ret;
210 
211 		pm_runtime_put_sync(&priv->pdev->dev);
212 	}
213 	dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
214 		atomic_read(&priv->n_active_ch));
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);
219 
stm32_dfsdm_parse_of(struct platform_device * pdev,struct dfsdm_priv * priv)220 static int stm32_dfsdm_parse_of(struct platform_device *pdev,
221 				struct dfsdm_priv *priv)
222 {
223 	struct device_node *node = pdev->dev.of_node;
224 	struct resource *res;
225 	unsigned long clk_freq, divider;
226 	unsigned int spi_freq, rem;
227 	int ret;
228 
229 	if (!node)
230 		return -EINVAL;
231 
232 	priv->dfsdm.base = devm_platform_get_and_ioremap_resource(pdev, 0,
233 							&res);
234 	if (IS_ERR(priv->dfsdm.base))
235 		return PTR_ERR(priv->dfsdm.base);
236 
237 	priv->dfsdm.phys_base = res->start;
238 
239 	/*
240 	 * "dfsdm" clock is mandatory for DFSDM peripheral clocking.
241 	 * "dfsdm" or "audio" clocks can be used as source clock for
242 	 * the SPI clock out signal and internal processing, depending
243 	 * on use case.
244 	 */
245 	priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
246 	if (IS_ERR(priv->clk))
247 		return dev_err_probe(&pdev->dev, PTR_ERR(priv->clk),
248 				     "Failed to get clock\n");
249 
250 	priv->aclk = devm_clk_get(&pdev->dev, "audio");
251 	if (IS_ERR(priv->aclk))
252 		priv->aclk = NULL;
253 
254 	if (priv->aclk)
255 		clk_freq = clk_get_rate(priv->aclk);
256 	else
257 		clk_freq = clk_get_rate(priv->clk);
258 
259 	/* SPI clock out frequency */
260 	ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
261 				   &spi_freq);
262 	if (ret < 0) {
263 		/* No SPI master mode */
264 		return 0;
265 	}
266 
267 	divider = div_u64_rem(clk_freq, spi_freq, &rem);
268 	/* Round up divider when ckout isn't precise, not to exceed spi_freq */
269 	if (rem)
270 		divider++;
271 
272 	/* programmable divider is in range of [2:256] */
273 	if (divider < 2 || divider > 256) {
274 		dev_err(&pdev->dev, "spi-max-frequency not achievable\n");
275 		return -EINVAL;
276 	}
277 
278 	/* SPI clock output divider is: divider = CKOUTDIV + 1 */
279 	priv->spi_clk_out_div = divider - 1;
280 	priv->dfsdm.spi_master_freq = clk_freq / (priv->spi_clk_out_div + 1);
281 
282 	if (rem) {
283 		dev_warn(&pdev->dev, "SPI clock not accurate\n");
284 		dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
285 			 clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
286 	}
287 
288 	return 0;
289 };
290 
291 static const struct of_device_id stm32_dfsdm_of_match[] = {
292 	{
293 		.compatible = "st,stm32h7-dfsdm",
294 		.data = &stm32h7_dfsdm_data,
295 	},
296 	{
297 		.compatible = "st,stm32mp1-dfsdm",
298 		.data = &stm32mp1_dfsdm_data,
299 	},
300 	{}
301 };
302 MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);
303 
stm32_dfsdm_probe_identification(struct platform_device * pdev,struct dfsdm_priv * priv,const struct stm32_dfsdm_dev_data * dev_data)304 static int stm32_dfsdm_probe_identification(struct platform_device *pdev,
305 					    struct dfsdm_priv *priv,
306 					    const struct stm32_dfsdm_dev_data *dev_data)
307 {
308 	struct device_node *np = pdev->dev.of_node;
309 	struct device_node *child;
310 	struct stm32_dfsdm *dfsdm = &priv->dfsdm;
311 	const char *compat;
312 	int ret, count = 0;
313 	u32 id, val;
314 
315 	if (!dev_data->ipid) {
316 		dfsdm->num_fls = dev_data->num_filters;
317 		dfsdm->num_chs = dev_data->num_channels;
318 		return 0;
319 	}
320 
321 	ret = regmap_read(dfsdm->regmap, DFSDM_IPIDR, &id);
322 	if (ret)
323 		return ret;
324 
325 	if (id != dev_data->ipid) {
326 		dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
327 		return -EINVAL;
328 	}
329 
330 	for_each_child_of_node(np, child) {
331 		ret = of_property_read_string(child, "compatible", &compat);
332 		if (ret)
333 			continue;
334 		/* Count only child nodes with dfsdm compatible */
335 		if (strstr(compat, "dfsdm"))
336 			count++;
337 	}
338 
339 	ret = regmap_read(dfsdm->regmap, DFSDM_HWCFGR, &val);
340 	if (ret)
341 		return ret;
342 
343 	dfsdm->num_fls = FIELD_GET(DFSDM_HWCFGR_NBF_MASK, val);
344 	dfsdm->num_chs = FIELD_GET(DFSDM_HWCFGR_NBT_MASK, val);
345 
346 	if (count > dfsdm->num_fls) {
347 		dev_err(&pdev->dev, "Unexpected child number: %d", count);
348 		return -EINVAL;
349 	}
350 
351 	ret = regmap_read(dfsdm->regmap, DFSDM_VERR, &val);
352 	if (ret)
353 		return ret;
354 
355 	dev_dbg(&pdev->dev, "DFSDM version: %lu.%lu. %d channels/%d filters\n",
356 		FIELD_GET(DFSDM_VERR_MAJREV_MASK, val),
357 		FIELD_GET(DFSDM_VERR_MINREV_MASK, val),
358 		dfsdm->num_chs, dfsdm->num_fls);
359 
360 	return 0;
361 }
362 
stm32_dfsdm_probe(struct platform_device * pdev)363 static int stm32_dfsdm_probe(struct platform_device *pdev)
364 {
365 	struct dfsdm_priv *priv;
366 	const struct stm32_dfsdm_dev_data *dev_data;
367 	struct stm32_dfsdm *dfsdm;
368 	int ret;
369 
370 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
371 	if (!priv)
372 		return -ENOMEM;
373 
374 	priv->pdev = pdev;
375 
376 	dev_data = of_device_get_match_data(&pdev->dev);
377 
378 	dfsdm = &priv->dfsdm;
379 
380 	ret = stm32_dfsdm_parse_of(pdev, priv);
381 	if (ret < 0)
382 		return ret;
383 
384 	dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
385 						  dfsdm->base,
386 						  dev_data->regmap_cfg);
387 	if (IS_ERR(dfsdm->regmap)) {
388 		ret = PTR_ERR(dfsdm->regmap);
389 		dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
390 			__func__, ret);
391 		return ret;
392 	}
393 
394 	ret = stm32_dfsdm_probe_identification(pdev, priv, dev_data);
395 	if (ret < 0)
396 		return ret;
397 
398 	dfsdm->fl_list = devm_kcalloc(&pdev->dev, dfsdm->num_fls,
399 				      sizeof(*dfsdm->fl_list), GFP_KERNEL);
400 	if (!dfsdm->fl_list)
401 		return -ENOMEM;
402 
403 	dfsdm->ch_list = devm_kcalloc(&pdev->dev, dfsdm->num_chs,
404 				      sizeof(*dfsdm->ch_list), GFP_KERNEL);
405 	if (!dfsdm->ch_list)
406 		return -ENOMEM;
407 
408 	platform_set_drvdata(pdev, dfsdm);
409 
410 	ret = stm32_dfsdm_clk_prepare_enable(dfsdm);
411 	if (ret) {
412 		dev_err(&pdev->dev, "Failed to start clock\n");
413 		return ret;
414 	}
415 
416 	pm_runtime_get_noresume(&pdev->dev);
417 	pm_runtime_set_active(&pdev->dev);
418 	pm_runtime_enable(&pdev->dev);
419 
420 	ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
421 	if (ret)
422 		goto pm_put;
423 
424 	pm_runtime_put(&pdev->dev);
425 
426 	return 0;
427 
428 pm_put:
429 	pm_runtime_disable(&pdev->dev);
430 	pm_runtime_set_suspended(&pdev->dev);
431 	pm_runtime_put_noidle(&pdev->dev);
432 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
433 
434 	return ret;
435 }
436 
stm32_dfsdm_core_remove(struct platform_device * pdev)437 static int stm32_dfsdm_core_remove(struct platform_device *pdev)
438 {
439 	struct stm32_dfsdm *dfsdm = platform_get_drvdata(pdev);
440 
441 	pm_runtime_get_sync(&pdev->dev);
442 	of_platform_depopulate(&pdev->dev);
443 	pm_runtime_disable(&pdev->dev);
444 	pm_runtime_set_suspended(&pdev->dev);
445 	pm_runtime_put_noidle(&pdev->dev);
446 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
447 
448 	return 0;
449 }
450 
stm32_dfsdm_core_suspend(struct device * dev)451 static int stm32_dfsdm_core_suspend(struct device *dev)
452 {
453 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
454 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
455 	int ret;
456 
457 	ret = pm_runtime_force_suspend(dev);
458 	if (ret)
459 		return ret;
460 
461 	/* Balance devm_regmap_init_mmio_clk() clk_prepare() */
462 	clk_unprepare(priv->clk);
463 
464 	return pinctrl_pm_select_sleep_state(dev);
465 }
466 
stm32_dfsdm_core_resume(struct device * dev)467 static int stm32_dfsdm_core_resume(struct device *dev)
468 {
469 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
470 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
471 	int ret;
472 
473 	ret = pinctrl_pm_select_default_state(dev);
474 	if (ret)
475 		return ret;
476 
477 	ret = clk_prepare(priv->clk);
478 	if (ret)
479 		return ret;
480 
481 	return pm_runtime_force_resume(dev);
482 }
483 
stm32_dfsdm_core_runtime_suspend(struct device * dev)484 static int stm32_dfsdm_core_runtime_suspend(struct device *dev)
485 {
486 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
487 
488 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
489 
490 	return 0;
491 }
492 
stm32_dfsdm_core_runtime_resume(struct device * dev)493 static int stm32_dfsdm_core_runtime_resume(struct device *dev)
494 {
495 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
496 
497 	return stm32_dfsdm_clk_prepare_enable(dfsdm);
498 }
499 
500 static const struct dev_pm_ops stm32_dfsdm_core_pm_ops = {
501 	SYSTEM_SLEEP_PM_OPS(stm32_dfsdm_core_suspend, stm32_dfsdm_core_resume)
502 	RUNTIME_PM_OPS(stm32_dfsdm_core_runtime_suspend,
503 		       stm32_dfsdm_core_runtime_resume,
504 		       NULL)
505 };
506 
507 static struct platform_driver stm32_dfsdm_driver = {
508 	.probe = stm32_dfsdm_probe,
509 	.remove = stm32_dfsdm_core_remove,
510 	.driver = {
511 		.name = "stm32-dfsdm",
512 		.of_match_table = stm32_dfsdm_of_match,
513 		.pm = pm_ptr(&stm32_dfsdm_core_pm_ops),
514 	},
515 };
516 
517 module_platform_driver(stm32_dfsdm_driver);
518 
519 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
520 MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
521 MODULE_LICENSE("GPL v2");
522