1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18
19 #include <soc/tegra/fuse.h>
20
21 #include "mc.h"
22
23 static const struct of_device_id tegra_mc_of_match[] = {
24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
25 { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
26 #endif
27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
28 { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
29 #endif
30 #ifdef CONFIG_ARCH_TEGRA_114_SOC
31 { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
32 #endif
33 #ifdef CONFIG_ARCH_TEGRA_124_SOC
34 { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
35 #endif
36 #ifdef CONFIG_ARCH_TEGRA_132_SOC
37 { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
38 #endif
39 #ifdef CONFIG_ARCH_TEGRA_210_SOC
40 { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
41 #endif
42 #ifdef CONFIG_ARCH_TEGRA_186_SOC
43 { .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
44 #endif
45 #ifdef CONFIG_ARCH_TEGRA_194_SOC
46 { .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
47 #endif
48 #ifdef CONFIG_ARCH_TEGRA_234_SOC
49 { .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
50 #endif
51 { /* sentinel */ }
52 };
53 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
54
tegra_mc_devm_action_put_device(void * data)55 static void tegra_mc_devm_action_put_device(void *data)
56 {
57 struct tegra_mc *mc = data;
58
59 put_device(mc->dev);
60 }
61
62 /**
63 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
64 * @dev: device pointer for the consumer device
65 *
66 * This function will search for the Memory Controller node in a device-tree
67 * and retrieve the Memory Controller handle.
68 *
69 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
70 */
devm_tegra_memory_controller_get(struct device * dev)71 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
72 {
73 struct platform_device *pdev;
74 struct device_node *np;
75 struct tegra_mc *mc;
76 int err;
77
78 np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
79 if (!np)
80 return ERR_PTR(-ENOENT);
81
82 pdev = of_find_device_by_node(np);
83 of_node_put(np);
84 if (!pdev)
85 return ERR_PTR(-ENODEV);
86
87 mc = platform_get_drvdata(pdev);
88 if (!mc) {
89 put_device(&pdev->dev);
90 return ERR_PTR(-EPROBE_DEFER);
91 }
92
93 err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
94 if (err)
95 return ERR_PTR(err);
96
97 return mc;
98 }
99 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
100
tegra_mc_probe_device(struct tegra_mc * mc,struct device * dev)101 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
102 {
103 if (mc->soc->ops && mc->soc->ops->probe_device)
104 return mc->soc->ops->probe_device(mc, dev);
105
106 return 0;
107 }
108 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
109
tegra_mc_get_carveout_info(struct tegra_mc * mc,unsigned int id,phys_addr_t * base,u64 * size)110 int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
111 phys_addr_t *base, u64 *size)
112 {
113 u32 offset;
114
115 if (id < 1 || id >= mc->soc->num_carveouts)
116 return -EINVAL;
117
118 if (id < 6)
119 offset = 0xc0c + 0x50 * (id - 1);
120 else
121 offset = 0x2004 + 0x50 * (id - 6);
122
123 *base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
124 #ifdef CONFIG_PHYS_ADDR_T_64BIT
125 *base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
126 #endif
127
128 if (size)
129 *size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
130
131 return 0;
132 }
133 EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
134
tegra_mc_block_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)135 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
136 const struct tegra_mc_reset *rst)
137 {
138 unsigned long flags;
139 u32 value;
140
141 spin_lock_irqsave(&mc->lock, flags);
142
143 value = mc_readl(mc, rst->control) | BIT(rst->bit);
144 mc_writel(mc, value, rst->control);
145
146 spin_unlock_irqrestore(&mc->lock, flags);
147
148 return 0;
149 }
150
tegra_mc_dma_idling_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)151 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
152 const struct tegra_mc_reset *rst)
153 {
154 return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
155 }
156
tegra_mc_unblock_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)157 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
158 const struct tegra_mc_reset *rst)
159 {
160 unsigned long flags;
161 u32 value;
162
163 spin_lock_irqsave(&mc->lock, flags);
164
165 value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
166 mc_writel(mc, value, rst->control);
167
168 spin_unlock_irqrestore(&mc->lock, flags);
169
170 return 0;
171 }
172
tegra_mc_reset_status_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)173 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
174 const struct tegra_mc_reset *rst)
175 {
176 return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
177 }
178
179 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
180 .block_dma = tegra_mc_block_dma_common,
181 .dma_idling = tegra_mc_dma_idling_common,
182 .unblock_dma = tegra_mc_unblock_dma_common,
183 .reset_status = tegra_mc_reset_status_common,
184 };
185
reset_to_mc(struct reset_controller_dev * rcdev)186 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
187 {
188 return container_of(rcdev, struct tegra_mc, reset);
189 }
190
tegra_mc_reset_find(struct tegra_mc * mc,unsigned long id)191 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
192 unsigned long id)
193 {
194 unsigned int i;
195
196 for (i = 0; i < mc->soc->num_resets; i++)
197 if (mc->soc->resets[i].id == id)
198 return &mc->soc->resets[i];
199
200 return NULL;
201 }
202
tegra_mc_hotreset_assert(struct reset_controller_dev * rcdev,unsigned long id)203 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
204 unsigned long id)
205 {
206 struct tegra_mc *mc = reset_to_mc(rcdev);
207 const struct tegra_mc_reset_ops *rst_ops;
208 const struct tegra_mc_reset *rst;
209 int retries = 500;
210 int err;
211
212 rst = tegra_mc_reset_find(mc, id);
213 if (!rst)
214 return -ENODEV;
215
216 rst_ops = mc->soc->reset_ops;
217 if (!rst_ops)
218 return -ENODEV;
219
220 /* DMA flushing will fail if reset is already asserted */
221 if (rst_ops->reset_status) {
222 /* check whether reset is asserted */
223 if (rst_ops->reset_status(mc, rst))
224 return 0;
225 }
226
227 if (rst_ops->block_dma) {
228 /* block clients DMA requests */
229 err = rst_ops->block_dma(mc, rst);
230 if (err) {
231 dev_err(mc->dev, "failed to block %s DMA: %d\n",
232 rst->name, err);
233 return err;
234 }
235 }
236
237 if (rst_ops->dma_idling) {
238 /* wait for completion of the outstanding DMA requests */
239 while (!rst_ops->dma_idling(mc, rst)) {
240 if (!retries--) {
241 dev_err(mc->dev, "failed to flush %s DMA\n",
242 rst->name);
243 return -EBUSY;
244 }
245
246 usleep_range(10, 100);
247 }
248 }
249
250 if (rst_ops->hotreset_assert) {
251 /* clear clients DMA requests sitting before arbitration */
252 err = rst_ops->hotreset_assert(mc, rst);
253 if (err) {
254 dev_err(mc->dev, "failed to hot reset %s: %d\n",
255 rst->name, err);
256 return err;
257 }
258 }
259
260 return 0;
261 }
262
tegra_mc_hotreset_deassert(struct reset_controller_dev * rcdev,unsigned long id)263 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
264 unsigned long id)
265 {
266 struct tegra_mc *mc = reset_to_mc(rcdev);
267 const struct tegra_mc_reset_ops *rst_ops;
268 const struct tegra_mc_reset *rst;
269 int err;
270
271 rst = tegra_mc_reset_find(mc, id);
272 if (!rst)
273 return -ENODEV;
274
275 rst_ops = mc->soc->reset_ops;
276 if (!rst_ops)
277 return -ENODEV;
278
279 if (rst_ops->hotreset_deassert) {
280 /* take out client from hot reset */
281 err = rst_ops->hotreset_deassert(mc, rst);
282 if (err) {
283 dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
284 rst->name, err);
285 return err;
286 }
287 }
288
289 if (rst_ops->unblock_dma) {
290 /* allow new DMA requests to proceed to arbitration */
291 err = rst_ops->unblock_dma(mc, rst);
292 if (err) {
293 dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
294 rst->name, err);
295 return err;
296 }
297 }
298
299 return 0;
300 }
301
tegra_mc_hotreset_status(struct reset_controller_dev * rcdev,unsigned long id)302 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
303 unsigned long id)
304 {
305 struct tegra_mc *mc = reset_to_mc(rcdev);
306 const struct tegra_mc_reset_ops *rst_ops;
307 const struct tegra_mc_reset *rst;
308
309 rst = tegra_mc_reset_find(mc, id);
310 if (!rst)
311 return -ENODEV;
312
313 rst_ops = mc->soc->reset_ops;
314 if (!rst_ops)
315 return -ENODEV;
316
317 return rst_ops->reset_status(mc, rst);
318 }
319
320 static const struct reset_control_ops tegra_mc_reset_ops = {
321 .assert = tegra_mc_hotreset_assert,
322 .deassert = tegra_mc_hotreset_deassert,
323 .status = tegra_mc_hotreset_status,
324 };
325
tegra_mc_reset_setup(struct tegra_mc * mc)326 static int tegra_mc_reset_setup(struct tegra_mc *mc)
327 {
328 int err;
329
330 mc->reset.ops = &tegra_mc_reset_ops;
331 mc->reset.owner = THIS_MODULE;
332 mc->reset.of_node = mc->dev->of_node;
333 mc->reset.of_reset_n_cells = 1;
334 mc->reset.nr_resets = mc->soc->num_resets;
335
336 err = reset_controller_register(&mc->reset);
337 if (err < 0)
338 return err;
339
340 return 0;
341 }
342
tegra_mc_write_emem_configuration(struct tegra_mc * mc,unsigned long rate)343 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
344 {
345 unsigned int i;
346 struct tegra_mc_timing *timing = NULL;
347
348 for (i = 0; i < mc->num_timings; i++) {
349 if (mc->timings[i].rate == rate) {
350 timing = &mc->timings[i];
351 break;
352 }
353 }
354
355 if (!timing) {
356 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
357 rate);
358 return -EINVAL;
359 }
360
361 for (i = 0; i < mc->soc->num_emem_regs; ++i)
362 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
363
364 return 0;
365 }
366 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
367
tegra_mc_get_emem_device_count(struct tegra_mc * mc)368 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
369 {
370 u8 dram_count;
371
372 dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
373 dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
374 dram_count++;
375
376 return dram_count;
377 }
378 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
379
380 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
381 defined(CONFIG_ARCH_TEGRA_114_SOC) || \
382 defined(CONFIG_ARCH_TEGRA_124_SOC) || \
383 defined(CONFIG_ARCH_TEGRA_132_SOC) || \
384 defined(CONFIG_ARCH_TEGRA_210_SOC)
tegra_mc_setup_latency_allowance(struct tegra_mc * mc)385 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
386 {
387 unsigned long long tick;
388 unsigned int i;
389 u32 value;
390
391 /* compute the number of MC clock cycles per tick */
392 tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
393 do_div(tick, NSEC_PER_SEC);
394
395 value = mc_readl(mc, MC_EMEM_ARB_CFG);
396 value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
397 value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
398 mc_writel(mc, value, MC_EMEM_ARB_CFG);
399
400 /* write latency allowance defaults */
401 for (i = 0; i < mc->soc->num_clients; i++) {
402 const struct tegra_mc_client *client = &mc->soc->clients[i];
403 u32 value;
404
405 value = mc_readl(mc, client->regs.la.reg);
406 value &= ~(client->regs.la.mask << client->regs.la.shift);
407 value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
408 mc_writel(mc, value, client->regs.la.reg);
409 }
410
411 /* latch new values */
412 mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
413
414 return 0;
415 }
416
load_one_timing(struct tegra_mc * mc,struct tegra_mc_timing * timing,struct device_node * node)417 static int load_one_timing(struct tegra_mc *mc,
418 struct tegra_mc_timing *timing,
419 struct device_node *node)
420 {
421 int err;
422 u32 tmp;
423
424 err = of_property_read_u32(node, "clock-frequency", &tmp);
425 if (err) {
426 dev_err(mc->dev,
427 "timing %pOFn: failed to read rate\n", node);
428 return err;
429 }
430
431 timing->rate = tmp;
432 timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
433 sizeof(u32), GFP_KERNEL);
434 if (!timing->emem_data)
435 return -ENOMEM;
436
437 err = of_property_read_u32_array(node, "nvidia,emem-configuration",
438 timing->emem_data,
439 mc->soc->num_emem_regs);
440 if (err) {
441 dev_err(mc->dev,
442 "timing %pOFn: failed to read EMEM configuration\n",
443 node);
444 return err;
445 }
446
447 return 0;
448 }
449
load_timings(struct tegra_mc * mc,struct device_node * node)450 static int load_timings(struct tegra_mc *mc, struct device_node *node)
451 {
452 struct device_node *child;
453 struct tegra_mc_timing *timing;
454 int child_count = of_get_child_count(node);
455 int i = 0, err;
456
457 mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
458 GFP_KERNEL);
459 if (!mc->timings)
460 return -ENOMEM;
461
462 mc->num_timings = child_count;
463
464 for_each_child_of_node(node, child) {
465 timing = &mc->timings[i++];
466
467 err = load_one_timing(mc, timing, child);
468 if (err) {
469 of_node_put(child);
470 return err;
471 }
472 }
473
474 return 0;
475 }
476
tegra_mc_setup_timings(struct tegra_mc * mc)477 static int tegra_mc_setup_timings(struct tegra_mc *mc)
478 {
479 struct device_node *node;
480 u32 ram_code, node_ram_code;
481 int err;
482
483 ram_code = tegra_read_ram_code();
484
485 mc->num_timings = 0;
486
487 for_each_child_of_node(mc->dev->of_node, node) {
488 err = of_property_read_u32(node, "nvidia,ram-code",
489 &node_ram_code);
490 if (err || (node_ram_code != ram_code))
491 continue;
492
493 err = load_timings(mc, node);
494 of_node_put(node);
495 if (err)
496 return err;
497 break;
498 }
499
500 if (mc->num_timings == 0)
501 dev_warn(mc->dev,
502 "no memory timings for RAM code %u registered\n",
503 ram_code);
504
505 return 0;
506 }
507
tegra30_mc_probe(struct tegra_mc * mc)508 int tegra30_mc_probe(struct tegra_mc *mc)
509 {
510 int err;
511
512 mc->clk = devm_clk_get_optional(mc->dev, "mc");
513 if (IS_ERR(mc->clk)) {
514 dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
515 return PTR_ERR(mc->clk);
516 }
517
518 /* ensure that debug features are disabled */
519 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
520
521 err = tegra_mc_setup_latency_allowance(mc);
522 if (err < 0) {
523 dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
524 return err;
525 }
526
527 err = tegra_mc_setup_timings(mc);
528 if (err < 0) {
529 dev_err(mc->dev, "failed to setup timings: %d\n", err);
530 return err;
531 }
532
533 return 0;
534 }
535
536 const struct tegra_mc_ops tegra30_mc_ops = {
537 .probe = tegra30_mc_probe,
538 .handle_irq = tegra30_mc_handle_irq,
539 };
540 #endif
541
mc_global_intstatus_to_channel(const struct tegra_mc * mc,u32 status,unsigned int * mc_channel)542 static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
543 unsigned int *mc_channel)
544 {
545 if ((status & mc->soc->ch_intmask) == 0)
546 return -EINVAL;
547
548 *mc_channel = __ffs((status & mc->soc->ch_intmask) >>
549 mc->soc->global_intstatus_channel_shift);
550
551 return 0;
552 }
553
mc_channel_to_global_intstatus(const struct tegra_mc * mc,unsigned int channel)554 static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
555 unsigned int channel)
556 {
557 return BIT(channel) << mc->soc->global_intstatus_channel_shift;
558 }
559
tegra30_mc_handle_irq(int irq,void * data)560 irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
561 {
562 struct tegra_mc *mc = data;
563 unsigned int bit, channel;
564 unsigned long status;
565
566 if (mc->soc->num_channels) {
567 u32 global_status;
568 int err;
569
570 global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
571 err = mc_global_intstatus_to_channel(mc, global_status, &channel);
572 if (err < 0) {
573 dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
574 global_status);
575 return IRQ_NONE;
576 }
577
578 /* mask all interrupts to avoid flooding */
579 status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
580 } else {
581 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
582 }
583
584 if (!status)
585 return IRQ_NONE;
586
587 for_each_set_bit(bit, &status, 32) {
588 const char *error = tegra_mc_status_names[bit] ?: "unknown";
589 const char *client = "unknown", *desc;
590 const char *direction, *secure;
591 u32 status_reg, addr_reg;
592 u32 intmask = BIT(bit);
593 phys_addr_t addr = 0;
594 #ifdef CONFIG_PHYS_ADDR_T_64BIT
595 u32 addr_hi_reg = 0;
596 #endif
597 unsigned int i;
598 char perm[7];
599 u8 id, type;
600 u32 value;
601
602 switch (intmask) {
603 case MC_INT_DECERR_VPR:
604 status_reg = MC_ERR_VPR_STATUS;
605 addr_reg = MC_ERR_VPR_ADR;
606 break;
607
608 case MC_INT_SECERR_SEC:
609 status_reg = MC_ERR_SEC_STATUS;
610 addr_reg = MC_ERR_SEC_ADR;
611 break;
612
613 case MC_INT_DECERR_MTS:
614 status_reg = MC_ERR_MTS_STATUS;
615 addr_reg = MC_ERR_MTS_ADR;
616 break;
617
618 case MC_INT_DECERR_GENERALIZED_CARVEOUT:
619 status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
620 addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
621 break;
622
623 case MC_INT_DECERR_ROUTE_SANITY:
624 status_reg = MC_ERR_ROUTE_SANITY_STATUS;
625 addr_reg = MC_ERR_ROUTE_SANITY_ADR;
626 break;
627
628 default:
629 status_reg = MC_ERR_STATUS;
630 addr_reg = MC_ERR_ADR;
631
632 #ifdef CONFIG_PHYS_ADDR_T_64BIT
633 if (mc->soc->has_addr_hi_reg)
634 addr_hi_reg = MC_ERR_ADR_HI;
635 #endif
636 break;
637 }
638
639 if (mc->soc->num_channels)
640 value = mc_ch_readl(mc, channel, status_reg);
641 else
642 value = mc_readl(mc, status_reg);
643
644 #ifdef CONFIG_PHYS_ADDR_T_64BIT
645 if (mc->soc->num_address_bits > 32) {
646 if (addr_hi_reg) {
647 if (mc->soc->num_channels)
648 addr = mc_ch_readl(mc, channel, addr_hi_reg);
649 else
650 addr = mc_readl(mc, addr_hi_reg);
651 } else {
652 addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
653 MC_ERR_STATUS_ADR_HI_MASK);
654 }
655 addr <<= 32;
656 }
657 #endif
658
659 if (value & MC_ERR_STATUS_RW)
660 direction = "write";
661 else
662 direction = "read";
663
664 if (value & MC_ERR_STATUS_SECURITY)
665 secure = "secure ";
666 else
667 secure = "";
668
669 id = value & mc->soc->client_id_mask;
670
671 for (i = 0; i < mc->soc->num_clients; i++) {
672 if (mc->soc->clients[i].id == id) {
673 client = mc->soc->clients[i].name;
674 break;
675 }
676 }
677
678 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
679 MC_ERR_STATUS_TYPE_SHIFT;
680 desc = tegra_mc_error_names[type];
681
682 switch (value & MC_ERR_STATUS_TYPE_MASK) {
683 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
684 perm[0] = ' ';
685 perm[1] = '[';
686
687 if (value & MC_ERR_STATUS_READABLE)
688 perm[2] = 'R';
689 else
690 perm[2] = '-';
691
692 if (value & MC_ERR_STATUS_WRITABLE)
693 perm[3] = 'W';
694 else
695 perm[3] = '-';
696
697 if (value & MC_ERR_STATUS_NONSECURE)
698 perm[4] = '-';
699 else
700 perm[4] = 'S';
701
702 perm[5] = ']';
703 perm[6] = '\0';
704 break;
705
706 default:
707 perm[0] = '\0';
708 break;
709 }
710
711 if (mc->soc->num_channels)
712 value = mc_ch_readl(mc, channel, addr_reg);
713 else
714 value = mc_readl(mc, addr_reg);
715 addr |= value;
716
717 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
718 client, secure, direction, &addr, error,
719 desc, perm);
720 }
721
722 /* clear interrupts */
723 if (mc->soc->num_channels) {
724 mc_ch_writel(mc, channel, status, MC_INTSTATUS);
725 mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
726 mc_channel_to_global_intstatus(mc, channel),
727 MC_GLOBAL_INTSTATUS);
728 } else {
729 mc_writel(mc, status, MC_INTSTATUS);
730 }
731
732 return IRQ_HANDLED;
733 }
734
735 const char *const tegra_mc_status_names[32] = {
736 [ 1] = "External interrupt",
737 [ 6] = "EMEM address decode error",
738 [ 7] = "GART page fault",
739 [ 8] = "Security violation",
740 [ 9] = "EMEM arbitration error",
741 [10] = "Page fault",
742 [11] = "Invalid APB ASID update",
743 [12] = "VPR violation",
744 [13] = "Secure carveout violation",
745 [16] = "MTS carveout violation",
746 [17] = "Generalized carveout violation",
747 [20] = "Route Sanity error",
748 };
749
750 const char *const tegra_mc_error_names[8] = {
751 [2] = "EMEM decode error",
752 [3] = "TrustZone violation",
753 [4] = "Carveout violation",
754 [6] = "SMMU translation error",
755 };
756
757 /*
758 * Memory Controller (MC) has few Memory Clients that are issuing memory
759 * bandwidth allocation requests to the MC interconnect provider. The MC
760 * provider aggregates the requests and then sends the aggregated request
761 * up to the External Memory Controller (EMC) interconnect provider which
762 * re-configures hardware interface to External Memory (EMEM) in accordance
763 * to the required bandwidth. Each MC interconnect node represents an
764 * individual Memory Client.
765 *
766 * Memory interconnect topology:
767 *
768 * +----+
769 * +--------+ | |
770 * | TEXSRD +--->+ |
771 * +--------+ | |
772 * | | +-----+ +------+
773 * ... | MC +--->+ EMC +--->+ EMEM |
774 * | | +-----+ +------+
775 * +--------+ | |
776 * | DISP.. +--->+ |
777 * +--------+ | |
778 * +----+
779 */
tegra_mc_interconnect_setup(struct tegra_mc * mc)780 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
781 {
782 struct icc_node *node;
783 unsigned int i;
784 int err;
785
786 /* older device-trees don't have interconnect properties */
787 if (!device_property_present(mc->dev, "#interconnect-cells") ||
788 !mc->soc->icc_ops)
789 return 0;
790
791 mc->provider.dev = mc->dev;
792 mc->provider.data = &mc->provider;
793 mc->provider.set = mc->soc->icc_ops->set;
794 mc->provider.aggregate = mc->soc->icc_ops->aggregate;
795 mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
796
797 err = icc_provider_add(&mc->provider);
798 if (err)
799 return err;
800
801 /* create Memory Controller node */
802 node = icc_node_create(TEGRA_ICC_MC);
803 if (IS_ERR(node)) {
804 err = PTR_ERR(node);
805 goto del_provider;
806 }
807
808 node->name = "Memory Controller";
809 icc_node_add(node, &mc->provider);
810
811 /* link Memory Controller to External Memory Controller */
812 err = icc_link_create(node, TEGRA_ICC_EMC);
813 if (err)
814 goto remove_nodes;
815
816 for (i = 0; i < mc->soc->num_clients; i++) {
817 /* create MC client node */
818 node = icc_node_create(mc->soc->clients[i].id);
819 if (IS_ERR(node)) {
820 err = PTR_ERR(node);
821 goto remove_nodes;
822 }
823
824 node->name = mc->soc->clients[i].name;
825 icc_node_add(node, &mc->provider);
826
827 /* link Memory Client to Memory Controller */
828 err = icc_link_create(node, TEGRA_ICC_MC);
829 if (err)
830 goto remove_nodes;
831 }
832
833 return 0;
834
835 remove_nodes:
836 icc_nodes_remove(&mc->provider);
837 del_provider:
838 icc_provider_del(&mc->provider);
839
840 return err;
841 }
842
tegra_mc_probe(struct platform_device * pdev)843 static int tegra_mc_probe(struct platform_device *pdev)
844 {
845 struct tegra_mc *mc;
846 u64 mask;
847 int err;
848
849 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
850 if (!mc)
851 return -ENOMEM;
852
853 platform_set_drvdata(pdev, mc);
854 spin_lock_init(&mc->lock);
855 mc->soc = of_device_get_match_data(&pdev->dev);
856 mc->dev = &pdev->dev;
857
858 mask = DMA_BIT_MASK(mc->soc->num_address_bits);
859
860 err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
861 if (err < 0) {
862 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
863 return err;
864 }
865
866 /* length of MC tick in nanoseconds */
867 mc->tick = 30;
868
869 mc->regs = devm_platform_ioremap_resource(pdev, 0);
870 if (IS_ERR(mc->regs))
871 return PTR_ERR(mc->regs);
872
873 mc->debugfs.root = debugfs_create_dir("mc", NULL);
874
875 if (mc->soc->ops && mc->soc->ops->probe) {
876 err = mc->soc->ops->probe(mc);
877 if (err < 0)
878 return err;
879 }
880
881 if (mc->soc->ops && mc->soc->ops->handle_irq) {
882 mc->irq = platform_get_irq(pdev, 0);
883 if (mc->irq < 0)
884 return mc->irq;
885
886 WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
887
888 if (mc->soc->num_channels)
889 mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
890 MC_INTMASK);
891 else
892 mc_writel(mc, mc->soc->intmask, MC_INTMASK);
893
894 err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
895 dev_name(&pdev->dev), mc);
896 if (err < 0) {
897 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
898 err);
899 return err;
900 }
901 }
902
903 if (mc->soc->reset_ops) {
904 err = tegra_mc_reset_setup(mc);
905 if (err < 0)
906 dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
907 }
908
909 err = tegra_mc_interconnect_setup(mc);
910 if (err < 0)
911 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
912 err);
913
914 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
915 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
916 if (IS_ERR(mc->smmu)) {
917 dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
918 PTR_ERR(mc->smmu));
919 mc->smmu = NULL;
920 }
921 }
922
923 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
924 mc->gart = tegra_gart_probe(&pdev->dev, mc);
925 if (IS_ERR(mc->gart)) {
926 dev_err(&pdev->dev, "failed to probe GART: %ld\n",
927 PTR_ERR(mc->gart));
928 mc->gart = NULL;
929 }
930 }
931
932 return 0;
933 }
934
tegra_mc_suspend(struct device * dev)935 static int __maybe_unused tegra_mc_suspend(struct device *dev)
936 {
937 struct tegra_mc *mc = dev_get_drvdata(dev);
938
939 if (mc->soc->ops && mc->soc->ops->suspend)
940 return mc->soc->ops->suspend(mc);
941
942 return 0;
943 }
944
tegra_mc_resume(struct device * dev)945 static int __maybe_unused tegra_mc_resume(struct device *dev)
946 {
947 struct tegra_mc *mc = dev_get_drvdata(dev);
948
949 if (mc->soc->ops && mc->soc->ops->resume)
950 return mc->soc->ops->resume(mc);
951
952 return 0;
953 }
954
tegra_mc_sync_state(struct device * dev)955 static void tegra_mc_sync_state(struct device *dev)
956 {
957 struct tegra_mc *mc = dev_get_drvdata(dev);
958
959 /* check whether ICC provider is registered */
960 if (mc->provider.dev == dev)
961 icc_sync_state(dev);
962 }
963
964 static const struct dev_pm_ops tegra_mc_pm_ops = {
965 SET_SYSTEM_SLEEP_PM_OPS(tegra_mc_suspend, tegra_mc_resume)
966 };
967
968 static struct platform_driver tegra_mc_driver = {
969 .driver = {
970 .name = "tegra-mc",
971 .of_match_table = tegra_mc_of_match,
972 .pm = &tegra_mc_pm_ops,
973 .suppress_bind_attrs = true,
974 .sync_state = tegra_mc_sync_state,
975 },
976 .prevent_deferred_probe = true,
977 .probe = tegra_mc_probe,
978 };
979
tegra_mc_init(void)980 static int tegra_mc_init(void)
981 {
982 return platform_driver_register(&tegra_mc_driver);
983 }
984 arch_initcall(tegra_mc_init);
985
986 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
987 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
988 MODULE_LICENSE("GPL v2");
989